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Abstract. This article  presents a finite  element  simulation of  Carreau flows through an abrupt contraction. The  
employed mechanical model consists in using the Carreau viscosity equation to characterize the shear-thinning fluid  
behavior,  giving  rise  to  a  generalization  of  Navier-Stokes  equation  containing  a  non-linear  diffusion  term.  A  
Galerkin-Least  Squares  methodology  approximates  the  mechanical  model  circumventing  the  Babuška-Brezzi  
condition, which consists of adding to the classical Galerkin method mesh-dependent residuals, resulting from a 
least-squares minimization of the Euler-Lagrange equations of the problem. These perturbation terms are built in to  
enhance stability of original Galerkin formulation without upsetting the problem consistency. Numerical results for  
both  velocity  and  pressure  fields  accounting  for  shear-rate  dependent  viscosity  have  been  obtained  for  an 
axisymmetric 4:1 sudden contraction with Carreau number ranging from 0 to 100, Reynolds number from 2 to 100  
and power-law exponent from 0.2 to 1.0. These results have shown good agreement with the literature. 

Keywords: Non-Newtonian fluids; Shear-thinning, Carreau fluid; sudden contraction flow; Galerkin least-squares  
method.

1. INTRODUCTION 

Non-Newtonian fluid behavior is present in a wide class of fluids, many of them exhibiting shear-thinning effect. 
Kim et al. (1983) have employed a classical finite element approach to study the roles of fluid inertia and shear-rate 
dependence of  a Carreau  viscosity field,  concluding that   effect  of  increasing either shear-thinning or fluid inertia 
decreases  the upstream vortex size at the sudden contraction flow. Fang  et al. (1999) employed a finite difference 
scheme to model laminar fully-developed flows in an eccentric annular geometry for power-law fluids. Reis Junior and 
Naccache  (2003) simulated,  via  a  finite  volume methodology,  non-Newtonian fluids through axisymmetric  sudden 
expansion and contraction flows, investigating the influence of rheological parameters on these flows. Neofytou (2005) 
also  employed  a  finite  volume  methodology,  employing  the  SIMPLE  pressure-correction  strategy  coupled  to  the 
QUICK difference scheme, to simulate four non-Newtonian viscous models in a lid-driven cavity flow: power-law, 
Quemada and modified Bingham and Casson ones.

In the present work a Galerkin/least-squares (GLS) methodology was employed to simulate Carreau flows through 
an axisymmetric 4:1 sudden contraction, accounting for fluid inertia and shear-rate dependency on viscosity. This GLS 
methodology overcomes  classical  Galerkin shortcomings at  high advective flows by adding mesh-dependent  terms 
(functions of the residuals of the Euler-Lagrange equations evaluated elementwise) to classical Galerkin formulation, 
enhancing its convergence without upsetting its consistency, since the residuals of the Euler-Lagrange equations are 
satisfied by their exact solutions. Stabilization is important not only to circumvent Babuška-Brezzi condition but also to 
preserve numerical stability in locally advective dominated flow regions due to the material behavior of shear-thinning 
liquids.

In all numerical simulations, a structured non-uniform finite element mesh has been employed, consisting of 7,154 
equal-order bilinear quadrilateral elements (Q1/Q1), in order to approximate velocity and pressure fields. The Carreau 
number was investigated from 0 to 100, the shear-thinning coefficient from 0.2 to 1.0 and the Reynolds number from 2 
to 100. 

2. MECHANICAL MODEL AND NUMERICAL FORMULATION

The  mechanical  model employs  the  continuity  and  motion  equations  to  simulate  steady-state isothermal 
axisymmetric flows of inelastic incompressible fluids, considering Cauchy stress tensor: σ =−pI +τ , where p is a mean 
pressure and τ the deviatoric stress, being given by:
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r−1∂r r u r∂ z u z=0
∂t u ru r∂r u ruz∂ z u r=−∂ r pr−1[∂r r rr − ]∂ zrz f r

∂t u zur∂ r uzu z∂ z uz =−∂ z pr−1 ∂r rrz∂ z zz f z

 (1)

where ur and uz are the non-zero components of the fluid velocity, ρ its mass density, τrr, τrz, τzr, τθθ and τzz, are the non-
zero components of the deviatoric stress tensor and ρfr  and ρfz represent the radial and axial components of the body 
force per unit mass.

A non-linear dependence of the deviatoric stress on the rate of strain tensor may be introduced by considering a 
generalized  Newtonian  constitutive law  ̇=2̇Du  with D being the symmetric  portion of  the velocity 
gradient – denoted by rate of strain tensor – and   ̇ is the shear rate viscosity. For an axisymmetric flow, the 
components of the deviatoric stress tensor may be expressed as

rr=2 ̇∂r ur

=2 ̇ r−1 ur

zz=2̇∂ z uz

zr=̇∂ z ur∂r uz

 (2)

In the present work the viscosity function  ̇  is given by Carreau constitutive equation (Bird et al., 1987)

−∞
0−∞

=[1̇2]n−1 /2
 (3)

with  η0 and  η∞ being asymptotic  values of fluid viscosity at  zero and infinite shear  rates,  respectively,  λ being a 
characteristic time equal to the reciprocal of the shear rate at which shear thinning begins and, finally, (n-1) represents 
the power-law slope of  the  logarithmic  of  viscosity  function,  ̇ .  The  shear  rate  scalar, ̇ ,  represents  the 
Frobenius norm of tensor D, a mathematical measure for the shear rate when simple shear flow is assumed – namely: 
̇=2 tr D21/ 2 . 

Taking the mass and momentum balance equations, Eq.(1), for an inelastic incompressible fluid on steady-state 
isothermal  axisymmetric  flow,  coupled  with the  Carreau  constitutive  model,  Eq.(3),  the  following boundary value 
problem may be stated:

u r∂r uru z∂z ur=−∂r pr−1[∂r 2̇∂r ur−2 ̇ r−1u r]
∂z̇∂z ur∂r u z f r in 

u r∂r uzu z∂z u z=−∂z pr−1∂r[r  ̇∂z u r∂r u r]
∂z2 ̇∂ z u z f z in 

r−1∂r r u r∂z u z=0 in 
ur=u g r

on  g r

u z=ug z
on  gz

−p2̇∂r ur=t hr
on hr

̇∂ z ur∂r u z=t hz
on hz

  (4)

Equation (4) is stated considering an internal domain ⊂ℝ 2  with a polygonal or polyhedral boundary Γ, 
formed by the union of  Γg   – the portion of  Γ where Dirichlet  conditions are imposed – and  Γh   – the portion 
subjected  to  Neumann  boundary  conditions.  In  this  equation t hr

and t hz
are the non-zero components of  the 

stress vector on h r
and h z

, respectively. 

3. GALERKIN LEAST-SQUARES FORMULATION

The finite element approximation of Eq. (4) was built in by employing the usual fluid dynamics subspaces for 
velocity (Vh) and pressure (Ph) (Ciarlet, 1978),
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V h={v∈H 1
0N∣v∣K ∈Rk K 

N , K∈h}
Ph={ p∈C 0∩L0

2∣p∣K ∈Rl K  , K∈h}

V h
g={v∈H 1

0N∣v∣K ∈Rk K  , K∈k v i=ug on  g}

 (5)

with Rm (m=k,l) denoting the polynomial spaces of degree m, Ωh a usual finite element partitioning (Ciarlet, 1978) and 
ΩK the domain of the K-finite element of Ωh.

Based on the above definitions of velocity and pressure subspaces, Eq. (5), a Galerkin least-squares formulation for 
the problem presented in Eq. (4) may be stated as: Find the pair (uh, ph) ∈ Vh

gxPh, such that, for all   (vh, qh) ∈ VhxPh,:

∫ u r
h∂r ur

huz
h∂z ur

hv r
h d∫ ur

h∂r u z
hu z

h∂z u z
hv z

h d
−∫ ph[r−1∂ r r v r

h∂z v z
h]d−∫ [r

−1∂r r ur
h∂z u z

h]qh d
∫ 2 ̇[∂z ∂z u r

h∂r u z
h/2r−1∂rr ∂r ur

h−ur
h/ r]

×[∂z ∂z v r
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h/2r−1∂r r ∂r v r
h−v r

h/r ]d
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h/2∂z∂z u z

h]

×[∂z∂z v z
hr−1∂r r ∂z v r

h∂ r v z
h/2]d
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 (6)

in which the stability parameter τ (ReK) is defined as:

ReK=
hK

2∣u∣p
 ReK ; with ReK =ReK , for 0≤ReK1 or ReK =1, for ReK1

and ReK=
m K∣u∣p hk

4 ̇

  (7)

with ∣u∣p denoting the p-norm on ℝn and the parameter mk being determined from the error analysis introduced by 
Franca and Frey (1992).

Remark: When the parameter τ (ReK) is equal to zero in the GLS formulation defined in Eq. (6)-(7), the classical 
Galerkin formulation is recovered.

4. NUMERICAL RESULTS

The computational implementation of the GLS formulation has been validated by the benchmark of the lid-driven 
cavity problem for Newtonian fluids subjected to high advection flows. The cavity layout consists of a bi-unity cavity 
with a moving lid with impermeability and no-slip boundary condition at its walls, except for the lid at the superior edge 
which moves with a steady horizontal prescribed velocity – see, for instance Neofytou (2005), for problem statement 
details. A uniform finite element partitioning of the computational domain in 130x130 quadrilateral bilinear elements 
(Q1/Q1) has been considered in the usual way (Ciarlet, 1978), generating 17,161 nodal points. Three distinct Reynolds 
number were investigated, namely Re=1 (for simulating creeping flows), 400 and 1000. All the computations have been 
performed with the finite element code for fluids under development at Laboratory of Computational and Applied Fluid 
Mechanics (LAMAC-UFRGS). 

Figures 1 and 2 show the comparison between GLS approximations obtained in this work and those by Ghia et al. 
(1982) including inertia effects – namely Re=400 e Re=1000 – as well as with results from Jurjevic (1999) for creeping 
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flow (Re=1). The horizontal profile – at x=0.5 (Fig. 1) – and the vertical profile – at y=0.5 (Fig. 2) – have shown good 
agreement with both articles for the investigated Reynolds numbers.

Figure 1: Lid-driven cavity flow – horizontal velocity profiles at x=0.5: (a) Re=1; (b) Re=400; (c) Re=1000.

Figure 2: Lid-driven cavity flow – vertical velocity profiles at y=0.5: (a) Re=1; (b) Re=400; (c) Re=1000.

After  validating  the  code,  the  GLS  approximation  defined  in  Eq.(6)-(7)  has  been  implemented  to  simulate  a 
Carreau (Eq. 3), flow through an axisymmetric 4:1 sudden contraction. The geometry was built in by joining a cylinder 
of  radius  R1 and  length  L1  with  another  one  of  smaller  radius  R2  and length  L2.  The  geometric  configuration  is 
mathematically described by the aspect ratio β =R1/R2. All simulated cases have employed  β =4, as shown in Figure 
3(a).

The imposed boundary conditions were: no-slip and impermeability at walls, symmetry velocity condition at the 
centerline;  at  the inlet  a  flat  velocity profile was imposed while at  the outlet  free  traction condition was adopted. 
Besides, the pressure is fixed at the outlet in one point: pref=0.

Figure 3: Axisymmetric sudden contraction flow: (a) problem statement; (b) detail of refined mesh at the contraction 
region.

After a mesh refining process ensuring mesh independence, the computational domain has been partitioned in the 
usual way (Ciarlet, 1978) into 7154 bilinear elements (Q1/Q1) – as depicted in Figure 3(b).

Reynolds number for this flow was defined considering the smaller radius cylinder R2, its average velocity V2 and 
the zero-shear-rate viscosity η0:

Re=
2 R2V 2

0
  (8)

Introducing the Carreau number as
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Cu=
V 2

R2
  (9)

with the parameter  λ defined as previously,  and setting the infinite-shear-rate viscosity  η∞=0, the Carreau viscosity 
equation (Eq. 3) may be redefined as

 ̇=[1Cu ̇2]n−1/2 (10)

According to Eq.(10) a Newtonian behavior was recovered for Cu=0 and  the shear stress is given by

̇=̇[1Cu ̇2]n−1/2 (11)

Results investigating inertia effects have been obtained considering Reynolds number values varying from Re=2 to 
Re=100  –  the  former  simulating  negligible  inertia  flows.  The  the  shear-thinning  effect  has  been  investigated  by 
considering  distinct  values  of  Carreau  number  – ranging  from Cu=0 to  Cu=100 – and  by varying  the power-law 
exponent from n=0.2 to n=1.0.

In order to analyze the influence of Carreau number at the flow dynamics, at Figures 4 and 5 inertia effects have 
been neglected (Re=2) and the power-law coefficient was fixed as n=0.2. 

Figure 4. Pressure contours for n=2 and Re=2: (a) Cu=0, (b) Cu=10, (c) Cu=50 and (d) Cu=100.

Figure 4 presents pressure contours for Re=2 and n=0.2. From all investigated Cu values it may be verified that an 
increase of Carreau number causes a monotonic decrease at pressure drop along the flow. This decrease is particularly 
accentuated for Cu between 0 (Figure 4(a) for Cu=0) and 10 (Figure 4(b) for Cu=10). Besides, for the highest values of 
Cu (Figure 4(c) for Cu=50 and Figure 4(d) for Cu=100), the pressure drop at the smaller tube is attenuated by shear-
thinning effects.  It  is  observed that  the increase  of  Carreau  number  diminishes the fluid’s  resistance to  flow and, 
consequently, the pressure drop.

Figure 5 presents a detail of the flow streamlines at the sudden contraction region, once again varying Cu from 0 to 
100 and considering Re=2 and n=0.2. For Cu=0 – Newtonian case – a well-defined vortex is present at the contraction 
corner. This vortex tends to be collapsed as the shear-thinning effect becomes stronger, for Cu=50 and Cu=100 (Figures 
5(c)-5(d)). As the shear thinning effect increases with Carreau number growth, the decreasing viscosity forces the flow 
at the larger tube to be locally advective dominated, giving rise to the vortex collapse.
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Figure 5: A detail of flow streamlines at the sudden contraction region for n=2 and Re=2: (a) Cu=0, (b) Cu=10, 
(c) Cu=50 and (d) Cu=100.

Figure 6, also obtained by neglecting inertia effects, shows the influence of the power-law coefficient (ranging 
from n=0.2 to n=1.0) on the axial velocity profile at the contraction plane considering two distinct values of Carreau 
number – namely Cu=10 in Figure 6(a) and Cu=100 in Figure 6(b). Comparing both Figures 6(a) and 6(b), it may be 
noticed an increase of pseudoplasticity due to Carreau number augmentation, in which the power law index decrease 
causes the shear-thinning intensification. Figure 6 shows the evolution from the parabolic Newtonian profile (n=1) to an 
almost flat profile (n=0.2) – in both figures. This almost flat profile with very thin boundary layers near the walls – 
presenting severe velocity gradients, is characteristic of very strong shear-thinning, obtained by combining n=0.2 and 
Cu=100. The deviation from the classical Newtonian pattern (n=1) at the contraction plane results from the progressive 
decrease  of  viscosity  related  to  the  decrease  of  the  power-law  coefficient,  being  intensified  by  Carreau  number 
augmentation. The concavity at the boundary layer edge for the strongest shear-thinning case (n=0.2 and Cu=100 – in 
Figure 6(b)) may be eliminated by employing shock-capture strategies (Galeão and Carmo, 1988).

Figure 6: Axial velocity profiles at contraction plane for Re=2 and distinct values of n: (a) Cu=10 and (b) Cu=100.

Further, Figure 6(b) presents a comparison between results obtained in the present work for  n=0.4 and those by 
Kim et al. (1983). These authors have employed a classical Galerkin finite element approximation with a very coarse 
mesh, consisting of 116 Q2/Q1 elements. As observed from this figure both results show an excellent agreement.

Figure 7: Radial velocity profiles for distinct Reynolds numbers and Cu=0 at contraction plane.
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In order to investigate the influence of the inertia effects on the flow dynamics, Figure 7 presents radial velocity at 
the  contraction  plane  for  Reynolds  numbers  varying  from  2  to  100.  A  fully-developed  parabolic  profile  at  the 
contraction plane is obtained for Re=2. The Reynolds number growth gives rise to quasi-uniform velocity profiles at the 
symmetry  line  subject  to  severe  boundary  layers.  The  most  advective  profile  (Re=100)  presents  an  overshoot  at 
boundary layer edge, which may be eliminated by employing a shock-capture strategy (Galeão and Carmo, 1988).

Figure 8: Axial velocity profiles along symmetry axis for  Cu=100: (a) Re=2 and distinct power-law coefficients; 
(b) n=0.2 and  distinct Reynolds numbers.

Comparison 9-11

Figure 8 investigates the influence of the power-law coefficient  (ranging from  n=0.2 to  n=1.0) and the inertia 
influence (with Reynolds number varying from 2 to 55) on the axial velocity profiles along symmetry axis, considering 
a high value of Careeau number – namely Cu=100. Figure 8(a) has been obtained by neglecting inertial effects, for 
Re=2. At the larger tube (a low shear rate region) the velocity profiles are almost independent from the power-law 
coefficient; otherwise, at the smaller one, the velocity profile suffers a strong influence of the power-law coefficient. As 
it may be noticed, at the latter region the velocity values decrease as n decreases. A comparison between the present 
work results for n=0.4 and those by Kim et al. (1983) is also presented in Figure 8(a), both results showing a very good 
agreement, but in the vicinity of the contraction plane.

Figure 8(b) illustrates the inertia effects on the axial velocity profiles along the symmetry axis, for the most shear-
thinning case (Cu=100 and n=0.2) with Reynolds number varying from 2 to 55. This figure reveals an almost negligible 
influence of Reynolds number on the velocity profiles. In the larger tube, even for the smaller Reynolds value (Re=2), 
the flow is advective-dominated due to the high value of the shear-thinning coefficient (n=0.2) – as indicated by the 
overlaping of all curves. Yet in the smaller tube one may notice a differentiation of the curves with the increase of 
Reynolds number. As Reynolds grows, one may observe only a small augmentation of the centerline velocities due to 
the very low value of the shear-thinning coefficient of the fluid (n=0.2). 

5. FINAL REMARKS

A Galerkin least-squares finite element formulation has been employed to approximate an isochoric Carreau flow 
through an axisymmetric  sudden contraction,  with the results  being successfully compared  to those by  Kim  et  al. 
(1983). It was verified that the increase of shear-thinning effect causes a strong influence on the flow dynamics. The 
velocity profiles at  the contraction plane become high advective-dominated with the increase of the shear-thinning 
coefficient and the increase of the Carreau number, with the presence of a strong boundary layer near the pipe wall. As 
shear-thinning increases, three distinct behaviors were verified in this article: the velocity profiles at the contraction 
plane become flatter; the vortex size at the contraction corner decreases until its collapse and the pressure drop along the 
flow suffers a strong reduction.
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