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Abstract. The well-known CGAM problem was formulated in 1994 to serve as a benchmark for comparison of different 
thermoeconomic optimization methodologies. The CGAM cogeneration plant produced 30 MW of power and 14 kg/s of 
saturated vapor at 20 bar. The objective function consisted in a total cost rate related to thermodynamic variables and 
installation costs. Because the CGAM problem originates from an essentially academic viewpoint, its models do not 
correspond to the industrial reality of energy systems, and do not contemplate important operational and technological 
restrictions. Recently, an alternative cogeneration-system optimization problem has been formulated, denoted the 
MPCP problem – Maximum Profit Cogeneration Plant (in Portuguese, PCLM), which attempts to preserve the 
simplicity of the CGAM, while coupling modern economic concepts to current technologies. In the MPCP problem, the 
configuration, the efficiencies of the involved equipment, the investment and operation costs, the obtained revenues, 
and the imposed physical limitations lead to an objective function, which represents the net present value (NPV) of the 
monetary gain for the period of plant operation examined. A noteworthy feature of the MPCP problem is that the 
presented costs are compatible with those practiced in the national industry. In this article, the optimum (i.e., 
maximum) NPV value is obtained, using an optimization toolbox of the Mathematica® program, appropriate for 
multivariable nonlinear functions subject to constraints. The optimal values of the decision variables indicate that the 
plant should operate at the physical limits allowed for the main equipment, namely, at the maximum energy efficiency 
of the gas turbine generator set, and the minimum temperature difference inside the heat recovery steam generator. 
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1. INTRODUCTION 
 

Thermoeconomics started during the sixties, when several researchers began pioneering studies in analysis, 
optimization, and design of thermal systems, associating thermodynamic and economic concepts, in order to improve 
efficiency and reduce environmental impacts. However, it was not until the end of the eighties, that a systematic 
approach with new methodologies, nomenclature and definitions began to be developed. This effort persists today, with 
the continued improvement of the methodologies, and the search for new applications. In the nineties, the researchers C. 
Frangopoulos, G. Tsatsaronis, A. Valero and M. von Spakovsky compared their methodologies through application to a 
simple and predefined problem: the CGAM problem (Tsatsaronis, 1994; Bejan et al., 1996). Therein, the optimization 
of a hypothetic cogeneration plant with five individual components is proposed, which produces 30 MW of electrical 
power in a regenerative cycle and 14 kg/s of saturated vapor at 20 bar. The CGAM cogeneration system consists of an 
air compressor, a combustion chamber, a gas turbine, a heat recovery steam generator, which produces the saturated 
vapor at the required process conditions, and an air preheater, located at the compressor exit in order to recover some 
thermal energy of the turbine exhaust. In the problem formulation, the physical, thermodynamic, and economic models 
are defined, as well as the objective function, the decision variables, and the constraints. Several simplifications are 
assumed, in order to ensure the applicability of the CGAM problem to compare different optimization techniques. As a 
consequence, the modeling of the performance of the CGAM components is essentially theoretical, and does not 
correspond to the industrial reality of actual systems. In other words, the models do not contemplate important 
operational and technological restrictions, so that the CGAM problem is incomplete from an engineering perspective. 

The purpose of this article is to present and solve an optimization problem, that is an alternative to the CGAM 
problem. The novel proposal is entitled the MPCP problem – Maximum Profit Cogeneration Plant (Costa, 2008; Costa 
et al., 2008), which keeps the original simplicity of the CGAM, but introduces modern economic concepts and 
knowledge of technologies and physical limitations of actual power plants. A new configuration for the cogeneration 
plant is established, and the formulation of the physical, thermodynamic, and economic models lead to the objective 
function, which is the net present value (NPV) of the monetary gain for a given period of plant operation. The 
optimization problem thus consists in the maximization of the net present value. 

There are two main aspects of the MPCP problem, which make it particularly suitable to the Brazilian reality: (i) 
only the production of electrical power is fixed, while the production of saturated vapor is free to vary from a prescribed 
minimum value, and (ii) the cost equation for the gas turbine generator set is obtained through an statistical analysis, 
which encompasses a database of prices, converted to the national market, of a population of generators with similar 



capacities and constructive types commercialized by international manufacturers. In the present approach, to obtain the 
optimal NPV value of the MPCP problem, an optimization toolbox of the Mathematica® program (Wolfram, 1999) is 
employed, appropriate for multivariable nonlinear functions subject to constraints. The optimal values of the objective 
function and decision variables obtained here serve as reference values for other studies, which might involve the 
MPCP problem. 

It is hoped that the MPCP problem will contribute to the practice of ecoefficiency, through an optimization 
paradigm which attempts to conciliate the goal of profit maximization of gas and energy enterprises with environmental 
impact mitigation. This important matter is routinely present in current debates by corporations and universities about 
the implementation of new energy projects. 
 
2. BRIEF SUMMARY OF THE CGAM PROBLEM 
 

The CGAM problem has been extensively documented in the literature (Tsatsaronis, 1994; Bejan et al., 1996; 
Vieira, 2003; Costa et al., 2008), thus only a brief summary shall be included here. The formulation of the CGAM 
problem includes the equations, that describe the cogeneration system behavior (physical model), the state equations 
used to calculate the thermodynamic properties of the mass streams (thermodynamic model), and the equations 
employed to calculate the capital, fuel, and operation and maintenance costs for the system (economic model). 

To simplify the physical and thermodynamic models, the following assumptions are made: (i) the air and 
combustion gases behave as ideal gases with constant specific heats; (ii) the fuel is considered to be pure methane, and 
its combustion is complete; (iii) all the components, except the combustion chamber, are adiabatic. Environmental 
physical references are further prescribed, so that the temperature, pressure, and relative humidity of the atmospheric air 
are T0 = 298.15 K (25 oC), P0 = 1.013 bar, and 60%, respectively. The chemical composition of the air is specified by 
the following molar fractions: 0.2059 of oxygen, 0.77489 of nitrogen, 0.0003 of carbon dioxide, and 0.0190 of water. 

The equation for the capital cost rate (in US$/s) of the system is written as a function of the purchased-equipment 
costs of the components (in US$), the annual capital recovery factor (%), the number of hours of plant operation per 
year, and a nondimensional coefficient to account for the operation and maintenance costs. The economic model further 
establishes that the total cost rate of the CGAM system is the sum of the capital cost rate and the fuel cost rate; the latter 
is proportional to the mass flow rate and lower heating value of the fuel. 

The optimization problem consists in the minimization of the system total cost rate, which is the objective function, 
assuming fixed production amounts of electrical power and process steam. The objective function has five degrees of 
freedom, represented by the selected decision variables, namely, the air compressor pressure ratio, the isentropic 
efficiencies of the air compressor and gas turbine, the temperature of the air at the preheater exit, and the temperature of 
the combustion gases at the gas turbine inlet. 
 
3. MPCP PROBLEM: AN ALTERNATIVE TO THE CGAM PROBLEM 
 

In the MPCP problem (Costa, 2008; Costa et al., 2008), a new cogeneration system is conceived, which retains the 
simplicity and power range of the CGAM system, however it reflects the actual and current technologies and 
engineering practices in modern cogeneration projects. The formulation of the MPCP problem is presented in sections 4 
and 5. 

After a detailed account of the drawbacks of the CGAM system, Costa et al. (2008) propose the MPCP system with 
the following distinguishing characteristics: (i) the air compressor (AC), combustion chamber (CC), and gas turbine 
(GT) are integrated in one single equipment, the gas turbine generator set (GTG), whose cost is obtained through an 
statistical analysis; (ii) there is no air preheater; (iii) the inequality constraint �Tpp � 10 oC is imposed for the 
temperature difference at the pinch point inside the heat recovery steam generator (HRSG); (iv) natural gas, rather than 
methane, is the fuel to be burned in the new system; (v) 100 ºC is the minimum permissible value for the stack gas 
temperature; (vi) the method employed to compute the properties of the streams across the gas turbine generator set 
leads to realistic values for the pressure ratio in the compressor; (vii) realistic values for the energy losses of the gas 
turbine generator set are obtained through statistical correlations of simulated data; (viii) only the exergetic efficiency of 
the gas turbine generator set and the mass flow rate of process steam exported by the HRSG are selected as decision 
variables; (ix) optimization is effected for the profits of the cogeneration plant, keeping the electrical power demand 
fixed at 30 MW, while letting the steam production free to vary from a minimum value of 12 kg/s; (x) instead of using 
the capital recovery method (as in the CGAM problem) or the cost of energy method, the modernly used economic 
indicator NPV (net present value) is adopted as the objective function in the MPCP problem, discounting future 
cashflows at the capital cost of today; (xi) equipment costs are obtained through statistical regressions of real cost and 
performance data; (xii) a proper technique is utilized to calculate the temperature of the exhaust gases, based on an 
statistical analysis of a population of gas turbines with similar characteristics; (xiii) the rate of energy consumption by 
the auxiliary equipment (BOP – Balance of Plant) is considered to amount to 2.5% of the power produced by the plant, 
and the capital cost of the auxiliary equipment is taken into account in the economic model; the pumping power demand 
for the feedwater is calculated separately, since it depends on the process steam mass flow rate; (xiv) there is a deaerator 
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in the MPCP system; (xv) a specification commonly used in refineries is prescribed for the process steam, namely, 14 
bar and 285 ºC; therefore, because the steam is superheated, the HRSG is split into four different sections, water 
preheater (WPH), economizer (ECO), evaporator (EVAP), and superheater (SH); (xvi) the approach, i.e., the 
temperature difference between the water at the exit of the economizer and the saturated steam in the evaporator is 
�Tappr = 5 º C; (xvii) the blow-down of the evaporator amounts to 1% of the total feedwater mass flow rate entering the 
HRSG; in addition, the blow-down water is expanded in a flash tank, to generate steam for the deaerating process; 
(xviii) the water-side pressure drops inside the HRSG are accounted for, as percentages of the inlet pressure in each 
HRSG section. 
 
4. MPCP PROBLEM: THERMODYNAMIC AND PHYSICAL MODELS 
 

The configuration of the cogeneration plant for the MPCP problem consists of the following main components, 
according to the propositions listed in section 3: a gas turbine generator set (GTG), a heat recovery steam generator 
(HRSG) with four sections (WPH, ECO, EVAP, SH), a deaerator vessel (DA), a flash tank for fluid expansion (FT), 
and a feedwater pump (FWP). A schematic flow diagram for the MPCP system is shown in Fig. 1, with the indication 
of the principal equipment, and the relevant stream markers for the mass and energy balances. 
 

 

 
Figure 1. Proposed configuration for the cogeneration system of the MPCP problem. 

 
The following parameters and constraints are adopted in the MPCP problem (Costa et al., 2008): (i) the same 

environmental references as those of the CGAM (see section 2), with MWa = 28.648 kg/kmol for the molecular weight 
of the air; (ii) MWng = 18.75 kg/kmol for the molecular weight of the natural gas, according to its chemical composition 
set by Costa (2008); (iii) P11 = P12 = 14.5 bar; (iv) T11 = T12 = Tsat,EVAP, with Tsat,EVAP = 196.7 oC; (v) T4 = T11 + �Tpp, 
where �Tpp � 10 oC; (vi) T10 = T11 – �Tappr, where �Tappr = 5 oC; (vii) the temperature T9 is equal to the saturation 
temperature of the steam in the deaerator increased by 1 oC due to pumping, T9 = Tsat,DA + 1; (viii) the temperature T7 is 
equal to the ambient temperature increased by 1 oC due to pumping, T7 = T0 + 1; (ix) P7 = 1.213 bar; (x) P8 = PDA = 
1.113 bar; (xi) T6 � 100 oC; (xii) T13 = 285 oC and P13 = 14 bar, as specified for the process steam; and (xiii) the mixture 
quality in the flash tank is 0.1811. It is further assumed in the MPCP problem, that the air and the combustion gases 
behave as ideal gases with constant specific heats, denoted respectively by cp,a and cp,g. 

 



 
4.1. Equations for the gas turbine generator set 

 
In Costa et al. (2008) and Costa (2008), a method to calculate the real exhaust gas temperature, T2 (see Fig. 1), at 

the exit of the GTG component is presented in detail. The basis of the method is a thermodynamic formulation, which 
makes use of a database obtained from manufacturers of gas turbines. Here, only an outline of the method is given, for 
completeness of the paper. Two GTG quantities are considered given, the gross power capacity, grW�  (kW), and the heat 

rate, HR, related to the total energy rate supplied to the GTG, Q,fE� , by 

 
  Q,f f grE m LHV W HR= =� �� ,             (1) 

 
where fm�  is the mass flow rate of fuel, in kg/s. It is remarked that grW�  is not equal to the net power exported by the 

plant to the grid, netW� , because of the power consumption by the auxiliary equipment. 
Having established a population sample of fourteen aeroderivative GTG models from international suppliers, all 

with ISO-conditions capacities similar to the one used in this work (30 MW � 6 MW), simulations have then been 
conducted using the GT PRO® software (Thermoflow, Inc., 2004), to obtain average values for the following 
quantities: the loss rates, LW� , inside the GTG due to entropy generation; the power consumption by the air compressor, 

ACW� ; and the air/fuel mass ratio, a/f,mR . The results are: 

 
  L,n n Q,fW Eκ=� � ,              (2) 

 
   AC a p,a AC,e AC,i Q,f( ) 36.41%W m c T T E= − =� �� ,           (3) 

 
a

a/f,m
f

55.49
m

R
m

= =
�

�
.              (4) 

 
In Eq. (2), n identifies the type of turbine generator loss; the appropriate percentages are given in Costa (2008), �AC = 
5.12, �GT = 8.38, �mec = 0.92, and �el = 0.74 for the air compression, gas expansion, mechanical, and electrical losses, 
respectively. In Eq. (3), am�  is the air mass flow rate, and the subscripts i and e denote inlet and exit, respectively. It is 
important to note that the GTG works with very high excess of air for combustion, since the air flow also works to cool 
the equipment. Therefore, there is no risk of obtaining extremely high temperature values in the model, relative to those 
actually reached in GTGs of the main manufacturers. 

Denoting by Q,gE�  the energy rate carried away by the exhaust gases, and GTW�  the gas turbine power, the energy 

balance equations for the gas turbine generator set are: 
 

gr Q,f AC L,GT L,mec L,el Q,g( )W E W W W W E= − + + + +� � � � � � � ,          (5) 

 

GT gr AC L,el L,mecW W W W W= + + +� � � � � ;            (6) 

 
note that ACW�  and GTW�  already include L,ACW�  and L,GTW� , respectively. The exhaust temperature T2 results from the 

combination of Eqs. (5) and (6), so that 
 

  

Q,f GTGT
2 cc,e AC,e

g p,g g p,g

E WW
T T T

m c m c

−
= − = +

� ��

� �
,           (7) 

 
where Tcc,e is the combustion chamber exit temperature, and the mass flow rate of gases is g a fm m m= +� � � . 

The GTG exergetic efficiency, GTGε , is given by (Bejan et al., 1996; Costa, 2008) 
 

 

gr
GTG

f f

W

m e
ε =

�

�
,              (8) 
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where ef = 49552.61 kJ/kg is the specific exergy of the fuel, encompassing the physical and chemical components. The 
relationship between the exergetic efficiency and the heat rate is 

 

 GTG f

LHV
HR

eε
= .              (9) 

 
4.2. Equations for the HRSG and other vessels 

 
The equations that represent the mass and energy balances for the HRSG, deaerator, and flash vessels of the MPCP 

system are given here; for details, the reader is referred to Costa et al. (2008) and Costa (2008). The HRSG has four 
sections: the feedwater preheater (WPH), the economizer (ECO), the evaporator (EVAP), and the superheater (SH). The 
water-side pressure drops inside the HRSG are given as percentage values of the inlet pressure in each section: 8.24% 
for the WPH (0.1 bar), 3.33% for the ECO (0.5 bar), and 3.45% for the SH (0.5 bar). The gas-side pressure drops inside 
the HRSG are given as 0.48% for each section (0.05 bar), relative to the pressure at the entrance to the HRSG; relative 
to this same pressure, the drop in the stack is 0.67% (0.007 bar). 

Denoting by s,EVAPm� , s,PRm� , s,DAm� , w,BDm� , s,FTm� , and w,EVAPm�  the mass flow rates of, respectively, steam 

produced in the evaporator (total), process steam to be exported, steam for deaeration, blow-down water from the 
evaporator, steam obtained from the expansion in the flash tank, and water in the evaporator (total), the following mass 
relations apply in the MPCP problem: 

 
 s,EVAP s,PR s,DA w,EVAP0.99m m m m= + =� � � � ,         (10) 

 
 w,BD w,EVAP0.01m m=� � ,           (11) 

 
  s,FT w,EVAP w,EVAP0.1811 (0.01 ) 0.001811m m m= ⋅ =� � � .        (12) 

 
In each section j (j = WPH, ECO, SH) and for each non-saturated fluid l (gas, water) in the HRSG, the relation 
 

 , H L( )j j j l p lQ UA LMTD m c T T= = −�           (13) 

 
applies, where TH and TL are, respectively, the high and low temperatures of the fluid l, and LMTD is the log mean 
temperature difference, LMTD = (�Tmax – �Tmin)/ln(�Tmax/�Tmin). 

Finally, the energy balances for the evaporator and deaerator are given, respectively, by 
 

( ) ( )  EVAP EVAP EVAP w,EVAP 11 10 12 110.99Q UA LMTD m h h h h� �= = ⋅ − + −� �
� � ,     (14) 

 

DA s,FT ,DA ,DA s,DA DA ,DA( ) ( )g f fQ m h h m h h= ⋅ − + ⋅ −� � � ,        (15) 

 
where hf and hg are the enthalpies of saturated water in the liquid and vapor phases, respectively, and hDA is the enthalpy 
of the steam for deaeration after expansion at the deaerator entrance. 
 
5. MPCP PROBLEM: ECONOMIC MODEL AND OBJECTIVE FUNCTION 
 

In the proposed problem, the goal is to optimize (in fact, maximize) the profits of the plant as a whole, by varying 
the GTG specification and the production of process steam. Thus, instead of using the capital recovery method in order 
to minimize the total system cost, herein the objective function is identified with the financial index NPV, the net 
present value for the plant investment, using discounted financial flows. The decision variables selected in the MPCP 
problem are only two: the GTG exergetic efficiency, GTGε  (related to HR thru Eq. (9)), and the process steam mass 
flow rate, s,PRm� . 

The purchased-equipment costs are obtained from statistical analyses (Costa, 2008). In the case of the gas turbine 
generators, in particular, their costs are related to the power capacities and efficiencies. From a set of points generated 
with the individual data (cost, power, heat rate) for each GTG in the selected sample, the behavior of the cost GTGZ  (in 

103 US$) as a function of power, grW�  (in kW), and heat rate, HR, is obtained through a nonlinear regression (Costa, 

2008), such that 



( )  

  

gr
GTG gr

gr

9181.9
,  

1 0.5589 0.7208

W
Z W HR

W HR
=

+ +

�

�
�

.        (16) 

 
By inserting the desired power, 30000 kW, in Eq. (16), the GTG cost as a function of HR only is obtained, 

 

( )
 

8
GTG

2.75457 10
30000 kW, 

16768 0.7208
Z HR

HR
⋅=

+
.         (17) 

 
The cost of the HRSG is equal to the sum of the costs of its individual sections, i.e., ZHRSG = ZWPH + ZECO + ZEVAP + 

ZSH (in US$). It is shown in Costa et al. (2008), that the following relations apply: 
 

WPH WPH2080.7 64128Z UA= ⋅ − ,          (18) 
 

ECO ECO2080.7 64128Z UA= ⋅ − ,          (19) 
 

EVAP EVAP1301.5 230759Z UA= ⋅ + ,          (20) 
 

SH SH2173 1468.3Z UA= ⋅ − ,           (21) 
 

where U is the global heat transfer coefficient (in kW/m2�oC), and A is the heat transfer area (in m2). 
The costs due to taxes and other expenses related to importation of equipment are also considered in the economic 

formulation. These costs are classified as internalization costs, and, for one given component, they are taken into 
account through a nondimensional factor, �IC, which multiplies the purchased-equipment cost, Z, of the component. For 
the gas turbine generator set and heat recovery steam generator, Costa (2008) calculates the internalization cost factors 
as �IC,GTG = 1.661 and �IC,HRSG = 1.803, respectively. The total investment cost for the MPCP problem is finally written 
as 

 

( )MPCP IC,GTG GTG IC,HRSG HRSGZ Z Zβ ς ς= + ,         (22) 

 
where the nondimensional multiplier � is applied to account for the other costs of the plant, namely, the deaerator, flash 
tank, pump, other accessories, and engineering costs. In practice, the value of � is 2.5 on average (Costa, 2008). 

An economic analysis can then be performed, to determine the NPV (in R$) of the cogeneration plant project, 
discounting the monetary gain of the several cash flows with a prescribed hurdle rate. The revenues are obtained by 
selling electrical power and process steam. The expenses arise from the purchased-equipment costs, engineering 
(construction and assembly), fuel consumption, and operation and maintenance. The plant is considered to operate 
during twenty six years. The general equation which expresses the NPV function is 

 
( )EE ,PR MPCP f O&MsNPV R R Z E Eτ � �= + − + +� � ,        (23) 

 
where � is the exchange rate (� = 2.50 R$/US$). In Eq. (23), REE (in US$) is the revenue obtained by selling electrical 
energy, given by 

 

( )

25
EE net

EE
0

24 365 1.062

1

t

t
t

W
R

H=

⋅ ⋅∏ ⋅ ⋅
=

+
�

�

,          (24) 

 
where t is the period of operation in years (t = 26), �EE is the price of electrical energy in the first year (�EE = 89.95 
US$/MWh), the factor 1.062 projects a rate of energy price increase of 6.2% per year due to natural gas usage, and H is 
the hurdle rate (H = 12% per year). The revenue obtained by selling process steam, Rs,PR (in US$), is given by 

 
25

,PR s,PR
,PR 

0

3600 24 365 1.062

(1 )

t
s

s t
t

m
R

H=

⋅ ⋅ ⋅Π ⋅
=

+�
�

,        (25) 

 
where �s,PR is the price of process steam in the first year (�s,PR = 0.012 US$/kg). The total expenses due to fuel 
consumption, Ef, and operation and maintenance, EO&M, are given by 
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25

f,m f
f

0

3600 24 365 1.062

(1 )

t

t
t

c m
E

H=

⋅ ⋅ ⋅ ⋅
=

+
�

�

,         (26) 

 
25

O&M
O&M

0

24 365

(1 )tt

c
E

H=

⋅ ⋅
=

+
� ,           (27) 

 
where cf,m is the cost of fuel in the first year on a mass basis (cf,m = 0.334 US$/kg), and cO&M is the cost of operation and 
maintenance (cO&M = 100 US$/h). 

Developing Eq. (23) for the objective function in the Mathematica® program (Wolfram, 1999), NPV can finally be 
expressed as a function of the two selected decision variables for the MPCP problem (Costa, 2008; Costa et al., 2008); 
the appropriate general equation with the problem parameters is 
 

( ) ( )

[

8
f,m6 8

GTG EE O&M s,PR
GTG

11
IC,GTG GTG

IC,HRSG
GTG

2.83071 10 15914.9 s,PR
,  3.8013 10 77465.9 4.56156 10s,PR s,PR

2.75457 10
1.33333 101035

0.663245 16768

1.7968 30750 1.7

c m
NPV m c mε τ

ε

ε
β

ε
ς ς

⋅ − ⋅ − ⋅
�= ⋅ Π − ⋅ + ⋅ ⋅ ⋅Π ⋅ −��

� ⋅ ⋅ ⋅
�⋅ + ⋅ ⋅ +

+ ⋅�
�

⋅ +

�

� �

( )

( )

GTG

GTG

62.71523 10 152.656 s,PR2883 lns,PR 7 7 61.62601 10 914.179 ( 2.22735 10 1.75986 10 )s,PR s,PR

7 72.15092 10 1209.29 ( 2.22735 10 2.33587 1s,PR847236 30750 1.72883 lns,PR s,PR

m
m

m m

m
m m

ε

ε

� �⋅ +
� �⋅ ⋅
� �⋅ + + − ⋅ − ⋅� �� � +

⋅ + + − ⋅ − ⋅
⋅ + ⋅

�

�

� �

�

� �

( )

6
GTG

6
GTG

6
GTG

0 )s,PR
7 71.85449 10 1042.63 ( 2.22735 10 2.04093 10 )s,PR s,PR

2.9643 10 166.659 294943s,PR s,PR

71.9123 10 1075.13 ( 2.22735 1s,PR807375 30750 1.72883 lns,PR s,PR

m

m m

m m

m
m m

ε

ε

ε

� �
� �
� �⋅ + + − ⋅ − ⋅� �� � −

⋅ + ⋅ − ⋅

⋅ + + − ⋅
⋅ + ⋅

�

� �

� �

�

� �

( )

6
GTG

6
GTG

6
GTG

70 2.04093 10 )s,PR
7 71.64139 10 922.823 ( 2.22735 10 1.75986 10 )s,PR s,PR

2.70908 10 152.31 281067s,PR s,PR

71.62601 10 914.179 s,P803193 30750 1.72883 lns,PR s,PR

m

m m

m m

m
m m

ε

ε

ε

� �− ⋅
� �
� �⋅ + + − ⋅ − ⋅� �� � −

⋅ + ⋅ − ⋅

⋅ +
⋅ + ⋅

�

� �

� �

�

� �
GTG

GTG
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6. OPTIMIZATION PROCESS AND RESULTS 
 

On substituting the prescribed values for �, �, �IC,GTG, �IC,HRSG, �EE, cO&M, �s,PR, and cf,m in Eq. (28), the objective 
function NPV may thus be expressed solely in terms of GTGε  and s,PRm� . The MPCP problem may then be solved, i.e., 

the optimal values *
GTGε  and *

s,PRm� , as well as the global maximum value NPV* of the objective function, may be 

obtained through an optimization process. Here, the NMaximize tool of the Mathematica® Optimization ToolBox is 
used, which selects automatically the Nelder&Mead Simplex optimization algorithm. The allowable interval of 
variation for the exergetic efficiency is 29% 	 GTGε  	 35%, to guarantee realistic values for the efficiency, compatible 
with those of manufacturers of gas turbine generators. Also, the allowable interval of variation for the mass flow rate of 
process steam is 12 kg/s 	 s,PRm�  	 20 kg/s, to be consistent with the interval for GTGε , and with the constraints �Tpp � 

10 oC and T6 � 100 oC. On executing the NMaximize optimization tool, it returns the following optimal values: NPV* = 

R$ 177,770,000.00, *
GTGε  = 35%, and *

s,PRm�  = 13.579 kg/s. The corresponding values of the constrained variables are 

�Tpp =10 oC and T6 = 114.6 oC. 



7. CONCLUSIONS 
 

The modeling and solution of the MPCP optimization problem exposed in this paper successfully lead to a 
relatively simple objective function formulation and a profit-optimal cogeneration system, which are compatible with 
the Brazilian industrial reality. It is hoped that the thermodynamic and economic modeling will be useful to designers of 
real cogeneration systems of similar sizes. Two important aspects of the MPCP problem should be noted. First, the 
products of the plant (electricity and process steam) are not both fixed, so that the optimum search process may vary the 
specification of the equipment to reach the maximum NPV. Second, statistical analyses have been carried out, to obtain 
the equipment costs practiced in the national market. The problem formulation is simple enough to serve as an 
application to different types of optimization algorithms. 

The resulting optimal values show that, for the established selling prices of electrical energy and process steam, the 
maximum NPV corresponds to the maximum allowable value for GTGε , and to a process steam flow rate which leads to 
the minimum value of �Tpp in the HRSG. Clearly, it pays to design the cogeneration plant with maximum general 
efficiency. This result makes one realize, that it is possible to conciliate the goal of maximum economic gain with the 
reduction of greenhouse gases emissions and conservation of natural resources. The next step in the course of this work 
will be to test another optimization algorithm, and to perform sensitivity studies near the optimum point. 
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