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Abstract. The main goal of this work is to develop, implement and validate a numerical methodology to be used in the
imposition of heat fluxes boundary conditions in high Reynolds turbulence models, such as the classicalκ - ε. In order
to achieve this goal, a test case of a thermal backward facingstep was used to calibrate an expression capable to adjust
the behavior of the Stanton number inside the recirculatingregion. Informations given by the use of classical analogies
combined with the physical reality of the backward facing step problem and the use of laws of the wall are employed for
the development of the algorithm used to impose this kind of thermal condition in problems with and without boundary
layer deattachment. The algorithm of numerical resolutionused to execute the simulations applies a consolidate Reynolds
and Favre averaging process for the turbulent variables, and uses the classicalκ - ε model. The internal regions of the
velocity and thermal boundary layer are modeled by one velocity and one temperature wall law. Spacial discretization
is done by P1/isoP2 finite element method and temporal discretization is implemented using a semi-implicit sequential
scheme of finite difference. The coupling pressure-velocity is numerically solved by a variation of Uzawa’s algorithm.
To filter the numerical noises, originated by the symmetric treatment to the convective fluxes, it is adopted a balance
dissipation method. The remaining non-linearities, due toexplicit applications of velocity laws of wall, are treatedby a
minimal residual method.
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1. INTRODUCTION

The numerical simulation of turbulent flows using high Reynolds turbulence models, such as the classicalκ − ε, is
one of the most popular methods used to describe the main turbulent variable fields of a great range of industrial interest
flows. The greatest advantages of this approach are the low computational cost of the simulations and a considerable good
quality of the results obtained. One of the most remarkable aspects of this kind of methodology is the use of mathematical
expressions to predict the fluid flow behavior in a region wichis very closed to the wall. These expressions are the laws
of the wall and are used to reduce the computational cost, since the high gradients involved in this region would demand
very refined meshes. Meanwhile the use of laws of the wall is also responsible for the lose of information in a certain area
of the calculation domain, witch can be a great disadvantagedepending on the interest of the numericist. In the simulation
of turbulent flows with thermal field, a temperature law of thewall is required. When the boundary condition in the solid
wall is expressed in terms of temperature there are no difficulties, since there are a considerable number of temperature
laws of the wall, but when the boundary condition is expressed in terms of the local heat flux, a problem occurs, since a
heat flux law of the wall is still not available.

The main goal of this work is to propose, implement and validate a numerical methodology to be used in the simulation
of turbulent thermal flows with local heat flux boundary conditions. In order to achieve this goal, an algorithm is proposed,
based on the use of classical analogies to quantify the numerical value of the local convective heat flux coefficient working
simultaneously with temperature and velocity laws of the wall.

Mathematical analogies between the local friction coefficient and the Stanton number have been studied for a long
time, that interest can be observed in the works of Reynolds (1874), Colburn (1933), Von Karman (1939), Schultz-
Grunow (1941), Martinelli (1947), Reynolds et. al (1958) and Kays et. al (1993). The results obtained by the use
of classical analogies, such as the Colburn (1933) analogy for turbulent flows without boundary layer deattachment,
proved to be in a good range of agreement with experimental and numerical results, as showed by Gontijo and Fontoura
Rodrigues (2006a and 2006b). By the other hand, in deattached boundary layers, the use of the same analogies produces
very underestimated values of the local Stanton number in the inside of the recirculation region as described by Gontijo
and Fontoura Rodrigues (2007b).

In this work an adjust function for the Stanton number, with validity in the recirculation region, was developed using
the thermal backward facing-step problem studied by Vogel and Eaton (1985) as the physical reality to calibrate this
function. The created algorithm was capable to produce great results for the temperature profiles obtained numericallyin
the case of deattached turbulent boundary layers, even in the recirculation region. The explanation of the main idea of the
proposed algorithm will be better understand in the next sections.
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The solver used to execute the simulations is called Turbo2D, witch is a research Fortran numerical code, that has been
continuously developed by members of the Group of Complex Fluid Dynamics - Vortex, of the Mechanical Engineering
Department of the University of Brasília, in the last twentyyears. This solver is based on the adoption of the finite
elements technic, under the formulation of pondered residuals proposed by Galerkin, adopting in the spatial discretization
of the calculation domain triangular elements of the type P1-isoP2, as proposed by Brison, Buffat, Jeandel and Serres
(1985). The isoP2 mesh is obtained by dividing each element of the P1 mesh into four new elements. In the P1 mesh only
the pressure field is calculated, while all the other variables are calculated in the isoP2 mesh.

Considering the uncertainties normally existing about theinitial conditions of the problems that are numerically sim-
ulated, it is implemented a temporal integration of the governing equations system. In the pseudo transient process the
initial state corresponds the beginning of the flow, and the final state occurs when the temporal variations of the turbulent
variables ceases. The temporal discretization of the governing equations, implemented by the algorithm of Brun (1988),
uses sequential semi-implicit finite differences, with truncation error of order0(∆t) and allows a linear handling of the
equation system, at each time step.

The resolution of the coupled equations of continuity and momentum is done by a variant of Uzawat’s algorithm
proposed by Buffat (1981). The statistical formulation, responsible for the obtaining of the system of average equations,
is done with the simultaneous usage of the Reynolds (1895) and Favre (1965) decomposition. The Reynolds stress
of turbulent tensions is calculated by theκ − ε model, proposed by Jones and Launder (1972) with the modifications
introduced by Launder and Spalding (1974). The turbulent heat flux is modeled algebraically using the turbulent Prandl
number with a constant value of 0,9.

In the program Turbo2D, the boundary conditions of velocityand temperature can be calculated by velocity and
temperature wall laws. In this work, it is used the classic logarithm wall law for velocity and temperature. The numerical
instability resulted of the explicit calculation of the boundary conditions of velocity, trough the evolutive temporal process,
is controlled by the algorithm proposed by Fontoura Rodrigues (1990). The numerical oscillations induced by the Galerkin
formulation, resulting of the centered discretization applied to a parabolic phenomenon, that is the modeled flow, are
cushioned by the technique of balanced dissipation, proposed by Huges and Brooks (1979) and Kelly, Nakazawa and
Zienkiewicz (1976) with the numerical algorithm proposed by Brun (1988).

In order to quantify the wideness of range and the consistence of the numerical modeling done by the solver Turbo2D,
the velocity and temperature profiles obtained numericallyare compared to the experimental data of Vogel and Eaton
(1985).

2. GOVERNING EQUATIONS

The system of non-dimensional governing equations, for a dilatable and one phase flow, without internal energy
generation, and in a subsonic regime (Mach number under 0,3)is:
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In this system of equationsρ is the fluid density,t is the time,xi are the space cartesian coordinates in tensor notation,
µ is the dynamic viscosity coefficient,δij is the Kronecker delta operator,gi is the acceleration due to gravity,‖g‖ is the
absolute value of the gravity acceleration vector,T is the absolute temperature,ui is the flow velocity ,k is the thermal
conductivity,Re is the Reynolds number,Fr is the Froud number,Pr is the Prandtl number, and the non dimensional
pressure is

p =
p − pm

ρoU2
o

(5)

wherepm is the average spatial value of the pressure field,p is the actual value of pressure,ρ0 andu0 are the reference
values of the fluid density and the flow velocity. More detailsabout the dimensionless process are given by Brun (1988).
In order to simplify the notation adopted, the variables in their dimensionless form have the same representation as the
dimensional variables. The Reynolds, Prandtl and Froude numbers are defined with the reference values adopted in this
process. The lenght used in the definition ofRe andFr in this case is the height of the backward facing step.
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2.1 THE TURBULENCE MODEL

In this work all the dependent variables of the fluid are treated as a time average value plus a fluctuation of this
variable in a determinate point of space and time. In order toaccount variations of density, the model used applies the
well known Reynolds (1985) decomposition to pressure and fluid density and the Favre (1965) decomposition to velocity
and temperature. In the Favre (1965) decomposition a randomize generic variableϕ is defined as:

ϕ (~x, t) = ϕ̃ (~x) + ϕ
′′

(~x, t) with ϕ̃ =
ρϕ

ρ̄
and ϕ′′ (~x, t) 6= 0. (6)

Applying the Reynolds (1895) and Favre (1965) decompositions, to the governing equations, and taking the time
average value of those equations, we obtain the mean Reynolds equations:
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In these equationsα is the molecular thermal diffusivity and two news unknown quantities appear in the momentum
(8) and in the energy equation (10), defined by the correlations between the velocity fluctuations, the so-called Reynolds
Stress, given by the tensor−ρu′′

i u′′

j , and by the fluctuations of temperature and velocity, the so-called turbulent heat flux,

defined by the vector−ρu′′

i T ′′.
The Reynolds stress of turbulent tensions is calculated by theκ−ε model. For flows with variable density, it is adopted

the formulation of Jones and McGuirk (1979),where

−ρu′′

i u′′

j = µt

(
∂ũi
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the turbulent kinetic energy is done by
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whereε is the rate of dissipation of the turbulent kinetic energy. The turbulent heat flux is modeled algebraically using
the turbulent Prandl numberPrt equal to a constant value of 0,9 by the relation
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In the equation (14)Cµ is a constant of calibration of the model, that values0, 09. Once thatκ andε are additional
variables, we need to know there transport equations. The transport equations ofκ andε were deduced by Jones and
Launder (1972), and the closed system of equations to theκ − ε model is given by:
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∂ũi

∂xj
+

∂ũj
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with the model constants given by:

Cµ = 0, 09 , Cε1 = 1, 44 , Cε2 = 1, 92 , Cε3 = 0, 288 , σκ = 1 , σε = 1, 3 , P rt = 0, 9 .

2.2 NEAR WALL TREATMENT

Theκ − ǫ model is incapable of properly representing the fluid behavior in the laminar sub-layer and in the transition
region of the turbulent boundary layer. To solve this inconvenience, the standard solution is the use of wall laws, capable
of properly representing the flow in the inner region of the turbulent boundary layer. There are four velocity and two
temperature laws of the wall implemented in the Turbo2D code, in wich one temperature and three velocity wall laws
are sensible to pressure gradients. In this work, considering that no significative pressure gradients are involved, only the
logarithm law is used. The logarithm law of the wall for velocity is already well known, and further explanations are
unnecessary.

For the near wall temperature, Cheng and Ng (1982) derived anexpression similar to the logarithmic law of the wall
for velocity. For the numerical calculation purposes, the intersection point between laminar and logarithmic sub-layers
are defined aty∗ = 15, 96, with y∗ = ufδ/ν, whereuf is the friction velocity calculated by the relation
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ν is the kinetic viscosity andδ is the distance until the wall. The temperature wall laws forlaminar and logarithmic
sub-layers are respectively
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whereT0 is the environmental temperature andTf is the friction temperature, defined by the relation
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In the equation (26) the constantsKNg andCNg are, respectively, 0,8 and 12,5. The turbulent Prandtl numberPrt is
assumed constant and equal to 0,9.

For the turbulent kinetic energyκ and for the rate of dissipation of the turbulent kinetic energy ε, the near wall values
are taken by the following relations
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with K = 0, 419.
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2.3 THE STANTON NUMBER

In many engineering practices the representation of important parameters are made in a non dimentional form. The
wall heat flux, for example, can be estimated in a non dimension basis by using the local Stanton number, that can be
calculated by two distinct manners. The first one is a classical way to turn the local parietal heat fluxqx in a dimensionless
form:

Stx =
qx

ρcpu∞(Tw − T∞)
where, for a flat plate qx = −k

(
∂T

∂y

)

y=0

. (29)

In equation (29) an accurate calculation of the temperaturegradient is a difficult task since the use of wall laws give
raise to some lost of some information in the wall region.

Another way to compute the local Stanton number is based in the use of analogies. An special analogy derived from
a diversification of the Reynolds analogy, made by Colburn (1933) for fluids with the Prandtl number equal or larger than
0, 5, is called the Colburn analogy. The Colburn (1933) empirical correlation establish a relationship between the local
Stanton numberStx, the local friction coefficientCfx and the Prandtl numberPr:

Stx =
Cfx

2Pr
2

3

. (30)

In equation (30), the local friction coefficientCfx is calculated with the use of the friction velocityuf , numerically
generated by the Turbo2D code:

Cfx

2
=

τw

ρu2
∞

with τw = ρu2
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2
=

u2
f

u2
∞

. (31)

2.4 PROPOSED ALGORITHM

The algorithm here proposed, to be used in turbulent thermalflows with heat flux specified as the wall boundary
condition, is based in a numerical methodology the can be resumed by the following steps:

1. The value of the local friction velocityuf calculated by eq.(25) is used to determine the value of the local friction
coefficient.

Cfx =
2u2

f

u2
∞

(32)

In eq.(32),u∞ represents the velocity outside the boundary layer.

2. The value ofCfx is then used to calculate the local Stanton number using the Colburn(1933) analogie as expressed
in eq.(33).

Stx =
Cfx

2Pr2/3
(33)

3. By the definition of the Stanton number it is possible to estimate the value of the local convective heat flux coeffi-
cient, with eq.(34).

hx = StxρCpu∞ (34)

Whereρ is the fluid density andCp represents the specific heat at a constant pressure.

4. With the value ofh it is possible to do an aproximatelly conversion of the localheat flux into the local wall
temperature. This information is then sended to the temperature law of the wall that calculates the temperature
boundary condition in the first node of the mesh.

The main idea of this algorithm is to use the values of dynamical parameters of the flow in the wall, such as the friction
velocity to estimate the heat transfer rates, with the use ofclassical analogies, in order to convert an imposed heat flux
in the wall into a calculated wall temperature, so the thermal law of the wall can calculates the temperature boundary
condition in the wall nodes.

It is important to say that for recirculation regions, a correction need to be done in the value of the local Stanton
number. In this work it was created an adjust function based on the data of an experiment of Vogel and Eaton (1985) in a
thermal backward facing-step with a thermal boundary condition on the wall of a constant heat flux imposed. This special
treatment will be better explained in the future sections.



Proceedings of ENCIT 2008
Copyright c© 2008 by ABCM

12th Brazilian Congress of Thermal Engineering and Sciences
November 10-14, 2008, Belo Horizonte, MG

3. NUMERICAL METHODOLOGY

The numerical solution of a dilatable turbulent flow, has as main difficulties: the coupling between the pressure,
velocity and temperature fields; the non-linear behavior ofthe momentum and energy equations; the explicit calculations
of boundary conditions in the solid boundary; the methodology of use the continuity equation as a manner to link the
coupling fields of velocity and pressure.

The solution proposed in the present work suggests a temporal discretization of the system of governing equations
with a sequential semi-implicit finite difference algorithm proposed by Brun (1988) and a spatial discretization using
finite elements of the type P1-isoP2. The temporal and spatial discretization implemented in Turbo 2D is presented in
Fontoura Rodrigues (1990).

4. NUMERICAL MODELING

The test case used to achieve the proposed goal is based in thethermal backward facing step of Vogel and Eaton
(1985). The schematic representation of the calculation domain is described in figure (1)

ξ

u = U

T= T

κ, ε
∞

∞

h

Calculation domain
H

q" constant

L

q"=0

q"=0

P=0

Figure 1: calculation domain

Figure (2) displays the meshes used to execute the simulation.

Figure 2: Calculation meshes. Figure 2a - pressure mesh. Figure 2b - the rest of turbulent variables
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The dimentions in figure (1) are: h = 0,038 m, H = 0,15 m,ξ = 0,2 m and L = 0,6 m. In the inlet where imposed flat
velocity and temperature profiles with the purpose of allow the flow development before the deattachment point, since
there is some uncertainty about the experimental inlet profiles. κ andε values in the inlet where estimated based on the
turbulence level of the wind tunnel described by Vogel and Eaton (1985). In the lower wall of the backward facing step a
condition of constant heat flux was imposed and in the top walland adiabatic condition was estabilished. In the outlet the
flow is in atmospheric pressure. The Reynolds number based onthe height of the step is 27023. The velocity on the free
stream flow is 11,3 m/s and the heat flux imposed is 270W/m2. The low value of the imposed heat flux was setted to
avoid significant variations of the thermodynamic properties of the fluid by the increase of temperature, such as the fluid
density, even though in the numerical resolution, a dilatable formulation was used in order to produce a more accurate
value of the dynamical and thermal field.

Figure (2.a) shows the P1 mesh used to calculate the presure field, while figure (2.b) ilustrates the P1/isoP2 mesh,
that was used to calculate all the other variables, such as velocity, temperature, fluid density,κ andε. It is possible to
notice that 8016 finite elements were used to calculate the main turbulent variables. Indeed, 8 thousand elements, for this
domain, constitute a reasonable refined mesh. The final dimension of the mesh was obtained with a mesh study. This
number of elements were able to provide a numerical simulation with a low computational cost and a good quality of the
results, as the next sections will show. It is also importantto notice a greater refinement level in the near wall elements.
This procedure is important, since higher gradients appearin this region.

The pressure and kinetic energy fields obtained numericallyare showed in figure (3) and (4).
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Figure 3: pressure field

The pressure field in figure (3) shows a low pressure zone in therecirculation region and a change in the signal
of pressure in the reattachment point, this behavior is classic in deattached boundary layers. The values in the legend
represent the non dimentional pressure, defined in equation(5).
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Figure 4: kinetic energy field

In figure (4) is possible to observe low values ofκ in the deattachment point, those values increase until provide an
intense kinetic energy field near the reattachment point. This behavior is classic in backward facing steps simulations.
The black lines represents the streamlines of the flows. The experimental reattachment point occurs inx/h = 10, 4 and
the obtained numerical value isx/h = 10, 6. These informations are significant to conlude that the dynamical parameters
of the flow are in a good agreement with experimental data.
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The Stanton number behavior through the lower wall was numerically calculated with the use of the Colburn (1933)
analogy, equation(33), by using the values of the friction velocity uf to estimate the Stanton number. Figure (5) shows
that the numerical values inside the recirculation region have the same qualitative behavior of the experimental values, but
are different by a scale factor. The numerical Stanton number in figure (5a) was calculated with equation (33).

Figure 5: Numerical and experimental behavior of the Stanton number (a), velocity field and streamlines of the flow (b)

It is possible to notice that outside the recirculation zone, the numerical and experimental values are very close, and
that the higher values of the Stanton number occur near the reattachment point. This behavior is directly related to the
kinetic energy field ilustrated in figure (4), since turbulence converts great part of the kinetic energy of the flow into heat.
The numerical values outside the recirculation region are very closed to the experimental behavior.

It is also possible to notice that in the reattachment point the numerical value ofStx goes to values near zero, since the
shear stress in the wall in this point is very small and consequently the values ofCfx. This shows that the use of classical
analogies are not appropriated in flows with boundary layer deattachment, as showed by Gontijo and Fontoura Rodrigues
(2007b). Even recognizing that the use of classical analogies inside deattached boundary layers have serious limitations,
the behavior showed in figure (5a) suggests the adoption of anadjust factor to the Stanton number inside this region. It is
important to notice that the observed values ofStx will change with the distance between the wall and the first node of
the mesh. By this reason, it was used the average value ofy+, that express the distance to the wall in witch the simulation
is done. The definition ofy+ is

y+ =
ufδ

ν
(35)

whereuf is the average value of the friction velocity calculated through the wall of the recirculation region,δ is the
distance from the wall and the first node of the mesh andν is the kinematic viscosity of the fluid.

With the definition ofy+, several simulations were executed with different values of y+, and an adjust constant was
calibrated for each simulation, with this methodology an adjust function was created and it’s behavior is well shaped bya
power law as expressed in equation (36)

f(y+) = 5, 46y+
−0,2936

. (36)

With the aid of the correction shape function, the proposed equation for the calculation of the Stanton number inside
recirculation regions is the modifyed Colburn analogie

Stx = max

(
Cfx

2Pr2/3
5, 46y+

−0,2936

; 0, 02

)
(37)
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Figure (6) shows how the modifyed Colburn analogie works. Inthe recirculation region, the discontinuity in the Stan-
ton number in the reattachment point is avoided and the magnitude order of the values is very similar to the experimental
data. This methodology allows the simulation of turbulent thermal flows with heat flux boundary condition using a high
Reynolds turbulence model. Some points can still be improved in future works, and this methodology needs more study
in order to extend this treatment to other complex geometries.

Figure 6: adjust of the Stanton number inside the recirculation region

The most important validation of this methodology are the temperature profiles obtained for this test case, that are
displayed in figure (7).

Figure 7: temperature profiles at positions: x/h=8.73 (a),x/h=10.87 (b),x/h=13.00 (c) and x/h=17.23 (d)



Proceedings of ENCIT 2008
Copyright c© 2008 by ABCM

12th Brazilian Congress of Thermal Engineering and Sciences
November 10-14, 2008, Belo Horizonte, MG

In order to give an idea of the sections where the profiles weretaken, figure (8) shows the calculation domains with
the streamlines and the geometric places where numerical and experimental profiles were compared.
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Figure 8: Sections where the profiles were taken

Figure (7) shows a good aproximation between the numerical and experimental values of the temperature profiles in
the lower wall of the thermal backward facing step. Theses profiles are considered a good validation of the proposed
methodology specially in the interior of the recirculationregion, as displayed by figures (7a) and (7b).

5. CONCLUSIONS

The proposed algorithm was capable to reproduce with a good precision the temperature field of a turbulent flow of
air over a thermal backward facing step with a heat flux boundary condition, using the classicalκ− ε model, as shown by
figure (7).

The creation of an adjust function for the Stanton number inside the recirculation region, was based in an empyrical
numerical philosophy witch is valid only for this situation. This work does not bring universality to the simulation of
flows with heat flux boundary conditions using theκ − ε model, but it is capable to give better results under certain
conditions. Extrapolations of this methodology for other kinds of flow with boundary layer deattachment still needs
mindful validation. Even though the use of the proposed algorithm should produce good results for flows without boundary
layer deattachment, since Gontijo and Fontoura Rodrigues (2006a and 2006b) proved that the use of the Colburn analogy
produces good results in turbulent flows over flat plates using the numerical value of the local friction velocity to estimate
the local Stanton number.

It is important to say that near the deattachment and reattachment points, the law of the wall lose the capacity to
calculate the wall boundary condition, since the shear stress in the wall goes to zero and so the friction velocity. In
order to fix this situation, a numerical algorithm of error minimization based on the value of the friction velocity was
developed by Fontoura Rodrigues (1990), and it makes possible the simulation of deattached boundary layer flows using
the presented methodology.

Figure (6) shows a difference between the values of the localStanton number obtained with the adjust function and
the experimental ones. This difference can be reduced with the adoption of an alternative mathematical method of aprox-
imation such as a spline fit for example, but is important to notice that even with this limitation the results obtained are
good, as figure (7) ilustrates.

The results obtained in this work represent the begining of agreater study, wich the main goal is to extend this
methodology to deattached boundary layer flows with distinct characteristics, especially for deattached boundary layers
generated exclusive by the action of adverse gradient pressures, such as it occurs in conical diffusers and other geometries.
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