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Abstract. To solve the Navier-Stokes equations pseudo spectral methods are viable alternative, because its provide an 
excellent numerical accuracy and it becomes very efficient when Fast Fourier Transform algorithm is used. It presents 
a low computational cost when compared to anothers high-order methods. Nevertheless this method can be only 
applied to solve periodic flows,aiming to solve this restriction, the immersed boundary method is being used with 
pseudo spectral method. The present work is a evolution of work Mariano et al. (2007)with the new case test, the flow 
over a square cylinder at differents Reynolds’ numbers, in order to continue the validation the methodologie and the 
computational code, demonstrating the possibility of solving non-periodic flows with the Fourier pseudo spectral 
method. 
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Phenomena involving aeroacustic, transition to turbulence and combustion are problems that modern engineering 

aim to understand, among other manners, using techniques of the Computational Fluids Dynamics (CFD). In the case of 
the aeroacustic is important to use a method that captures the sound pressure waves. In phenomena involving transition 
to turbulence is necessary to study the small instabilities that become the flows turbulent. In the combustion, exists 
processes that involve the small edges of the turbulent flow. In these problems the CFD uses methods of high order 
accuracy to obtain results for analyses which represent the in fact physics phenomena mentioned. 

The high order methods provide an excellent accuracy, for example: the methods of high order finite differences and 
the compact schemes, but, on the other hand, they have as disadvantaged the computational expensive cost in 
comparison to the conventional methodologies. With the advent of the spectral methods joining high accuracy with low 
computational cost became possible. This low cost is given by the Fast Fourier Transformed (FFT), since the cost of a 
problem resolution with finite differences is the order of O(N2), where N is the number of the grid points, the cost of the 
FFT is of O(Nlog2N) (Canuto et al, 1988). In addition, it was also developed the projection method (Silveira-Neto, 
2002; Souza, 2005 and Mariano, 2007), which disentails pressure field of the Navier-Stokes equation calculates in the 
spectral space. Using the projection process is not necessary to calculate the Poisson equation, like it is done by the 
conventional methodologies. Normally, solving this equation is the most expensive part of a CFD code. The 
disadvantage of the spectral methodology is the difficulty to work with complex geometries and boundary conditions.  

One of the most practical methodologies to work with complex geometries is the Immersed Boundary (IB) (Peskin, 
1972). It is distinguished by the imposition of a term source, which has the role of a body force imposed in the Navier-
Stokes equation to represent a virtual immersed body in the flow (Goldstein et al, 1993). This facilitates for represent 
any geometry, whether it is complex or in movement. 

The methodology, presented in this paper, is an evolution of the work of Mariano et al. (2007), using the Fourier 
pseudo-spectral method connected in the immersed boundary method. It is proposed to simulate flows with non-
periodic boundary conditions making use of the term source of the immersed boundary.  

First, it will be demonstrated the transformation of the Navier-Stokes equations for the Fourier spectral space, as 
well as the imposition of the source term. In the second part, the details of numerical implementation of the 
computational code developed will be demonstrated. Finally, the results of flow over a square cylinder will be shown 
which is a non-periodic problem solved by the Fourier spectral method, where the boundary conditions had been 
imposed through the force field of the immersed boundary. Beside that, concepts of buffer zone and filtering process 
will be explored. 
 
 
 
 



2. MATHEMATICAL MODELING 
 

In this session will be presented the classic mathematical model of the immersed boundary proposed by Lima e 
Silva (2003), which calculates the term source through the Virtual Physical Model, after that, the equations that 
govern the problem will be transformed for the Fourier spectral space using the properties of the discrete Fourier 
transformed and, finally, the methodology proposed by this paper will be presented, which connect the two 
methodologies. 
 
2.1. Mathematic model for the fluid 
 

The Immersed Boundary methodology (Peskin, 1972) consists in working with two independents meshes: the 
eulerian mesh, where the fluid equations are solved and the lagrangian mesh, which represents the solid interface 
immersed in fluid. The eulerian mesh is cartesian and fixed, and is simulate as if it is completely full of fluid. The flow 
is governed by conservation momentum equation and the continuity equation. The information of the fluid/solid 
interface is passed to the eulerian mesh for the addition of the term source to the Navier-Stokes equations. This term 
play a role of a body force that represents the boundary conditions of the immersed geometry (Goldstein, 1993). The 
equations that govern the problem are presented in its tensorial form: 
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the term source in [N/m3]; ρ  is the density; ν  is the cinematic viscosity in [m2/s]; lx  is the spatial component (x,y) in 
[m] and t is the time in [s]. The boundary conditions are imposed in a classical way and the initial condition is any 
velocity field that satisfies the continuity equation. 

The source term is defined in all domain, but presents values different from zeros only in the points that coincides 
with the immersed geometry, enabling that the eulerian field perceives the presence of the solid interface (Enriquez-
Remigio, 2000). 
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where x  is the position of the particle in the fluid and  kx  is the position of the a point on the solid interface (Figure 1). 
 

 
 

Figure 1: Schematically representation of eulerian and lagrangian domain 
 

Using this definition can be concluded that the field ( ),lf x t  is discontinuous, which can be numerically solved 
only when there are coincidence between the points that compose the interface domain with the points that compose the 
fluid domain. In cases that there are not coincidence between this points, very frequently in the complex geometries, it 
is necessary to distribute the function ( ),lf x t  on its neighborhoods (Unverddi and Triggvason, 1992). Just by 
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calculating the lagrangian force field ( ,l k )F x t , it can be distribute and thus, to transmit the information geometry 
presence for the eulerian meshes. 

 
 

2.2. Mathematic Model for the immersed interface 
 

In this paper, the lagrangian force field is calculate by the Virtual Physical Model (VPM), which was proposed by 
Lima e Silva et al. (2003). One of the characteristics of this model is that is not necessary the use of ad-hoc constants. It 
is based in the Newton second law and allows the modeling non-slip condition on the immersed interface. The 
lagrangian force ( ,l k )F x t  is available by momentum conservation equation over a fluid particle that is joined in the 
fluid-solid interface, equation (4): 
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The values of  and  are done by interpolation of the velocities and pressure, respectively, of the 

eulerian points near the immersed interface. 
( ,l ku x t ( ,kp x t

 
2.3 Fourier Transforms 
 

By defining the equations that governs the flow through immersed boundary method, the next step is to 
transform them to the Fourier spectral space. First applies the Fourier transform in the continuity equation (2): 
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From the analytic geometry is known that the scalar product between two vectors is null, just if both are 

orthogonal. Therefore, from the equation (5), we have that the wave number vector kj is orthogonal to transform 
velocity . So, is defining the plane ˆ ju π  (Silveira-Neto, 2002), perpendicular to wave number vector  and thus, 

the transformed velocity vector , belongs to the plane

k
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Now applies the Fourier transform in the momentum equation (2): 
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where  is the square norm of the wave number vector, i.e. . 2k 2
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In agreement of the plane π  definition, each one of the terms of the equation (6) assume a position related to 

it: the transient term 
ˆlu

t
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∂
 and the viscous term  belong to the plane2 ˆlk uν π . The gradient pressure term is 

perpendicular to the plane π , and the non-linear, , and the force filed, j lik u u j lf , a priori, it is not known in 
which position it can be found in relation to plane π . By jointing the terms of the equation (6) and observing the 
definition of plane π , we have that: 
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To satisfy the equation (7), it is needed that the non-linear and the force field terms are over the plane π . For 

that, it is utilized the projection tensor definition (Canuto et al, 2002), which projects any vector over it. 
Therefore, by applying this definition on the right hand side of the sum done in the equation (7): 
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It must be noticed that the parcel of the pressure field is orthogonal to the plane π , so, it is null after to be 

projected, disentailing from the calculates of Navier-Stokes equations in the spectral space. The pressure field can 
be recovered at the pos-processing manipulating the equation (7) (Mariano et al, 2007). 

Other important point is about the non-linear term, in which appears the product of transformed functions, in 
agreement with the Fourier transformed properties, this operation is a convolution product and its solution is given by 
convolution integral. Therefore the momentum equation in the Fourier space, using the method of the projection, 
assumes the following form: 
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2.4 Coupling of the methods in the Fourier spectral space 
 

The necessary derivatives for the solver of the lagrangian force, equation (4), are make generating a new field of 
velocity 
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where  is the fluid velocity in the points of the immersed boundary and,  is the eulerian velocity field modified by 
imposed boundary conditions. After, this field is transformed to Fourier space and it is calculate the derivatives of the 
langrangian force field using the Fourier transformed propeties: 
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After calculate (ˆ ,

l )F k t  make the inverse Fourier transformed in this field using the definition done in the equation 

(3) it get eulerian force field, ( ),lf x t , in the physic space. Last, transformed it for the spectral space, ( ),lf k t  and 
added it in the equation (9). 
 
3. NUMERICAL METHOD 

 
When solved numerically the Navier-Stokes equations with the Fourier spectral method using the Discrete Fourier 

Transform (DFT), which is define by Briggs and Henson (1995) how: 
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when k is the wave number, N is the number of meshes points, n get the position xn of the collocation points (xn=nΔx) 
and i = -1 . 

The DFT has the restriction of the using periodics boundary conditions, by limiting the use of Fourier spectral 
transformed for the problems that satisfy this boundary conditions. 

Same with this restriction, the Fourier spectral method is very used for example in the simulations of temporal jets 
and turbulence isotropic, because its low computational cost gives by Fast Fourier Transform (FFT) (Cooley and Tukey, 
1965). This algorithm solver the DFT with of the way very efficiently O(Nlog2N), whereas the calculation of (12) is of 
O(N2), where N is the collocation points number. For the systems with many collocation points, for example: 
tridimensionals problems, the spectral method is very cheap when compared with another conventional high order 
methodologies. 
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3.1. Treatment of the non-linear term 
 
The non-linear term can be handing by different forms: advective, divergent, skew-symmetric, or rotational (Canuto 

et al.,1988 and Souza, 2005), in spite of being the same mathematically, they present different properties when 
discrteized. The skew-symmetric form is more stable and present the best results, but is twice more onerous that the 
rotational form. However this inconvenience can be solved using the alternate skew-symmetric form, this is consists in 
aternate between the advective and divergent forms in each time step (Zang, 1987), this is proceeding adopted for this 
paper. 

For all forms of the handing the non-linear term is necessary solve the convolution integral, but the numerical 
solution of this integral is computational expensive. So, using by to solver this problem, the pseudo-spectral method, 
which calculates the velocity product in the physical space and transformed this product for the spectral space Souza 
(2005). 
 
3.2. Filtering 

 
The Fourier spectral method is influenced by discontinuous fields, because they yield the Gibbs phenomenon. It 

introduces errors in the high frequencies losing the spectral accuracy. In two steps of the methodology proposed by the 
present work, equations (3) and (10), appear the discontinuous fields, aiming to avoid the Gibbs phenomenon utilize 
filters: 
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where ( )σ θ  is the filter function. In this paper use the sharpened raised cosine filter (14) proposed by Kopriva (1986):
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where 0σ  is done by (15). 

 
( )1/ 2 1 cosi iσ θ= +  (15) 

 
where: /i i NLkθ = ; 
 
4. RESULTS 

 
To validate the proposed methodology and developed code, a classical problem used in CFD was chosen: the flow 

over a square cylinder, which is a benchmark of Computational Fluid Dynamics. This case allowed to show the solution 
of incompressible two-dimensional Navier-Stokes equations using Fourier pseudo-spectral method with non-periodic 
boundary conditions imposed by immersed boundary. 
 
4.1 Flow over a square cylinder 

 
An inlet profile flow with velocity U∞ in [m/s] was generated, the flow cross the section of a square cylinder (Figure 

2) and examines the drag (Cd) (Equation 16) and lift (Cl) (Equation 17) coefficients, these variables determine the force 
that acts on bodies immersed in the flow, the drag coefficient determines the resistance force of the fluid on the body 
immersed, while the lift coefficient determines the force that exists in the perpendicular direction of the incoming flow. 
An interesting problem in aeronautical engineering is the optimization of airfoils, that consists in maximize the lift and 
minimize the drag of the airfoil profiles. Another parameter analyzed is the Strouhal number (St) (Equation 18) which 
determines the non-dimensional vortex shedding, it that is important to solve problems of fluid-structure, for example, 
pillars of bridges, or wings of aircraft, submitted to a flow, if the frequency of vortex shedding is close to the natural 
frequency is extremely damaging to this structures. 
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where: Fx and Fy are the forces estimated at each lagrangian point with equation (11) in [N]; Ax and Ay are the 
projected frontal area in direction x and y, respectively . In the bidimensional case, these areas are given in [m2] 
considering the perpendicular dimension of surface equal to one, D is the characteristic diameter in [m] and freq is the 
vortex shedding frequency downstream of the cylinder. 

The domain of the case has been simulated is 4π x 2π [m2] and it is discretized with 1024 x 512 collocation points. 
The cylinder has a diameter of the D=0,20 [m], with 64 lagrangian collocation points, (16 each face). The cylinder 
center position in domain is x=3,142  [m] and y=3,142 [m]. 

 

 
Figure 2: Calculus domain – square cylinder. 

 
All boundary conditions are of periodicity, but an uniform profile of velocity (U∞=1,0 m/s) is imposed, through the 

field force of the immersed boundary methodology, at x=0,785 [m]. Another important parameter is the Reynolds 
number, that is Re=100 based at the cylinder diameter. In outflow condition it is imposed a buffer zone: 
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where Q is the problem solution, that is, u and v, Qt is the target solution, represents, the solution required in the final 
buffer zone, in this case, the target solution is the uniform profile U∞, and Φ is the parameter of stretching vortex, 
calculated by (20): 
 

za

f za

x x

x x

α

η
ηφ β

−
=

−

⎛ ⎞
⎜⎜
⎝ ⎠

⎟⎟ ,           (20) 

 
where α=3.0 and β=1.0 (UZUM, 2003), xza and xf are the beginning and the end of the buffer zone, respectively, xη is 
the generic position. 

At figure 3 is shown the vorticity field of the simulation at Re=100 in t*= 500, that enables to be seen the vortex 
shedding, beyond the inlet profile and buffer zone positions. 
 

 
Figure 3: Flow over a square cylinder at Re=100, vorticity field ( )1 1ω− < < . 
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Figure 4 shows the vorticity field evolution for different time steps. The first time showed at figure 3a, at the 
beginning of the simulation, arise the two recirculation bubbles, at 3b there is the formation of instability, and in the 
sequence  appears the vortex shedding at 3c. 
 

 
 

Figure 4: Evolution of vorticity field. Flow over a square cylinder at Re=100. 
 

The table 1, demonstrate the comparison with several authors, Lima e Silva (2002) used the same immersed 
boundary method used in this work (Virtual Physical Model), but discretized by second order finite differences, Fuka 
and Brechler (2007) used a variant of immersed boundary with direct forcing method and Okajima (1982) is an 
experimental work. The obtained results of St are quite similar, but the Cd coefficient is a bit different, due to its large 
influence of the buffer zone. 

 
Table 1: Comparison of drag coefficient and Strouhal number. 

 
Authors Lima e Silva 

(2003) 
Fuka and Brechler 

(2007) 
Okajima (1982) Present  

Work 
Re Cd St Cd St Cd St Cd St 
100 1,73 0,14 1,62 0,14 - 0,13 1,58 0,14 
150 1,72 0,16 1,63 0,15 - 0,14 1,63 0,15 

  
The other important parameter of comparison is given by L2 norm (equation 21) at the immersed boundary, 

rigorously, should be zero, but due to filtering process it is injured as can see at figure 5. 
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where  is the numeric velocity at the immersed boundary and  is the velocity at boundary, in this case , num
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the cylinder is stopped.  

 
 

Figure 5: Time evolution of L2 norm. 



5. CONCLUSIONS 
 
The motivations of this paper are improving the pseudo-spectral methodology, which is high order method and low 

computational cost, but restrained to periodic boundary conditions. Searching for this aim a fusion of immersed 
boundary and the classic Fourier pseudo-spectral method was made. The Fourier pseudo-spectral method allows the 
solution of the incompressible Navier-Stokes equations with the high order accuracy, in cases where the equations to be 
solved are periodic and steady the methodology accuracy order is restrained to machine accuracy (Mariano, 2007; 
Moreira, 2007). Other great vantage is the computational cost in comparison to another high order methods, because of 
the pressure disentail and the use of FFT algorithm. The connection between the Fourier pseudo-spectral and immersed 
boundary methodologies allows the simulation of non-periodic-flows.  

In the simulations of the flow over a square cylinder it is possible observe the drag coefficient and Sthrouhal number 
quite similar to other authors, and the vortex shedding  are reasonable. The disadvantages are the requirement of using 
use the buffer zone and the filtering process. In the future, it is expected the solution of problems with no coincidence 
between lagrangian and eulerian points, allowing to solve the complex and movel geometries. 
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