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Abstract. This article presents a Galerkin Least-Squares (GLS) finite element multifield formulation – considering  
three  primal  variables:  extra-stress,  velocity  and  pressure  –  for  modeling  viscoplastic  fluids  flowing  around  a  
cylinder  confined  between  parallel  plates.  The  recently  proposed  viscoplastic  constitutive  equation – henceforth  
simply called SMD model – is assumed, predicting shear-thinning and yield stress fluid behavior. The mechanical  
model is approximated by the GLS method, which circumvents the need to satisfy the compatibility condition known  
as Babuška-Brezzi condition and also the compatibility condition between extra-stress and velocity subspaces, which  
arises for multi-field formulations.  Some bi-dimensional numerical  results,  assuming inertialess fluid flows, have 
been obtained for velocity, pressure and extra-stress fields with the studied geometry, in which the dimensionless  
viscoplastic number of the SMD model, namely the jump number J, as ranged from 1 to 1000 and the power-law  
exponent from 0.5 to 1.5. As it was verified by computational tests, the unyielded regions of the material decreases  
with the increase of the jump number, the pressure drop on the plate increases with the increasing of the power-law  
coefficient and the axial velocity profiles become flatter as the coefficient n decreases.

Keywords: Non-Newtonian fluids; Viscoplastic fluid flows; SMD model; Multi-field formulation; Galerkin least-
squares method 

1. INTRODUCTION 

Viscoplastic  fluid  behavior  is  exhibited  by  several  materials  including  drilling  muds  and  heavy  oils  in  the 
petroleum industry,  mayonnaise,  creams and  many dairy products  in  the  food  and  cosmetics  industries,  clay,  and 
concentrated suspensions, and so on. Many models have been proposed along the past years to approximate the yield-
stress  behavior,  like Bingham, Casson and Herschel-Bulkley models.  Analytical  solutions  were provided  for  these 
models in simple shear flows. Souza Mendes and Dutra, based on recent rheological measurements of the behavior of 
viscoplastic fluids subjected to very low shear stresses, introduced a model in 2004 – from now on denoted as SMD 
(Souza Mendes and Dutra, 2004) – which aims to represent the behavior of viscoplastic real liquids more realistically.  
This model regularizes the shear stress field by employing rheological parameters only.

The main purpose of this paper is to study viscoplastic fluid flows using a  multi-field Galerkin least-squares (GLS) 
finite element formulation which takes into account velocity, pressure and extra-stress fields as primal variables. The 
classical Galerkin method does not guarantee stable approximations, may generate solutions without physical meaning 
and numerical pathologies for mixed incompressible fluid flows, such as the locking of the velocity field and spurious 
oscillations on the pressure field. The inherent difficulties associated to the Galerkin method are due to the compatibility 
of velocity and pressure finite element subspaces, e. g., the need to satisfy the Babuška-Brezzi condition involving these 
subspaces, a condition which was established by Babuška and Brezzi in the early 70's – see, for details, Babuška (1973) 
and Brezzi (1974). According to these works, the velocity and pressure subspaces may not be spanned by any arbitrary 
combination of finite element interpolations and, in the case of multi-field formulations, another compatibility condition 
must be imposed on the choice of the stress and velocity subspaces. Besides, if the inertia effects are taken into account,  
the classical  Galerkin method fails  to capture stably high advective flows due to  the unsymmetrical  nature of  the 
advective terms of motion equation. This latter shortcoming is even more felt in flows of shear-thinning viscoplastic 
fluids, for which the apparent fluid viscosity experiments severe gradients near the geometry boundary and near the 
yield surface. 

The alternatives to remedy Galerkin deficiencies in incompressible fluid flows may be accommodated, in a simple 
way, in the follow duality: either to hold the classical Galerkin formulation employing no-conforming finite elements or 
to change Galerkin formulation and use simple Lagragean elements. It is in that alternative in which the GLS method 
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must be viewed, a methodology whose major features are enhancing Galerkin stability with usual combinations of finite 
elements – for instance, equal-order elements, a very attractive combination from the computational point-of view- 
without upsetting its consistency.

The dimensionless viscoplastic  number of  the SMD model,  namely the jump number J,  introduced by Souza 
Mendes et al., (2007) and the power-law index were ranged in order to investigate the flow dynamics of non-linear 
viscoplastic materials.  The numerical computations, considering steady-state creeping flow, have been carried out for 
power-law indexes  ranging  from 0.5  to  1.5,  the  dimensionless  parameter  J  varying  from  zero  to  1000  and  inlet 
dimensionless average velocity from 0.5 to 2.0.  The numerical results  generated by the GLS approximations were 
physically coherent with the flow dynamics of the problem, being in accordance with the literature.

2. MECHANICAL MODEL

The mechanical model combines the principles of mass and linear momentum balances for a steady-state flow of an 
incompressible fluid through an open domain ⊂ℜN=2,3 with a regular boundary Γ,

[∇ u]u−div T=f in 
div u=0 in 

   (1)

In Eq. (1) u represents the fluid velocity, r its mass density, f the body force per unit mass and the stress tensor T 
may be decomposed into a hydrostatic and viscous portions, T=-pI+τ 

Constitutive equations for the stress tensor must satisfy some requirements (Astarita and Marrucci, 1974), namely 
the  principles  of  determinism,  local  action  and  frame  indifference,  and  the  second  law of  Thermodynamics.  The 
principles of determinism and local action are satisfied if the stress T is expressed as a function of the fluid velocity u 
and its gradient L,  i. e., T = H(u, L). However, neither the vector u nor the tensor L are frame indifferent quantities. If 
frame indifference is also applied, it may be proved that the tensor  T must be only dependent of the tensor  D, the 
symmetrical part of tensor L, i. e., T=G(D) (see, for instance, Astarita and Marrucci, 1974).

The most general form to relate the tensor T to the flow kinematics is the Reiner-Prager equation (Slattery, 1999),

T=−011 D2 D2    (2)

with the scalars i=i I D , IID , IIID  , i=0.1,2 being functions of the principal invariants of tensor D,

I D=tr D , II D=
1
2
[ I D

2  - tr D2] , IIID=det D    (3)

Assuming  that  T obeys  the  generalized  Newtonian  liquid  (GNL)  model  (Bird  et  al.,  1987), 
T=− p1=−p 12̇D ,  where the viscosity function η is dependent of ̇ , the magnitude of the rate of 

strain tensor D, ̇=2 tr D21 /2 .
The  SMD model proposed by Souza Mendes and Dutra (2004),  adequate for  describing highly pseudoplastic 

liquids,  regularizes the shear stress field employing rheological parameters only, namely the yield stress,  τ0, the zero-
shear-rate viscosity, η0, the consistency index, K, and the power-law index, n. It predicts the following expressions for 
shear stress and viscosity function:

=0K  ̇n1−exp−0 ̇/0
 ̇=0/ ̇K ̇n−11−exp −0 ̇/0

   (4)

Next, in Souza Mendes et al. (2007), the authors introduced a rheological dimensionless property for viscoplastic 
fluids – the so-called jump number J, which provides “a relative measure of the jump in the shear rate when the shear 
stress is approximately equal to the stress limit, ≈0 ”. Mathematically, it may be defined as:

J=
̇1−̇0

̇0
=
0/K 1/ n−0/0

0/0
=00

1−n

K 
1/n

−1    (5)
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in which ̇0 is the shear rate value at the beginning of the shear rate jump and ̇1 the shear rate value for which the 

power-law region begins – see Fig. 1(a)-(b) for details. Still in this article, introducing the dimensionless quantities
̇∗=̇/̇1 and  ∗=/0 ,  the  authors  have  obtained  the following  dimensionless  shear  stress  and  viscosity 

equations:

∗=1−exp[− J1 ̇∗ ][1̇∗n

]

∗≡
∗

̇∗
=1−exp[− J1 ̇∗ ][

1
̇∗

̇∗n−1

]
   (6)

Figure 1 shows the influence of the jump number J – defined in Eq. (5) – on the SMD flow curve (Fig.1(a)) and 
on the SMD viscosity function (Fig.1(b)). It may be noticed that as the the jump number grows, the SMD model mimics 
the classical Herschel-Bulkley (Fig.1(a)) and the low shear rate viscosity tends to infinite (Fig.1(b)) . 

 (a)  (b)
Figure 1: Influence of the jump number J (a) on the SMD flow curve and (b) on the SMD viscosity function.

3. NUMERICAL APPROXIMATION

The multi-field boundary value problem, concerns the viscoplastic fluid flow defined by the triple shear stress, 
pressure and velocity fields and the associated system of contact  and body forces  – namely mass and momentum 
balance equations, Eq.(1) – coupled with the SMD constitutive model for viscoplasticity defined by Eq.(6) and also 
accounting for the boundary conditions, may be stated as: 

[∇ u] u−div∇ p=f in 
−2̇Du=0 in 
div u=0 in 
u=ug on g

[−pI] n=th on h

   (7)

where  Γg is  the portion of  the boundary  Γ on which Dirichlet  condition is  imposed and  Γh
  the portion on which 

Neumann condition is imposed,  ug a prescribed velocity field,  th the stress vector  and  ̇ is the SMD viscosity 
function given by Eq. (6). The remaining variables have been previously defined. 

The  finite  element  approximation  is  based  on  a  usual  finite  element  partition,  employing  the  finite  element 
subspaces for shear stress (Σh), velocity (Vh) and pressure (Ph) fields presented below:

Vh={v∈H 0
1N∣vK∈Rk K N , K∈h}

Vg
h={v∈H 1N∣vK∈Rk K

N , K∈h , v=ug ong}

Ph={p∈C 0∩L2
0∣pK∈Rl K  , K∈h}

h={S∈∣SK∈Rm K
NxN , K∈h}

={S∈C 0NxN∩L2NxN∣Sij=S ji , i , j=1,... , N }

   (8)
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where C0(Ω) represents the space of continuous functions, L2(Ω) the  Hilbert space of square integrable functions in Ω, 
H1(Ω) the Sobolev functional space of functions with square integrable value and derivatives in Ω,  Rk,  Rl  and Rm the 

polynomial spaces  of  degree in  k,  l and  m,  respectively, in  Ωh and  N represents the number of  space dimensions 
considered in the problem.

3.1 Multi-field Galerkin least-squares formulation

Based on the finite element subspaces defined by Eq. (8), a multi-field Galerkin least-squares formulation for the 
system defined by Eq. (7) may be written as: Find (τh,ph,uh)∈ΣhxPhxVgh such that

Bh , ph ,uh ;Sh , qh , vh=F Sh , qh ,v h ∀Sh , qh , vh ∈ h×Ph×V g
h    (9)

where

Bh , ph ,uh ;Sh , qh ,v h= 1
2̇∫

h⋅Shd −∫
D uh⋅Shd 

∫
[∇ uh]uh⋅vh d∫

⋅Dvhd−∫
p div vh d ∫

div uh qhd ∫
ph qh d

∑
K∈h

∫ K
[∇ uh]uh∇ ph−div.  ReK  [∇ vh]uh∇ qh−divShd 

2̇∫
 1
2̇

h−Duh. 1
2̇

Sh−D v hd ∫
div uhdiv vh d 

 (10)

and

F Sh , qh ,vh=∫
f⋅v h d∫h

th⋅vh d 

∑
K ∈h

∫K

f⋅ ReK  [∇ vh]uh∇ qh−div Sd   (11)

where the positive constant scalar β multiplying the least-squares of the viscoplastic model is taken as proposed in Behr 
et al., (1993), i. e.,  0<β<1  and the stability parameters multiplying the least-squares of motion and continuity equation, 
α(ReK) and δ  respectively,  are given as in Franca and Frey (1992),

 ReK =
hK

2∣u∣p
ReK =∣u∣p hKReK  with  ReK =ReK , 0ReK1

1 , ReK1

ReK=
m k∣u∣p hK

4̇
with mk=min{1 /3,2C k } and C k ∑

K ∈h

hK
2∥div D u h∥0, K

2 ≤∥Duh∥0
2 ∀ uh∈Vh

 (12)

Remarks:
1. The multi-field GLS formulation defined by Eq. (9)-(11) is formed by the addition of the least-squares terms of 

the motion and continuity balance equation (Eq.  (1))  and the viscoplastic model (Eq.  (6))  to the classical 
Galerkin formulation. 

2. The GLS formulation defined by Eqs.(9)-(11) is identical to a GLS formulation proposed by Behr et al. (1993) 
for context of constant viscosity fluids. Furthermore, if we drop the inertia terms, i.e., Re=0, the formulation of 
Franca and Stenberg (1991) is recovered.

3.2. Matrix problem

Introducing the shape functions for τh, uh, ph, Sh, vh and qh in the GLS formulation presented in Eqs. (9)-(11), the 
following residual equation is obtained:

R U=0  (13)

where Uh is the vector of degrees of freedom of τh, uh and  ph given by U h=[ h , uh , ph]T
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R U=[1E ̇1−HE̇ ,u][N uN ̇, uK−1HT−GTM ]u
[GG ̇ ,u P]p−F−F̇ , u

 (14)

where [H] and [HT] are the matrices representing the coupling between τ and u, [E] is the matrix related to the extra-
stress τ term, [N] is the matrix of advective terms, [K] is the matrix of diffusive terms, [G]  is the matrix of  pressure 
terms, [GT] the matrix of  continuity equation term and [F] is the body forces term matrix. The matrices with subscript 
α – namely [Eα ], [Nα ], [Gα ], and [Fα ] are the matrices originated from the GLS terms. Also, [M] is the matrix of the δ 
term and [P] is the matrix of the ε term in Eq. (9)-(11).

To solve the non-linear matrix problem defined by Eq. (13)-(14) an incremental quasi-Newton method has been 
implemented where the Jacobian matrix was updated only at each two or three iterations (Zinani and Frey, 2008) . The 
algorithm requires a initial guess U0

h and, at each iteration, we solve the linear system

JUk
hUk1

h =−R Uk
h  (15)

where R Uk
h  is given by Eq.(14) and the Jacobian matrix JUk

h  calculated analytically,

JUk
h=

∂R Uk
h

∂Uk
h  (16)

in order to find the incremental vector Uk1
h and to compute

Uk1
h =Uk

hUk1
h  (17)

We assume that convergence is achieved when ∣R Uk
h∣∞ –  in this work, we take =10−7 .

4. NUMERICAL RESULTS

The GLS formulation presented in Eqs. (9)-(11) was used to simulate inertialess flows of SMD fluids around a 
cylinder kept between parallel plates. The problem statement consists of a cylinder with unitary radius inserted into 
parallel  layers  distant  one  unity  from the  cylinder  surface.  Since  this  geometry  is  symmetrical,  only half  of  the 
computational domain was simulated, as shown in Fig. 2. Impermeability and no-slip conditions at the channel walls 
and at the cylinder surface; zero vertical velocity and transversal gradient of horizontal velocity at the centerline as well 
as an uniform horizontal velocity profile at inlet and outlet were the imposed boundary conditions. All the computations 
have been performed with the finite element code for fluids under development at Laboratory of Computational and 
Applied Fluid Mechanics (LAMAC-UFRGS). 

The  partitioning  of  the  computational  domain  in  11,584  quadrilateral  bilinear  elements  (Q1/Q1)  has  been 
considered generating 11,957 nodal points. At the cylinder surroundings, the mesh is more refined in order to better 
characterize the yielded surfaces downstream and upstream the cylinder, as depicted in Fig. (3).

Figure 2: Problem statement: Cylinder kept between parallel plates.
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Figure 3: Employed Mesh.

The inlet dimensionless average velocity is defined as uin
∗=uin /̇1 2R  –  with uin representing the imposed inlet 

velocity, 2R half the channel height and ̇1 the shear rate value at the power-law region. In all computations, it is 
assumed creeping flow, i. e., the Reynolds number is taken as zero. Figure 4 compares pressure elevation considering 
the jump number J=1000, n=1 and uin

∗=1.0 , obtained by classical Galerkin and GLS methods, for the refined mesh 
presented in Fig. 3, showing spurious oscillations in the former methodology. 

Figure 4. Pressure elevation for J=1000, uin
∗=1.0 ; n=1, and equal-order elements: (a) Galerkin; (b): GLS.

Figure 5 shows the influence of the jump number on yielded and unyielded regions,  considering  n=0.5 and
uin
∗=1.0 , ranging J from 0 to 100. From the figure, as the jump number increases the unyielded zones decrease; the 

polar caps – barely visible for J=0 and J=1 depicted in Fig. 5(a) Fig. 5(b), respectively – vanish for J greater or equal 
than 5 (Fig. 5(c)-Fig. 5(f)). Also, the islands (over the cylinder) decrease as J increases.

Figure  6  presents  the  influence  of  J  number  on τ12-isobands,  for  n=0.5  and uin
∗=1.0 and varying the  jump 

number from J=0 to J=100. As it may be viewed, the shear stress plotting is only a matter of a trivial graphical post-
processing when a multi-field formulation has been employed, since τ is a primal variable for this kind of formulation. 

Figure 7 shows the influence of  the power-law index on  the pressure elevation plots,  for  values  of  J=10 and
uin
∗=1 , with the power-law index n ranging from n=0.5, 1.0 and 1.5. The figure allows to conclude that as the power 

coefficient n increases, the pressure drop increases too, due to shear-thinning effects. 
Finally, Fig. 8 illustrates the influence of n index on the horizontal and vertical velocity elevation plots, considering 

J=10 and uin
∗=1.0 . Figures 8(a)-8(c), for horizontal velocity elevations, show that the maximum axial velocity over 

the cylinder increases as  the  n index grows, while  Fig. 8(d)-8(f), for vertical velocity elevations, illustrate no visible 
influence of the n index on axial velocity elevations upstream and downstream the cylinder.
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Figure 5: Yielded and unyielded zones for n=0.5 and uin
∗=1.0 ranging the jump number: (a) J=0; (b) J=1; (c) J=5; 

(d) J=7.5; (e) J=10;(f) J=100.

Figure 6: Influence of J number on τ12-isobands considering n=0.5 and uin
∗=1.0 : for (a) J=0; (b) J=1; (c) J=10; 

(d) J=100.

Figure 7: Influence of n index on pressure elevation, for uin
∗=1.0 and J=10:  (a) n=0.5, (b) n=1.0 and (c) n=1.5.

5. FINAL REMARKS

This work presented a multi-field (extra-stress, velocity and pressure fields) Galerkin least-squares formulation for 
SMD fluids  flowing around a cylinder confined between parallel plates.  The GLS formulation was enough stable to 
approximate inelastic non-Newtonian fluid flows, characterized by shear-rate dependent viscosity and yield limit, even 
employing an equal-order combination of velocity and pressure subspaces. From the numerical viewpoint, the use a 
multi-field GLS formulation had the advantage of a simple computational implementation, being directly extended for 
three-dimensional situations. Due to shear-thinning and viscoplastic material behavior, the flow dynamics differs very 
much from the Newtonian ones. For creeping flows, unyielded zones decrease with the increasing of J number, the 
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increase of the n index increases the pressure drop and the axial velocity profiles become more elongated.

Figure 8: Influence of n index, for J=10 and uin
∗=1.0 , on the horizontal  – (a) n=0.5, (b) n=1.0, (c)  n=1.5 – and 

vertical – (d) n=0.5, (e) n=1.0, (f)   n=1.5 – velocity elevations.
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