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Abstract. Bingham constitutive model characterizes the behavior of many industrial fluids presenting a yield stress  
limit. In this article the classical Bingham model was regularized by the equation proposed by Papanastasiou, in  
order  to  investigate the  unyielded  zones  morphology of  viscoplastic  materials  flowing through a planar sudden 
expansion.  The  employed  mechanical  model  consists  of  the  viscoplastic  constitutive  hypothesis  coupled  with  
continuity and motion equations. This model was approximated by a Galerkin least-squares methodology to enhance  
the classical Galerkin stability without upsetting its  consistency.  Numerical  simulations of  4:1 sudden expansion  
flows, employing usual Lagrangian bilinear interpolations, have been performed for values of the Bingham number  
from Bn=3.9 to Bn=127 and Reynolds number from Re=1 to Re=30, in order to take into account yield stress and  
inertial effects. The numerical simulations allowed the computation of material yielded surfaces, pressure drops and  
velocity profiles through the expansion channel. 

Keywords: Non-Newtonian fluids; Regularized Bingham model; Papanastasiou equation, Galerkin least-squares  
method.

1. INTRODUCTION 

Bingham constitutive model was built to describe the behavior of linear viscoplastic materials such as cements, 
drilling muds, tomato sauce and toothpaste (Bird  et al., 1983). However, this model suffers from the shortcoming of 
describing  yielded  and  unyielded  regions  by distinct  equations.  Papanastasiou  (1987)  proposed  a  regularization  to 
describe the whole shear stress domain by a single equation. This work aims at performing mixed Galerkin least-
squares approximations for linear viscoplastic fluid flows through a 4:1 planar sudden expansion using the Bingham 
model regularized by Papanastasiou equation as well as investigating how the yield stress and inertia effects affect the 
morphology of the yield surface and the flow dynamics. The difficulties inherent to the classical Galerkin method in 
inelastic non-Newtonian fluids are the compatibility between the finite element subspaces for velocity and pressure (the 
well-known Babuška-Brezzi condition), the difficulty to hand with geometrical non-linearity - due to the asymmetric 
features of advective term of motion equation - and material non-linearity – concerning the shear-thinning effects and 
materials subjected to yield limit.

In  this  article  a mixed  Galerkin  least-squares  (GLS)  methodology  was  employed  in  order  to  to  circumvent 
Babuška-Brezzi  condition (see Babuška,  1973 and Brezzi,  1974) admitting any combination between velocity and 
pressure finite subspaces, and to hold stability even in advective dominated zones. The GLS formulation is devoid of 
spurious oscillations which pollute the Galerkin approximations for velocity and pressure fields of high advective-
diffusive flows (Franca and Frey, 1992). The GLS method is built in by adding to the classical Galerkin formulation 
mesh-dependent terms – functions of the residual of the Euler-Lagrange equation – enhancing the formulation stability 
without upsetting its consistency, since the exact solution trivially satisfies the residual of the Euler-Lagrange equation. 
In this work the GLS methodology is employed to approximate regularized Bingham fluid flows,  investigating the 
yielded and unyielded zones morphology in flows through a planar sudden expansion, for distinct values of Bingham 
and Reynolds numbers.

2. MECHANICAL MODEL

The mechanical  model  employs  the continuity  and  motion  equations  for  the  steady-state  isothermal  flows  of 
inelastic incompressible fluids: 

div u=0
[∇u ]u=div Tf

   (1)
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where u represents the fluid velocity, ρ its mass density, f the body force per unit mass and T the Cauchy stress tensor.
The generalized Newtonian constitutive equation (GNL) was assumed to relate the internal stresses to kinematic 

variables: 

T=− p I=− pI2̇Du     (2)

where p is a mean pressure, p≡−1/3tr T , I the unit tensor, τ the viscous stress tensor and D(u) is the rate of strain 
tensor, whose magnitude is given by ̇=2tr D21/2  . Besides,  ̇≡/̇ is the GNL viscosity function, (Bird el 
al, 1983).

In order to model the stress-strain behavior of a viscoplastic material we have chosen Bingham constitutive model. 
This  model  is  characterized  by  a  linear  viscoplastic  relation  between  shear  stress  and  shear  rate,  flowing  like  a 
Newtonian fluid when the shear stress of the material exceeds its yield value  τ0.  For shear stress values below  τ0, 
moving or unmoving (dead) unyielded zones are characterized. This model is expressed by (Bird et al., 1983):

=00 ̇ for ≥0

̇=0 for 0
   (3)

where =1 /2tr21 /2 represents the shear stress magnitude, 0 a constant Newtonian viscosity and τ0  and ̇
have been previously defined (Bird et al., 1983). 

Papanastasiou (1987)  proposed  a  modification of  Eq.  (3)  by introducing  a  regularization parameter  m,  which 
expresses the shear stress as continuous function, valid for the whole shear rate domain, eliminating the discontinuity on 
the τ field. The resulting regularized equation is valid for both yielded and unyielded zones, giving rise to the following 
shear stress and viscosity functions:

=0 ̇0[1−exp −m ̇] ; ̇=0
0

̇ [1−exp −m ̇]     (4)

Eq. (4) states that as m → 0, ̇ reduces to the classical Newtonian model and, consequently,  ̇ tends 
to the Newtonian constant viscosity  and as  m →  ∞, ̇ becomes the classical Bingham equation and   ̇
tends to the Bingham viscosity function.

3. NUMERICAL APPROXIMATION

Taking the mass and momentum balance equations, Eq.(1), for an inelastic incompressible fluid on steady-state 
flow, coupled with the regularized Bingham constitutive model, Eq.(4), we have the following boundary value problem: 

[∇ u]u−div [2̇D u]∇ p=f in 
div u=0 in 
u=ug on  g

[−p I2̇D u]n= th on h

   (5)

where Ω  represents the internal domain, Γg the portion of the boundary Γ  on which Dirichlet condition is imposed and 
Γh  the portion of the boundary Γ on which Neumann condition is imposed. Also, ug is the prescribed velocity field, th 

the stress vector on  Γh and  ̇ is the regularized viscosity function – given by Eq. (4). The remaining variables 
have been previously defined. 

The finite element method is built in by employing an conforming approximation – namely an approximation of 
spaces with infinite dimension through convenient discrete subspaces, in which, if  V h⊂V and Ph⊂P , in finite 
dimension it comes that the finite element approximation for velocity and pressure fields are given by:

uhx =∑
j=1

N

u j
hx e j : u j

hx=∑
B=1

Np

N Bxu jB phx=∑
B=1

Np

N Bx  p B

v hx =∑
i=1

N

vi
hx ei : vi

h x=∑
A=1

Np

N Ax viA qhx=∑
A=1

Np
N Ax q A

   (6)

The finite element subspaces for velocity (Vh) and pressure (Ph) being given by:
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V h={v∈H 0
1N∣v K∈Rk K N , K∈h}

Ph={q∈C 0∩L0
2∣qK∈Rl K  , K∈h}

V g
h={v∈H 1N∣v K∈Rk K N , K∈h , v=ug on g}

   (7)

with C0(Ω) representing the space of continuous functions, L2(Ω) the Hilbert space of square integrable functions in Ω, 
H1(Ω) the Sobolev functional space of functions with square integrable value and derivatives in  Ω,  Rk and  Rl the 

polynomial of degrees k and l in Ωh  and N represents the number of space dimensions considered in the problem.

3.1. Galerkin Least-Squares formulation

The GLS formulation may be stated as: Find the pair ui
h , ph ∈ V g i

h ×Ph , i=1,.. , N , such that:

Bui
h , ph ; vi

h , q h=F v i
h , qh , ∀vi

h , q h ∈ V i
h×Ph    (8)

where

Bui
h , p h; v i

h , q h=∫
u j

h∂x j
ui

h vi
hd ∫

2̇D uhij D vhij d 

−∫
2 D uhij∂x j

̇h⋅v i
h d−∫

p h∂x i
v i

h d−∫
∂x i

ui
h qh d ∫

p hqh d 

∑
K∈h

∫ K

u j
h∂x j

ui
h∂x i

ph−2̇∂x j
D u ij

h−2 D u hij∂x j
̇h

. ReK  u j
h∂x j

v i
h−∂x i

q h2̇∂x j
D vij

h2 D  vhij
h∂x j

 ̇hd

   (9)

and

F v , q=∫
f i vi

h d ∫
t i v i

h d 

∑
K∈h

∫
f i Re u j

h∂x j
vi

h−∂ xi
qh2∂x j

D vij
h2 D v hij∂x j

̇hd   (10)

with ε denoting a positive constant  ε<<1 and ReK the GLS stability parameter, defined as in Franca and Frey 
(1992):

 ReK=
hK

2∣u∣p
ReK  with   ReK = ReK , 0ReK1

1 , ReK1

ReK=
mk∣u∣p hK

4̇
with mk=min {1/3,2C k }

and C k ∑
K∈h

h K
2 ∥div D v h∥0, K

2 ≥∥D v h∥0
2 ∀ vh∈Vh

 (11)

where  hK stands for the  K-element size,  ReK is the grid Reynolds number |u|p the  p-norm on  RN and the remaining 
variables have been defined as before.

The convergence proof is found in Franca and Frey (1992), based on a stability lemma, assuming the given data 
a(x)  (a  known  velocity  field)  and  η(x)  to  satisfy  div(a(x))=0  and  η=constant>0,  making  vh=uh and  qh=-ph and 
considering Eq. (9), the authors have achieved that:

Buh , ph ;uh ,− ph=1
2
2∥D uh∥0

2∑
K∈h

∥1 /2∇ uha∇ ph∥0, K
2   (12)

3.2. Non linear strategy

Introducing the shape functions for uh, ph, vh and qh (Eq. (6)) into the GLS formulation presented in Eqs. (8)-(11), 
the following residual form is obtained:

R U =0  (13)
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where U is the vector of degrees of freedom of uh and ph and R(U) is given by:

R U =N uuN ̇ , uu[K  ̇K  ̇ ,u]u[GG ̇ ,u ]pGT u−F−F ̇ , u (14)

In Equation (14), matrices [K] and [G] are originated by the diffusive and pressure terms of Eqs.(8)-(10), respectively, 
with N(u), GT and F, coming from the advective, incompressibility and body force ones, respectively. The least-squares 
terms of Eqs.(8)-(10) generate Nτ, Kτ, Gτ, and Fτ. To solve the non linear matrix system presented in Eqs.(13)-(14) an 
incremental quasi-Newton method (see, for instance, Zinani and Frey, 2006) has been implemented where the Jacobian 
matrix, presented below, was updated only at each two or three iterations.

JU=Nu
∂N u 
∂u

uN  ̇ , u
∂N ̇ ,u 

∂u
uK  ̇K  ̇ ,u 


∂K ̇ ,u

∂u
uGG  ̇ ,u

∂G ̇, u
∂u

pGT−
∂F ̇ , u 

∂u

 (15)

The algorithm below describes the numerical procedure:

ALGORITHM:

I. Estimate vector U0 and set the number of iterations (m) to update Jacobian matrix J(U).
II. Set  k=0, j=0, ε=10-7.
III. If  k-int(k/m)*k=0, then j=k.
IV. Solve for incremental vector  ak+1:

J U ja k1=−R U k  (16)
where  R(U) is given by Eq.(14) and  J(U) is given by Eq.(15).
V. Compute vector  Uk+1:

U k1=Ukak1  (17)
VI. If ∣R U k ∣∞ then do k=k+1 and go step III; otherwise, store solution Uk+1 and exit from the algorithm.

4. NUMERICAL RESULTS

In order to compare results obtained by Galerkin and GLS methodologies, a bi-unity cavity with impermeability 
and no-slip boundary condition at its walls, except for the lid at the superior edge, which moves with a steady horizontal  
prescribed unitary velocity, was simulated for creeping flows of a Bingham fluid considering Bn=3.9.

Figure 1 represents the pressure at the centerline (y=0.5) and the horizontal velocity profile at the centerline (x=0.5) 
of the above described cavity,  obtained by employing 10x10 and 100x100 Q1/Q1 element meshes considering both 
Galerkin  and  GLS  methodologies.  Concerning  the  Galerkin  approximation,  pressure  oscillations  still  persist  even 
refining the mesh, while velocity oscillations are substantially dampened with mesh refinement. 

Figure 1: Galerkin and GLS approximations for (a) pressure plot at y=0.5; (b) horizontal velocity profile at x=0.5.

The numerical simulation, employing the GLS formulation defined by Eqs.(8)-(11), only considered half a planar 
symmetric abrupt expansion as described in Fig.  2. In order to achieve a Bingham fully-developed velocity profile 
upwind and downwind the expansion, the channel inlet and outlet had the lengths:  Li=8Hi, and  L0=52Hi. At channel 
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walls no-slip and impermeability were imposed and symmetry condition was considered at channel centerline.  The 
channel aspect ratio was defined as  H0/Hi=4, the value of  H i≡L has been set equal to 1, the plastic viscosity  η0 

equal to 1.  Bingham fully-developed profile, based on the equation deduced by Slattery (1999), was imposed at inlet 
and outlet:

u1=
H j

2∇ p
2 L j0

[1− y
H j

² ]−
0 H j

0
1− y

H j
 if

H j p
2L j

≥0

̇=0 (plug flow) if
H j p

2LP j
0

   (19)

with j=i and  j=o denoting inlet and outlet, defined in Fig. 2, respectively and ∆p the pressure difference.
All  the  computations  have  been  performed  with  the  finite  element  code  for  fluids  under  development  at 

Laboratory of Computational and Applied Fluid Mechanics (LAMAC-UFRGS). 

Figure 2: Problem statement.

After  assuring mesh independence,  by testing five different  meshes,  ranging from 6,920 to 29,980 Lagrangian 
bilinear finite elements (Q1/Q1) – as shown in Fig. 3, a mesh with 23,120 Lagrangian bilinear finite elements and 23,535 
nodes has been selected, employing a criterion of 3% maximum allowed error between the dimensionless pressure drop 
of two consecutive meshes.

A detail of the adopted mesh to simulate a 4:1 planar expansion is presented in Fig. 3, showing the mesh refinement 
downstream and upstream the expansion, allowing to better characterize the yielded and unyielded surfaces  in this 
region. 

Throughout this article, the Papanastasiou regularization parameter  m, was taken equal to 1000, as suggested by 
Mitsoulis and Huilgol (2004). Bingham and Reynolds numbers are defined as follows: 

Bn=
20 H i

0 ui
=

2 0 L
0 ui

; Re=
ui H i

0
=
ui L
0

 (20)

where variables are defined as before. 

Figure 3: Detail of the employed mesh for a 4:1 planar expansion.

In Figure 4 the yielded and unyielded zones (represented by the black regions) were depicted for inertialess flows 
with Bingham number ranging from Bn=0.2 to Bn=127. The unyielded regions can be sorted in two distinct zones: 
unmoving rigid zones, or simply dead zones, at expansion corners, and moving rigid zones (plug flows) on channel 
centerline. As Bn increases the unyielded zones – dead zones at the expansion corners and plug flow zones in both 
channels – also increase. In Fig 4(a), for Bn=0.2, a very small plug flow is observed upstream the contraction, while the 
plug flow occupies almost its whole domain for Bn=127 (Fig. 4(d)). Also for very small Bn (Bn=0.2) the downstream 
rigid moving zone is pushed away from the expansion corner – when compared with Figures 4(b)-4(d). Actually, the 
plug flow begins  almost  at  the  same distance  from the  corner  in  these  later  figures.  The effect  of  increasing  Bn 
downstream the corner is enlarging the plug flow zone. In short, dead zones and plug flows increase with the growth of 
Bingham number.
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Figure 4: Yielded and unyielded regions for Re=0 and (a) Bn=0.2, (b) Bn=3.9, (c) Bn=27.1, (d) Bn=127.

A 2:1 abrupt expansion has been simulated in this work in order to compare the results with those by Mitsoulis and 
Huigol (2004), for two distinct values of Bingham number – namely Bn=27.1 and Bn=127, as presented in Fig. 5. The 
yield surfaces – limiting surfaces between yielded and unyielded zones – presented an acceptable agreement.

(a) (b)

Figure 5: Comparison of results for an aspect ratio H0/Hi=2 obtained in the present work with those by Mitsoulis and 
Huigol (2004): (a) Bn=27.1; (b) Bn=127.

Figure 6 depicts the influence of the Bingham number on dead zone length and distance from expansion to rigid 
moving zone, considering the regularizing parameter  m=1000 and Re=0.  As Bn increases, both dead zones and plug 
flow regions grow too. 

Figure 6: Influence of the Bingham number. Dead zone length and distance from expansion to rigid moving zone, for 
m=1000 and Re=0.

Figure 7 illustrates the influence of the Bingham number on horizontal velocity profile at a fully developed region 
of the larger channel and the pressure drop through the channel, considering  m =1000 and Re=0. As the Bingham 
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number grows, the velocity profiles become flatter and subjected to severe boundary layers (plug-flows) with higher 
shear rates, and the pressure drop through the channel is highly increased.

(a) (b)

Figure 7: Influence of the Bingham number for  m =1000 and Re=0. (a)  Horizontal velocity profile at a fully developed 
region of the larger channel; (b) Pressure drop through the channel.

Figure 8: Influence of Reynolds number at yielded and unyielded regions for Bn=0.2, m =1000 and (a) Re=1; 
(b) Re=5; (c) Re=8; (d) Re=10; (e) Re=13; (f) Re=30.

In Figure 8, in order to investigate the influence of Reynolds number, a very low Bingham number was chosen – 
namely Bn=0.2 – with the  regularization parameter  m=1000. Initially, as Re has been  increased the unyielded dead 
zones have been increased too – as shown in Figs. 8(a)-(f). However, after a critical value around Re=8, this growth 
experimented  a  reverse  behavior,  probably  due  to  the  collapse  of  the  dead  zone  –  Figs.  8(c)  to  8(f).  Also  the 
downstream unyielded moving zones were clearly pushed away from the expansion corner as Re was increased.

Figure 9: Influence of Reynolds number at expansion corner region for Bn=0.2, m =1000 and (a) Re=1; 
(b) Re=5; (c) Re=8; (d) Re=10; (e) Re=13; (f) Re=30.
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Figure 9 describes the influence of Reynolds number at expansion corner region, once again for  m =1000 and 
Bn=0.2, ranging the Reynolds number from 1 to 30. Here may be better observed that, near Re 8, the ≈ dead  zone starts 
to break up and detaches from the expansion corner.  This effect has already been experimentally observed for the 
axisymmetric flow obtained by Jay et al. (2001), depicted in Fig. 10.

 

Figure 10: Experimental results for axisymmetric shear-thinning viscoplastic flow (Jay et al., 2001).

5. FINAL REMARKS

A Galerkin least-squares finite element formulation has been employed to approximate a 4:1 sudden expansion 
flow of Bingham fluids,  in which the regularized Bingham model was employed.  The numerical  methodology  has 
stably approximated linear viscoplastic flows, even for a combination of subspaces for velocity and pressure violating 
the Babuska-Brezzi condition. As it might be expected, for equal-order interpolations Q1/Q1, the classical Galerkin 
method has generated unstable approximations even for simulations employing refined meshes. For creeping flows, 
unyielded zones were greater for fluids with higher yield stress. The more viscoplastic the material, the higher pressure 
drops, due to the growth of plug-flows and dead zones. Besides, the growth of the unyielded zones with the Bingham 
number and an inflexion in dependence of the growth of the dead zone at expansion corner with the Reynolds number 
were verified.
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