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Abstract. The mechanisms of the ground effect are still far from being fully understood due to a variety of other 
influencing factors, in particular the confusing influence of the boundary layer formed on the ground. The purpose of 
using the moving ground is to eliminate the influence of the boundary layer on the ground, which is probably one of the 
most crucial but confusing factors for this problem. In the present paper, we use a lagrangian mesh-free Vortex 
Method to calculate global as well a local quantities of high Reynolds number circular cylinder located near a moving 
ground flow. Vorticity only is generated from the circular cylinder surface and is discretized and represented by a 
cloud of Lamb discrete vortices. Each vortex in the cloud is accomplished in a purelly lagrangian description. The 
aerodynamics loads are computed using an integral formulation derived from the Poisson equation for the pressure. 
The numerical results for circular cylinder near a  moving ground are compared with experimental results available in 
the literature. 
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1. INTRODUCTION 
 

Viscous flow around circular cylinders has been studied by several authors during the last years not only to 
understand the fundamentals of general bluff body flows but also because this flow configuration itself is of direct 
relevance to many practical applications (e.g., tall buildings, bridge piers, chimneys, periscopes, heat exchangers tubes, 
cables, wires, and so on). 

In fact, the flow around cylinders includes a variety of fluid dynamics phenomena, such as separation, vortex-
shedding and the transition to turbulence. 

The well-known Karman-type vortex shedding may occur behind the cylinder, the control or suppression of which is 
of great interest in many engineering applications. It is reasonable to focus on flow around bodies of simple geometry to 
understand such general complex flows systematically. Bluff bodies (one particular example is the flow around circular 
cylinders) having a two-dimensional structure are very suitable for restricting the complexity and thus observing the 
fundamentals features of the flow. 

The problem with a circular cylinder close to a plane wall is governed not only by the Reynolds number but also by 
ratio of the gap between the cylinder and the ground, i.e., the gap ratio defined by h/d (d is diameter of cylinder). The 
fundamental effects of gap ratio have been successfully observed by Taneda (1965), Roshko et al. (1975), Bearman and 
Zdravkovich (1978), Burest and Lanciotti (1979), Angrilli et al. (1982), Grass et al. (1984), Zdravkovich (1985a), Price 
et al. (2002) and Lin et al. (2005). 

However, the influence of the boundary layer formed on the ground is much more complicated and is still unclear 
despite several intensive studies reported so far. Roshko et al. (1975) measured the time-averaged drag and lift 
coefficients, CD and CL, for a circular cylinder placed near a fixed wall in a wind tunnel at Re=2.0×104, which lies in the 
upper-subcritical flow regime, and showed that the CD rapidly decreased and CL increased as the cylinder came close to 
the wall. Zdravkovich (1985b) observed, in his force measurements performed at 4.8×104 < Re < 3.0×105, that the rapid 
decrease in drag occurred as the gap was reduced to less than the tickness of the boundary layer δ/d on the ground, and 
concluded that the variation of CD was dominated by  h/δ rather than by the conventional gap ratio h/d. He also noted 
that the CL could be significantly affected by the state of the boundary layer, although it was insensitive to the tickness 
of the boundary layer. 

Zdravkovich (2003) reported the drag behavior for cylinder placed near a moving ground running at the same speed 
as the freestream for higher Reynolds number of 2.5×105, which lies within the critical flow regime rather than the 
subcritical flow regime. The experiment by Zdravkovich (2003) showed contrast to all the above studies. First, 
practically no boundary layer on the ground. Second, the decrease in drag due the decrease in h/d did not occur in his 
measurements. The differences encountered were attributed to the non-existence of the wall boundary layer or the 
higher Reynolds number, or any other influencing factors. 

Nishino et al. (2007) presented experimental results of a circular cylinder with an aspect ratio of 8.33, with and 
without end-plates, placed near and parallel to a moving ground, on which substantially no boundary layer developed to 
interface with the cylinder. The main purpose of experiments was to elucidate the fundamental mechanisms of ground 



effect in more details by using a moving ground running at the same speed as the freestream and thereby eliminating the 
confusing effects of boundary layer formed on the ground. Measurements were carried out at two upper-subcritical 
Reynolds numbers of 0.4 and 1.0×105. The results produced new insights into the physics of ground effect, and could 
serve as a database for both experimental and computational studies on the ground effect in the future. According to 
Nishino et al. (2007) experiments, for the cylinder with end-plates, on which the oil flow patterns were observed to be 
essentially two-dimensional, the drag rapidly decrease as h/d decrease to less than 1.0 but became constant for h/d of 
less than 0.85, unlike that usually observed near a fixed ground (as will be plotted later in “Fig. 2a”). 

In the present paper, the Vortex Method is employed to simulate numerically the vortex-shedding flow from a 
circular cylinder near a moving ground. The two-dimensional aerodynamics characteristics are investigated at a 
Reynolds number of 1.0×105 and comparisons are made with experimental results presented by Nishino et al. (2007). 
The main purpose of present numerical study is the investigation of the ground effect in more details by using a moving 
ground running at the same speed as the freestream and thereby eliminating the confusing effects of the boundary layer 
formed on the ground. 

The Vortex Method have been developed and applied for analysis of complex, unsteady and vortical flows in 
relation to problems in a wide range of industries, because they consist of simple algorithm based on physics of flow 
(Kamemoto, 2004). Vortex cloud modeling offers great potential for numerical analysis of important problems in fluid 
mechanics. A cloud of free vortices is used in order to simulate the vorticity, which is generated on the body surface and 
develops into the boundary layer and the viscous wake. Each individual free vortex of the cloud is followed during the 
numerical simulation in a typical Lagrangian scheme. This is in essence the foundations of the Vortex Method (Chorin, 
1973; Sarpakaya, 1989; Lewis, 1999; Kamemoto, 2004; Alcântara Pereira et al., 2004; Stock 2007). 

Vortex Method offers a number of advantages over the more traditional Eulerian schemes: (a) the absence of a 
mesh avoids stability problems of explicit schemes and mesh refinement problems in regions of high rates of strain; (b) 
the Lagrangian description eliminates the need to explicitly treat convective derivatives; (c) all the calculation is 
restricted to the rotational flow regions and no explicit choice of the outer boundaries is needed a priori; (d) no 
boundary condition is required at the downstream end of the flow domain. 

For the grid methods, such as finite difference method and finite element method, the governing Navier-Stokes 
equations are solved directly. However, the flows around cylinders are usually computed at Reynolds number up to a 
few hundred while the Re for flows around cylinders in many engineering applications is of much higher order O (106). 
In such circumstance, the traditional Eulerian schemes will not give a satisfactory prediction within a reasonable 
computational cost. Also, the pre-processing and mesh-generation are time-consuming for the grid method in numerical 
simulations. 

The authors of this paper has developed the present Vortex Method to simulate the macro scale phenomena, 
therefore the smaller scale ones are taken into account through the use of a second order velocity function (Alcântara 
Pereira et al., 2002). In the present paper, the effects of small scale are not still considered. 
 
2. GOVERNING EQUATIONS 
 

Consider the incompressible flow of a Newtonian fluid around a circular cylinder in an unbounded two-dimensional 
region near a moving ground. “Figure 1” shows the incident flow, defined by free stream speed U and the domain Ω  
with boundary 3S2S1SS ∪∪= , 1S  being the body surface, 2S  being the ground surface running at the same speed 

as the incident flow and 3S the far away boundary. 
 
 

 

 
           Moving ground  

 
Figure 1. Circular cylinder near a moving ground 

 
The viscous and incompressible flow is governed by the continuity and the Navier-Stokes equations, which can be 

written in the form 
 

0=⋅∇ u                                                                                                                                                                                          (1) 
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In the equations above u  is the velocity vector field and p  is the pressure. As can be seen the equations are non-

dimensionalized in terms of U and d (diameter cylinder). The Reynolds number is defined by 
 

υ
dURe =                                                                                                                                                                                       (2a) 

 
where υ  is the fluid kinematics viscosity coefficient; the dimensionless time is d/ U . 

The impermeability and no-slip conditions on the body surface and the only impermeability condition on the 
moving ground are written as 

 
0u nn =⋅= eu                                                                                                                                                                            (3a) 

 
0u =⋅= ττ eu                                                                                                                                                                             (3b) 

 
ne  and τe  being, respectively, the unit normal and tangential vectors. One assumes that, far away, the perturbation 

caused by the body and moving ground fades as 
 

 1→u  at 3S .                                                                                                                                                                             (3c) 

 
The dynamics of the fluid motion, governed by the boundary-value problem (1), (2) and (3), can be alternatively 

studied by taking the curl of “Eq. (2)”, obtaining the well-known 2-D vorticity transport equation 
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t
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in which ω  is the only non-zero component of the vorticity vector. 

 
3. SOLUTION METHOD 
 

The solution method applied in this paper has been developed by Alcântara Pereira et al. at the Federal University 
of Itajubá. According to the convection-diffusion splitting algorithm (Chorin, 1973) it is assumed that in the same time 
increment the convection and the diffusion of the vorticity can be independently handled and are governed by 
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Convection is governed by “Eq. (5)” and the velocity field is given by 
 

)t,()t,()t,()t,( xuvxubxuixu ++= .                                                                                                                          (7) 
 
The contribution of the incident flow is represented by ui (x, t). For an uniform oncoming flow its components take 

the form 
 

1ui1 =  and 0ui2 = .                                                                                                                                                   (8) 
 
The body and moving ground contribute with ub(x,t), which can be obtained, for example, using the Boundary 

Element Method. The two components can be written as 
 



∑
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where (t))(G jij ξξ −  is an appropriated defined kernel (Katz and Plotkin, 1991). In this paper sources with constant 

density, σj, were distributed over M flat panels representing the body surface and the moving ground plane.  
Finally the velocity uv(x, t), due to the vortex-vortex interaction (Biot-Savart´s Law) has its components written as 
 

∑
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Z

1j
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Here, Γj is the j-vortex strength and cij (x – xj(t)) is the i component of the velocity induced, at point x, by a unit strength 
vortex located at xj (t). We use Lamb vortex, therefore 
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where 0σ  is core radius of the Lamb vortex (Mustto et al., 1998). 

The process of vorticity generation from the circular cylinder surface is carried out from “Eq. (3b)”, so as to satisfy 
the no-slip condition. According to the discussion above the panels method guaranties that the impermeability condition 
is satisfied in each straight-line element, or panel, at pivotal point. At each instant of the time MB new vortices are 
created at a small distance ε of the body surface, whose strengths are determined from “Eq. (3b)” applied at MB point’s 
right below the newly created vortices, along the radial direction. This procedure yields an algebraic system of MB 
equations and MB unknowns (the strengths of the vortices). 

Each vortex particle distributed in the flow field is followed during numerical simulation according to the first order 
Euler scheme 

 
( ) ( ) ( ) kkkk ttutttz ξ+Δ+=Δ+ z ,                                                                                                                                           (11) 

 
in which zk is the position of a particle, tΔ  is the time increment and kξ  is the random walk displacement. According 
to Lewis (1999), the random walk displacement is given by 
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where 1Reβ −= , 1i −= ,  P and Q are random numbers between 0.0 and 1.0. 

The pressure calculation starts with the Bernoulli function, defined by Uhlman (1992) as 
 

u=+= u  ,
2

upY
2

.                                                                                                                                                                  (13) 

 
Kamemoto (1993) used the same function and starting from the Navier-Stokes equations was able to write a 

Poisson equation for the pressure. This equation was solved using a finite difference scheme. Here the same Poisson 
equation was derived and its solution was obtained through the following integral formulation (Shintani and Akamatsu, 
1994) 

 

( ) ( )∫∫ ∫∫ ⋅×∇−Ω×⋅∇=⋅∇−Η
Ω 11 S niS inii dSG

Re
1dGdSGYY eωωue                                                                        (14) 

 
where Η is 1.0 inside the flow (at domain Ω ) and is 0.5 on the boundaries 1S  and 2S . ( ) 1

i Rlog21G −π= is the 
fundamental solution of Laplace equation, R being the distance from ith vortex element to the field point. 

It is worth to observe that this formulation is specially suited for a Lagrangian scheme because it utilizes the 
velocity and vorticity field defined at the position of the vortices in the cloud. Therefore it does not require any 
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additional calculation at mesh points. Numerically, “Eq. (14)” is solved by mean of a set of simultaneous equations for 
pressure iY . 
 
4. RESULTS AND DISCUSSIONS 
 

Before discussing the results for circular cylinder in moving ground, we present the results for cylinder not placed 
near a boundary or ground. The cylinder surface was represented by MB=300 flat source panels with constant density. 
The simulation was performed up to 1000 time steps with magnitude Δt=0.05. During each time step the new vortex 
elements are shedding into the cloud through a displacement ε=σ0=0.001d normal to the straight-line elements (panels). 
The aerodynamics loads computations are computed between t=28.3 and t=48.0, “Fig. 3a”. The results of the numerical 
simulation are presented in “Tab. 1”. In this table one can find also experimental (Blevins (1984) with 10% uncertainty) 
and numerical (Mustto et al. (1998)) results. The observation to note here is that the mean numerical lift coefficient is 
not zero due to the numerical errors. 
 
Table 1. Comparisons of the mean drag coefficient and Strouhal number with other numerical and experimental results 

for a circular cylinder without ground effect 
 

510Re =  DC  LC  St  

Blevins (1984) 1.20 - 0.19 
Mustto et al. (1998) 1.22 - 0.22 
Present Simulation 1.25 0.02 0.21 

 
The numerical results of Mustto et al. (1998) were also obtained using the Vortex Method associated to the Circle 

Theorem (Milne-Thompson, 1955) while the panels method was used in the present simulation. The agreement between 
the two numerical methods is very good for the Strouhal number, and both results are close to the experimental value. 
The present drag coefficient shows a higher value as compared to the experimental result. One should observe, that the 
three-dimensional effects are non-negligible for the Reynolds number used in the present simulation (Re=1.0×105). 
Therefore one can expect that a two-dimensional computation of such a flow must produce higher values for the drag 
coefficient. On the other hand, the Strouhal number is insensitive to these three-dimensional effects. Computed values 
for time-averaged drag and lift coefficients for circular cylinder in moving ground are plotted in “Fig. 2”. 

 

   
          
                                              (a) Drag force                                                                       (b) Lift force    

 
Figure 2. Time-averaged drag and lift coefficients vs. gap ratio for different end conditions 

 
As expected the simulation results follow the end plates curve. The drag behaviour, see “Fig. 2a”, observed for the 

cylinder with end plates was totally different from that for the cylinder without end plates. For the cylinder with end 
plates the flow characteristics are essentially two-dimensional, the drag rapidly decrease as h/d decrease to less than 
1.00. The critical drag behavior was found to be directly related to a global change in the near wake structure of the 



cylinder. For the cylinder without end plates, however, no such critical change in drag was observed as the Karman-type 
vortices were not generated in the wake region at all h/d investigated by Nishino et al.  (2007). The results for a fixed 
ground by Roshko et al. (1975) are also showed here for the purpose of comparison. “Figure 3” shows that the time-
averaged lift coefficient behaviour observed in this study is similar to that reported by Roshko et al. (1975), see “Fig. 
2b”. 

 

         
           (a) Computed without moving ground (h/d=1000)                   (b) Computed with moving ground (h/d=0.95) 

 
Figure 3. Time history of the aerodynamics at Reynolds number Re=1.0×105 

 
“Figure 4” shows plots of instantaneous pressure distributions around circular cylinder surface with and without 

moving ground. Point B of the “Fig. 4b” is defined by an instant in which the CD curve presents a minimum value (see 
“Fig. 3b”), point C by an adjacent maximum and point D by a minimum again. At the instant represented by the point A 
one can clearly observe low pressure distribution on the rear part of the cylinder when the drag curve assumes 
maximum value (in our computations the tangential stress was not considered). 

 

      
 
     (a) Computed without moving ground (h/d=1000)              (b) Computed with moving ground (h/d=0.95) 

 
Figure 4. Predicted pressure distribution on a circular cylinder at Reynolds number Re=1.0×105 

 
The near field flow pattern shows that at instant A one can observe an already started clockwise vortex structure at 

the upper side of the cylinder (see “Fig. 5a”). This structure as well as the drag coefficient increases with time (see “Fig. 
3a”). At this very moment the vortex structure detaches from the rear part of the cylinder surface and is incorporated to 
the viscous wake at the instant B; this process creates a low pressure region at the rear part of the cylinder which is 
associated to the high drag value, see “Fig. 4a”. Right after the process a new anti-clockwise vortex structure starts at 
the low side of the cylinder surface and the above described sequence of events repeats all over again. 

θ θ 
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Figure 6 shows near field flow pattern at instant A and instant B when a cylinder is located near a moving ground 
by the gap ratio h/d=0.95. Here, the above describe sequence of events repeats all over again. Note in the “Fig. 3b” that 
when the CD curve presents a maximum value, the CL curve presents maximum value (point A) or minimum value 
(point C). Compare this forces behavior with that showed in “Fig. 3a”. 

 

                                             
(a) Point A                                                                                         (b) Point B 

 
Figure 5. Near field velocity distribution without moving ground (h/d=1000) 

 
The ground surface was represented by MG=300 source panels with constant density. Each simulation required 133 

h of CPU time in an Intel(R) Pentium (R) 4 CPU 1700 MHz. Our method, therefore, is able to provide good estimates 
for drag coefficient, and able to predict the flow correctly in a physical sense. 

 

                                                    
(a) Point A                                                                                         (b) Point B 

 
Figure 6. Near field velocity distribution with moving ground (h/d=0.95). 

 
5. CONCLUSIONS 
  

The main objective of the work was to implement the algorithm and to get some insight into the potentialities of the 
model developed; this was accomplished since the results show that the behavior of the quantities of interest is the 
expected one. Some discrepancies observed in the determination of the aerodynamics loads may be attributed to errors 
in the treatment of vortex element moving away from a solid surface. Because every vortex element has different 
strength of vorticity, it will diffuse to different location in the flow field. It seems impossible that every vortex element 
will move to same ε-layer normal to the solid surface (Yang and Huang, 1999). In the present method all nascent 
vortices were placed into the cloud through a displacement ε= 0σ =0.001d normal to the panels. The sub-grid turbulence 
modeling is of significant importance for the present numerical simulation. The development of Lagrangian LES 
models for Vortex Method has been discussed in the literature. In the present study, a methodology for the numerical 
simulation of a viscous turbulent flow will be carried out (Alcântara Pereira et al., 2002). From the present study, is 
confirmed that the methodology used here is convenient for investigation of unsteady characteristics of the flow. 
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