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Abstract. The vortex cloud method was developed primarily for the simulation of viscous flow through turbine or 
compressor cascades. The previous works presented a simple scheme for the numerical simulation of the flow in an 
infinite linear cascade. Due the periodicity, presented by the cascade, only one element – the reference airfoil – needed 
be considered if the interference effects are taken into account. In the present study, without introducing the periodicity 
of the blade-to-blade stream, the two-dimensional, unsteady flow through a centrifugal impeller of pump is simulated 
using vortex method. The results show instantaneous vortex flow pattern of the flow through the impeller. The aim of 
this study was to predict the presence of rotating stall in blade. This Lagrangian manner offers future scope for study 
of centrifugal impeller rotating in volute casing for which Euler methods may be less adaptable. 
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1. INTRODUCTION 
 

Flows around moving boundaries at high Reynolds number occur in many areas of engineering. A typical example 
of this kind is the flow within a turbomachinery. For a pump configuration the moving boundaries are the blades of 
impeller which rotate with respect to the stator and/or to the spiral casing. Understanding of the vortex-shedding flow 
behind blades of impeller is of great fundamental and practical importance to design of turbomachines. The impeller-
viscous wake interaction originates from the impingement and the convection of the wakes shed from the preceding 
blades in the relative motion. A large number of detailed experimental investigations and theoretical or numerical 
studies are reported in the literature to unsteady flow investigation in turbomachines. Most of these efforts concern the 
unsteadiness in axial turbomachines. 

In order to solve the turbomachines problem numerically, we can use either Eulerian or Lagrangian methods. In the 
past three decades, the Vortex Methods have been developed and applied for analysis of complex vortical flows and 
simulation of unsteady flows related with problems in various engineering fields, because they are standing on simple 
algorithm based on physics of flows and their numerical stability is usually quite well, and it should be noted that grid 
generation in the flow field is not necessary (Kamemoto, 2004). 

The first application of Vortex Method to turbomachinery blade rows, including the prediction of rotating stall in 
compressors and vibrations induced by blade row wake interaction, was published by Lewis and Porthouse (1983) and 
Porthouse (1983) followed by some fairly comprehensive studies by Sparlat (1984). 

Lewis (1989) presented a basic scheme for vortex cloud modeling of cascades assuming that the boundary layers 
and wakes developed by the blades of an infinite cascade are identical. As the coupling coefficients are periodic in the y 
direction, surface elements and discrete vortex shedding need only be considered for the reference airfoil. The surface 
of the reference airfoil was represented by straight-line elements, with a point vortex located at the pivotal point. The 
vorticity diffusion that occurs in the wake was simulated using random walk method. The pressure on the airfoil surface 
was calculated according inviscid flow analysis. Although predicted surface pressure agrees well with experiment for 
the turbine cascade, losses are over-predicted. Due to “numerical stall”, Lewis (1989) approach proves inadequate to 
deal with the compressor cascade. 

In the paper presented by Alcântara Pereira et al. (2004), the surface of the reference airfoil was represented by 
straight-line panels, with a constant density vortex distribution on them. A new approach to the pressure calculation was 
presented to that one used by Lewis (1989). This approach represents an enhancement to the previous ones not only due 
to the more accurate computed values, but also because it allows one to compute the pressure distribution on the body 
surface as well as in the whole fluid domain; this feature can be of fundamental importance in many engineering 
problems. In order to take into consideration the effects of the phenomena that take place in the micro scales a new 
methodology was presented. With this methodology one can consider the effects of turbulence in the flow that develops 
in and around complex geometry structures. The Vortex Method, a particle or Lagrangian method was used in 
combination with a sub grid scale modeling for turbulence that employs a second-order velocity structure function of 
the filtered field, see Alcântara Pereira et al. (2002). 

In the all the above studies, for cascades the assumption was made that each blade flow was identical, a not 
unreasonable assumption for unstalled turbine or fan blade rows. For off-design angles of attack leading to stall it is 



know that there can significant blade-to-blade variations. Lewis (2004) extended the analysis to deal with such 
situations. 

On the other hand, Zhu et al. (1998) presented a new procedure to simulate the vorticity transport near a centrifugal 
impeller boundary using Vortex Method. In their paper, a number of nascent vortices were introduced according to 
diffusion and convection vorticity near the boundary. The two-dimensional unsteady features of the whole flow field 
were solved without introducing the periodicity of a blade-to-blade flow. The results showed how the separation of 
boundary layer develops into a strong vortex structure and how the vortex is periodically shed and moves and produces 
an oscillatory flow in a blade-to-blade passage. 

In this paper, the Vortex Method developed by Recicar et al. (2006) is extended to simulate the vorticity transport 
near a blades boundary without introducing the periodicity of a blade-to-blade flow (Zhu et al., 1998). The present 
methodology introduces geometrical simplifications to prediction of the two-dimensional unsteady flow established in a 
radial flow centrifugal pump. More specifically, the blades are represented by NACA 0012 base profile. 

Vortex cloud modeling offers great potential for numerical analysis of important problems in fluid mechanics. A 
cloud of free vortices is used in order to simulate the vorticity, which is generated on the body surface and develops into 
the boundary layer and the viscous wake. Each individual free vortex of the cloud is followed during the numerical 
simulation in a typical Lagrangian scheme. This is in essence the foundations of the Vortex Methods (Chorin, 1973; 
Leonard, 1980; Sarpkaya, 1989; Sethian, 1991; Lewis, 1999; Alcântara Pereira et al., 2002; Kamemoto, 2004). Vortex 
Methods offer a number of advantages over the more traditional Eulerian schemes: (a) the absence of a mesh avoids 
stability problems of explicit schemes and mesh refinement problems in regions of high rates of strain; (b) the 
Lagrangian description eliminates the need to explicitly treat convective derivatives; (c) all the calculation is restricted 
to the rotational flow regions and no explicit choice of the outer boundaries is needed a priori; (d) no boundary 
condition is required at the downstream end of the flow domain. 
 
2. FORMULATION OF THE PHYSICAL PROBLEM 

 
2.1. Definitions 

 
The problem to be considered is that of incompressible flow (of a Newtonian fluid) and two-dimensional past a 

centrifugal impeller of pump. The analysis introduces geometrical simplifications to prediction of the two-dimensional 
unsteady flow established in a radial flow centrifugal pump. Here, we represent each blade for the simplest situation of 
a symmetrical aerofoil, NACA 0012. The blades rotate anti-clockwise with angular velocity of the impeller, λ. The 
volumetric flow rate per unit breadth of the impeller is established considering a point source located at (x,y)=(0,0).  

This is represented, in Fig. 1, by four NACA 0012 aerofoils immersed in a radial flow with velocity Vr. Note that 
the (x, o, y) is the inertial frame of reference and the (ξ, o, η) is the coordinate system fixed to the impeller; this 
coordinate system rotate anti-clockwise, being ϕt=λt. 

 
 

 
 

Figure 1 – Definitions of the physical domain 
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The boundary S of the fluid domain is ∞∪= SbSS ; being ∞S  the far away boundary, which can be viewed 

as ∞→+= 2y2xr , and bS the blades surface. 

In the impeller fixed coordinate system, the surface bS is defined by   
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2.2. Governing Equations 

 
For an incompressible fluid flow the continuity is written as 
 

0=⋅∇ u                                                                                                                                                                                          (2) 
 

where u ≡ (u, v) is the velocity vector. 
If, in addition, the fluid is Newtonian with constant properties the momentum equation is represented by the 

Navier-Stokes equation as 
 

uuuu 2
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.                                                                                                                                                   (3) 

 

Re stands for the Reynolds number defined as
υ
VD

Re 02= , where V0 is defined as radial velocity at the entrance of the 

impeller for the design point and D2 is defined as outer diameter of the impeller.  
On the impeller surface the adherence condition has to be satisfied. This condition is better specified in terms of the 

normal and tangential components as 
 

)()( nvnu ⋅=⋅  on bS , the impenetrability condition         (4) 

 
)()( τvτu ⋅=⋅  on bS , the no-slip condition          (5) 

 
here n and τ are unit normal and tangential vectors and v is the blade surface velocity vector. 

Far from the impeller (for r→∞, in Fig. 1) one assumes that the perturbation due to the rotation impeller fades 
away, that is 

 
 0→u .                                                                                                                                                                                         (6) 

 
One should mention that the above boundary value problem was made non-dimensional using V0 and D2 as 

characteristic quantities. Normalized non-dimensional time t is defined as
2

0
D

TV
t = , where T is the time elapsed after 

revolution of the impeller starting at a constant speed. 
 

3. THE VORTEX METHOD 
 

3.1. Viscous Splitting Algorithm (Chorin, 1973) 
 
Taking the curl of the Navier-Stokes equation and with some algebraic manipulations one gets the vorticity 

equation which presents no pressure term. In two-dimensions this equation reads 
 

ω∇=ω∇⋅+
∂
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t
u ,                                                                                                                                                              (7) 

 
which is an scalar equation since ω is the only component of the vorticity vector ω = ∇×u. 

The left hand side of the above equation carries all the information needed for the convection of vorticity while the 
right hand side governs the diffusion. Following Chorin (1973) we use the viscous splitting algorithm, which, for the 
same time step of the numerical simulation, says that 



Convection of vorticity is governed by 
 

0
t
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Diffusion of vorticity is governed by   
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3.2. Convection and diffusion of vorticity 

 
The standard numerical strategy is to represent the vorticity in the fluid domain by a large number N of small 

discrete vortices ΔΓk. The numerical analysis is conducted over a series of small discrete time steps Δt for each of which 
a discrete vortex element ΔΓk is shed from each body surface element. The intensity ΔΓk of these newly generated 
vortices is determined using the no-slip condition, see Eq. (5). 

For the convection of the discrete vortices of the cloud, Eq. (8) is written in its Lagrangian form as 
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being (i) = 1, N. 

A second order solution to this equation is given by the Adams-Bashforth formula (Ferziger, 1981) 
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The diffusion of vorticity is taken care of using the random walk method (Lewis, 1999).  The random displacement 

Zd ≡ (xd, yd) for vortex (i) is defined as 
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where P and Q are random numbers in the range 0.0 to 1.0. Therefore the final displacement is written as 

 

[ ] (i)
dxΔtΔt)(t(i)0.5u(t)(i)1.5u(t)(i)xΔt)(t(i)x +−−+=+                                                                                          (13a)  

 

[ ] (i)
dyΔtΔt)(t(i)0.5v(t)(i)1.5v(t)(i)yΔt)(t(i)y +−−+=+ .                    (13b) 

 
3.3. Numerical Implementation 

 
The u (i) and v (i) components of the velocity induced at the location of the vortex (i) can be written as 
 

(i)uv(i)ub(i)ur(i)u ++=                                                                                                                                                    (14a) 
 



Proceedings of ENCIT 2008                                                                      12th  Brazilian  Congress of Thermal Engineering and Sciences 
Copyright © 2008 by ABCM November 10-14, 2008, Belo Horizonte, MG 

 

(i)vv(i)vb(i)vr(i)v ++=                                                                                                                                                    (14b) 
 
where,  ur (i) ≡ [ur (i), vr (i)] is the velocity vector of the radial direction, 
 

 ub (i) ≡ [ub (i), vb (i)] is the velocity vector induced by the impeller at the location of vortex (i), 
 

 uv (i) ≡ [uv (i), vv (i)] is the velocity vector induced at the vortex (i) due to the vortex cloud. 
 
The ur (i) and vr (i) calculations present no problems and they follow the usual Vortex Method procedures.  
To be considered impeller rotation, however, the blades boundary conditions can not be transferred from the actual 

position to the mean position (Moura et al., 2007). As the each blade surface is simulated by MB straight line panels on 
which singularities are distributed (Panels Method) it is convenient to calculate the impeller induced velocity in the 
moving coordinate system. For that one has to observe the following 

- The fluid velocity on the each blade surface is written as 
 

jiu )λvvr()λuur(t)η;,( −++=ξ .                                                                                                                                        (15) 

 
As a consequence of impeller rotation components of the right hand side of the fluid velocity (in the above 

expression) one gets an additional singularities distribution on the each blade surface. Of course, the induced velocity 
due to this additional singularities distribution fades away from the each blade. 

- The velocity induced by the impeller, according to the Panels Method calculations, is indicated by [ub(ξ,η), 
vb(ξ,η)]; this is the velocity induced at the vortex (i), located at the point [ξ(t), η(t)]; thus 

 

λut);,ub(t)y;(x,(i)ub −= ηξ                                                                                                                                                (16a) 
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where the following relations remains 
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- The velocity induced due to the vortex cloud is computed using Biot-Savart´s Law in the fixed coordinate system. 

 
4. RESULTS AND DISCUSSION 
 

The numerical simulations were restricted to the interference effects between four profiles whose shape consists of 
NACA 0012 aerofoils. Each boundary Sj, j = 1, 4, of Fig. 1 was modeled by fifty (MB=50) straight-line source panels 
with constant density. The inlet diameter of the impeller was defined as D1=0.3D2. The time increment (Δt=0.05) was 
evaluated according to Δt=2πk/M, 0<k≤1 (Mustto et al., 1998). In each time step the nascent vortices were placed into 
the cloud through a displacement ε= 0σ =0.0009D1 normal to the panels. For infinite Reynolds number viscous effects 
would have a little influence. For the impeller Reynolds number of 1×105 selected here on the other hand, viscous 
diffusion will differ considerably due to radial velocity diffusion. 

Figure 2 shows the development of the vortex structure in a centrifugal pump impeller with four blades. The 
angular velocity of the impeller and the volumetric flow rate per unit breadth of the impeller were λ=0.1 and Q=2.0 
respectively. In this example the impeller was rotated anti-clockwise with zero prewhirl but with sufficient angular 
velocity.  

As can be seen from the predicted flow pattern after 40 time steps, Figure 2(c), there is clear evidence of stall with 
some circumferential variation from blade to blade. After a period of time as the motion proceeds, we observe the 
development of large stall cells in Figure 2(f) which propagate in the radial direction. The reason for this behaviour can 
be deduced from the vortex dynamics simulation demonstrating the power of this CFD technique for prediction and 
diagnosis.  

In the case of a centrifugal fan it can expected that these stall cells would cause serious fluctuating interference with 
the stator and be a serious source of unwanted vibrations. Numerical techniques to predict unsteady flow characteristics 
of an impeller have been desired since before, for design and improvement of operation performance. The vortex code 
has been developed shows potentialities to predict flow separation in a blade-to-blade passage. 



 

             
                                                (a) t=0.5                                                                            (b) t=1.25 
 

            
                                                (c) t=2.0                                                                           (d) t=3.5 
 

                    
                                                (e) t=6.0                                                                             (f) t=7.0 
 

Figure 2 – Vortex cloud analysis of a centrifugal impeller 
 
Figure 3 presents the predicted flow pattern for speed of rotation λ=1.0 and Q=2.0 at t=7.0. It is clarified that there 

are differences among the flows around individual profile, whereas the whole flow field is calculated without 
introducing the approximation of the periodicity of the blade-to-blade flow. Choice of the group of NB blades is then a 
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matter of computational limitations including available memory, time of execution and numerical accuracy available for 
vortex code. 

 
Figure 3 – Vortex flow pattern at t=7.0, Q=2.0  

 
Because the distributed vorticity of the mainstream flow has been replaced in the numerical model by a cloud of 

discrete vortices, the CPU time for vortex-vortex interaction turns expensive. No attempts to simulate the flow for MB 
greater than 50 were made since the operation count of our algorithm is proportional to the square of N. As MB 
increases N also tends to increase, and the computational efforts becomes expensive. This is a major source of 
difficulties, and it can only be handled through the utilization of faster schemes for the induced velocity calculations, 
such as the multipole technique (Greengard and Rokhlin, 1987) and/or parallel computers to run long simulations 
(Takeda et al., 1999). Finally, the results are promising and encourage performing additional tests in order to explore 
the phenomena in more details. 
 
5. CONCLUSIONS 
 

The main observation to note here is that the present method can be applied to analysis of unsteady characteristics 
and occurrence of unsymmetrical flow through a centrifugal impeller of pump. In this paper, two-dimensional unsteady 
features of the flow were computed without introducing the periodicity of a blade-to-blade flow. Using this 
representation, a grid-free (Lagrangian) numerical method was derived based on the coupling of the boundary element 
and vortex particle methods. The main objective of the work was to implement the algorithm and to get some insight 
into the potentialities of the model developed; this was accomplished since the results show that the behavior of the 
rotating stall cells propagation in a centrifugal impeller is the expected one. It is clearly demonstrated in Figure 3 that 
the flow becomes completely non-axis-symmetrical and some of blade-to-blade passages seem to be blocked with 
separation bubbles.  

The use of a fast summation scheme to compute the velocities of the fluid elements, such as the multiple expansions, 
allows an increase in the number of vortices and a reduction of the time step, which increases the resolution of the 
simulation, in addition to a reduction of the CPU time, which allows a longer simulation time to be carried out. In order 
to solve the pressure Poison equation, a simple method based on the boundary element method will be carried out 
(Uhlman, 1992; Kamemoto, 1993; Shintani and Akamatsu, 1994). A new method to simulated diffusion vorticity will 
be carried out (Rossi, 2006). Future work will investigate the influence of shape of one-circular-arc camber and the 
thickness of the blades. Then, our method will be applied extensively to the complex problems of unsteady interaction 
between impeller-blades and guide vanes and/or volute casing.  
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