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Abstract. This paper investigates the influence of the use of cubic equation of state (EOS) in the isothermal cavitaion of 
compressible fluids. To do so, a thermodynamic consistent cavitation model recently proposed has been used. This 
model is derived under the Thermodynamics of Irreversible Processes and takes into account the irreversible 
dissipative character of the phase change transformation. Numerical simulations carried out using linear and cubic 
EOS are presented and compared. The results obtained demonstrate that there is no significant difference between the 
responses of these two types of EOS. Hysteresis loop observed in both EOS are virtually the same, suggesting that 
metastable behavior, intrinsically present in cubic EOS, has little or none effect on the irreversible cavitaion 
phenomenon.  
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1. INTRODUCTION  

 
Cavitation is the formation of the vapor phase in a liquid. It is distinguished from boiling in the sense that the former 

is generated by pressure reduction, whereas the later refers to vapor generation as a result of heat addition. Internal as 
well as external flows may be subjected to cavitation under steady and unsteady regimes. Different features may be 
responsible for cavitation in liquid flows, such as boundary curvature of solid surfaces in contact with the fluid, 
vortices, turbulence and transient expansion waves (Arndt, 1981, Freitas Rachid and Costa Mattos, 1998). 

There are several practical engineering problems in which cavitation plays an important role and so must be 
regarded as a design consideration. Whatever the applications and the physical features responsible for cavitation 
appearance are, it is in general approached by the models under the traditional thermostatic basis. The pressure is 
assumed to remain constant at the saturated vapor pressure and the phase change process is considered to take place 
without presenting any kind of dissipation. This behavior is unrealistic form the thermodynamic point of view and, in 
fact, gives erroneous pressure responses in phase and in magnitude (Utturkar et al., 2005). 

To overcome this problem, a consistent thermodynamic cavitation model has been recently proposed by Freitas 
Rachid (2003). In that paper a model developed under the light of the Thermodynamic of Irreversible Processes was 
presented to describe cavitation in isothermal flows of compressible liquids. Constitutive relationships were derived 
from two thermodynamic potentials - the Helmholtz free energy and a pseudo-potential of dissipation – providing state 
laws and evolution equations for the mass rate of phase change and the vapor volume fraction, in such a way the 
entropy production inequality was unconditionally satisfied whatsoever the initial and boundary conditions.  Dissipative 
phase change transformation in cavitating flows has been demonstrated to be an intermediate case of two reversible 
cases. One in which the phase change took place at constant pressure (the saturation pressure) and the other in which the 
vapor expanded and contracted without transforming into liquid. To simplify the analysis, linear equation of state (EOS) 
has been used for both the liquid and the vapor. 

On the other hand, it is well known that linear EOS may fail in properly describing cavitation since it does not take 
into account metastable behaviors intrinsically incorporated in more complex and realistic EOS. So, question arises as 
to the suitability of using linear EOS in cavitation models. To investigate it in detail, the analysis carried out in (Freitas 
Rachid, 2003) is repeated in this paper by employing cubic EOS proposed by Shamsudar and Lienhard (1993). The 
results obtained herein show no significant difference between the responses obtained with cubic and linear EOS. The 
hysteresis loops obtained in the simulation with linear EOS are virtually the same when the cubic EOS are considered. 
This result suggests that metastable behavior intrinsically present in the cubic EOS has little or none influence on the 
irreversible phase change transformations. 
 
2. MECHANICAL MODEL 

 
In contrast to general two-phase fluid flows where the phases can assume very different geometrical configurations 

throughout the flow region (Arndt, 1981; Amromin, 2000; Ishii, 1975), cavitation is a localized phenomenon which 
takes place at discrete and small regions of the fluid flow. Based on it, it is reasonable to assume that there exists no 
significant relative motion or slip between the phases, what is equivalent to consider that the liquid and vapor phases 
have the same velocities. In addition, if we assume that both phases have always the same temperature during liquid–
vapor phase transformations, it suffices to consider the balance equations (mass, momentum and energy) for the mixture 
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as a whole, instead of doing it for each phase separately (Rajagopal, 1995).  These assumptions are the fundamental 
basis of the cavitation model proposed in (Freitas Rachid, 2003), which is summarized in the next sections. 
 
2.1 – Balance Equations 

 
Based on the past hypothesis, the fluid can be regarded as a pseudo-mixture of the two phases (liquid and vapor) 

with average properties. Under suitable regularity assumptions and also by restricting the analysis to isothermal 
transformations (θ = 0 and θ∇  = 0; being the absolute temperature), only the following classical forms of the balance 
equations and a local version of the second law are required to describe the problem (Freitas Rachid, 2003): 

 
0ρ + ρ∇ ⋅ =u                                                                                                                                                            (1) 

 
v pρ = −∇ + ∇ ⋅ + ρS g                                                                                                                                            (2) 

 

( )d p 0= − + Ψ ∇ ⋅ + ⋅ − Ψ ≥u S D                                                                                                                     (3) 

 
The above equations, in Eulerian coordinates, represent the balance of mass, the balance of linear momentum and the 
Clausius–Duhen inequality, respectively. As usual, the superimposed dot stands for the material time derivative, ρ is the 
mass density of the mixture, u is the spatial velocity field, p is the thermodynamic pressure, S = ST is the extra stress 
tensor due to motion, g is the external body force per unit mass, D is the rate of deformation tensor and Ψ is the 
Helmholtz free energy of the mixture per unit volume. Eq. (3) is a local version of the Second Law of the 
Thermodynamics and requires that the rate of energy dissipation, d, be non-negative. It establishes a distinction between 
possible (d ≥ 0) processes and impossible (d < 0) ones. Processes that do not violate the second law are classed as 
reversible or non-dissipative (d = 0) and irreversible or dissipative (d > 0). 

The balance equations presented so far are valid for the mixture as whole. The mixture is considered to be made up 
of liquid and vapor phases which can or cannot coexist at a same material point and time instant. To take it into account, 
we consider an internal variable α  which denotes the vapor volume fraction. The vapor volume fraction α , 

0,1[ ]α ∈ is defined as being the ratio of the volume of vapor and the total volume of the mixture. Thus, the mass 
density of the mixture can be expressed as 
 

l v
(1 )ρ = − α ρ + αρ                                                                                                                                                    (4) 

 
in which ρl and ρv stand for the mass densities of the liquid and vapor phases, respectively. Since our objective is to 
describe the liquid–vapor transformations, it is convenient to split the mass conservation of the whole mixture Eq. (1) 
as: 
 

v v v
0αρ + ρ α + αρ ∇ ⋅ − Γ =u                                                                                                                                 (5) 

 

l l l
(1 ) (1 ) 0− α ρ − ρ α + − α ρ ∇ ⋅ + Γ =u                                                                                                               (6) 

 
in which Γ is a source term which represents the mass rate of phase change per unit volume. When Γ > 0, liquid is 
transformed into vapor. On the other hand, if Γ < 0, then vapor is transformed into liquid. Finally, if Γ = 0, then there is 
no phase change and, consequently, the liquid and vapor phases are conserved independent from each other. 

To complete the problem description, we must add to the foregoing equations the constitutive relationships for the 
mixture in such a way that inequality Eq. (3) be satisfied no matter the external actions, initial and boundary conditions. 
 
2.2 – Constitutive Equations 
 

The constitutive relations describing the macroscopic mechanical behavior of the mixture are derived in the 
framework of the Thermodynamics of Irreversible Processes. In this theory, once the local state of the material has been 
characterized by means of an appropriate choice of a set of state variables, two thermodynamical potentials – the 
Helmholtz free energy and a pseudo-potential of dissipation–are sufficient to derive a complete set of constitutive 
equations. For this particular problem, we choose as state variables the local mass densities of the liquid ρl and the 
vapor ρv, the vapor volume fraction α and the absolute temperature θ. This specific choice restricts the validity of the 
forthcoming analysis to a particular class of fluids (generalized Newtonian fluids), since the list of state variables might 
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incorporate other variables not considered herein as in the case of many non-Newtonian fluids. The restriction 
associated with α is treated in this model as a physical property in the constitutive equations. 
 
Helmholtz free energy – State Laws Following the classic assumption of the Thermodynamics of Irreversible 
Processes, the free energy per total unit volume Ψ is supposed to be a function of the state variables. Since the fluid is 
regarded as a mixture of the two phases, its behavior is supposed to comprise a combination of the liquid and vapor 
thermo-mechanical properties. Thus, the following form is proposed: 

 

l v l l v v v v
( , , , ) (1 ) ( , ) ( , ) I( )Ψ ρ ρ α θ = − α ρ Ψ ρ θ + αρ Ψ ρ θ + α                                                                                        (7) 

 
with 

0 , [0,1]
I

, otherwise
( )

α ∈
α =

+∞

⎧⎪⎪⎨⎪⎪⎩
                                                                                                                                   (8) 

 
in which, Ψl and Ψv represent the free energies per unit mass of liquid and vapor, respectively, and I (α) is the indicator 
function of the convex set 0,1[ ] ⊂ ℜ . It is included in the free energy potential to take the internal constraint of the 
mixture into account as a constitutive assumption. In other words, the term I(α) prevents α from getting out of its 
admissible interval since it would be required an infinite amount of energy to do this. The state laws, relating the 
reversible components of the thermodynamic forces to the state variables, are obtained from the free energy potential as 
follows: 

ll

l l l

l l

B 1 1 g( )( ) ( )
∂Ψ∂Ψρ

= = − α Ψ + ρ = − α
∂ρ ∂ρ

                                                                                                   (9) 

vv

v v v

v v

B g( )
∂Ψ∂Ψρ

= = α Ψ + ρ = α
∂ρ ∂ρ

                                                                                                                  (10) 

v v l l
B g g I( )α ∈ ∂Ψ = Ψ − Ψ + ∂ α                                                                                                                          (11) 

 
In the above equations, gl and gv stand for the Gibbs specific free energies of the liquid and vapor phases, respectively, 
and the term I( )α∂ is the subdifferential of the indicator function I (α) at α (Moreau, 1988). It is such that I( ) 0α /∂ =  if 

[0,1]α ∈ ; I( 0) {h R; h 0}α∂ = = ∈ ≤ , I( 1) {h R; h 0}α∂ = = ∈ ≥  and I(0 1) {0}α∂ < < = . 

 
Pseudo-potencial of dissipation – Complementary Laws  To assign a dissipative character to the mixture, and also to 
ensure that the second law is always satisfied, we assume that the pseudo-potential of dissipation Φ  is an objective, 
convex and differentiable function of D, Г and α , i.e. ( , , ; )Φ Γ α αD , where α  is taken as an independent parameter, 
with the following properties: 
 

( , , ; ) 0, ( , , )Φ Γ α α ≥ ∀ Γ αD D  and ( )0, 0, 0, 0αΦ =                                                                                             (12) 

 
The additional information associated with the dissipative behavior can be obtained from Φ  through the following 
complementary laws: 

, B , BΓ α∂Φ ∂Φ ∂Φ
= = =

∂ ∂Γ ∂α
S

D
                                                                                                              (13) 

 
in which BΓ  and Bα are the thermodynamic forces associated with the phase change transformation and with the 
evolution of the vapor volume fraction. In addition, if we choose the rate of the energy dissipation. d as being given by 
 

d̂ B B I( ) 0Γ α= ⋅ + Γ + α − α ⋅ ≥S D D I                                                                                                               (14) 
 
for any actual evolution, with I being the second-order identity tensor, then we get from the convexity property of Φ  
that: 

ˆd d B B I( ) ( , , ; ) ( , 0, 0, ) 0 0,1[ ]Γ α≥ = ⋅ + Γ + α − α ⋅ ≥ Φ Γ α α − Φ α ≥ α ∈S D D I D 0                                 (15) 



 
In view of Eq. (15), it is easy to see that d̂ 0≥  for any actual evolution and so the Second Law of Thermodynamics 

Eq. (3) is always satisfied. It is worth noting that the last term in the right-hand side of Eq. (14) was introduced to give 
the model a thermodynamically consistent character. If α  could be out of the interval [0,1], then the dissipation would 
become negative what is not possible. It is important to remark that Φ  does not need to be a convex function. The 
convexity property is only a sufficient condition in order to satisfy Eq. (15). From the mechanical viewpoint, Eq. (15) 
establishes that the rate of energy dissipation is the sum of three parcels. The first parcel in the right-hand side of Eq. 
(15) is associated with viscous effects due to the motion of the mixture as whole. The other two parcels reflect internal 
changes in the mixture. The second and third terms express the dissipative mechanisms associated with the evaporation-
condensation process and with viscous dissipation in the liquid as a result of the expansional-compressional motion of 
the vapor phase. Without loosing generality, if we assume the mixture behaves as a Newtonian fluid one possible choice 
for Φ  is: 

2 2 2
( )

1
(D, , ; )

2 2 2

λ ε
Φ Γ α α = ⋅ + μ ⋅ + Γ + α

β
D I D D                                                                                             (16) 

where (̂ )β = β α and (̂ )ε = ε α are positive generic functions of α . For this specific choice, the state and complementary 
constitutive laws become: 

l v
p (1 )p p= − α + α                                                                                                                                                 (17) 

2= λ ⋅ + μS D I D                                                                                                                                                       (18) 

BΓΓ = β                                                                                                                                                                     (19) 

Bαεα =                                                                                                                                                                     (20) 

l v
g )(1 )B (1 )( gΓα − α = α − α −                                                                                                                            (21) 

l v v v l v
B B ( )( g (1 )g ) B ( (1 ) ) 0α α Γ+ + ρ − ρ α + − α + αρ + − α ρ =                                                                   (22) 

 
in which  

2 l

l l

l

p
∂Ψ

= ρ
∂ρ

        and        2 v

v v

v

p
∂Ψ

= ρ
∂ρ

                                                                                                                (23) 

stand for the thermodynamic pressures of the liquid and the vapor and the material parameters ˆ( )λ = λ α  and ˆ( )μ = μ α  

are average properties between, respectively, 
l

λ and 
v

λ and 
l

μ  and 
v

μ  having α  as a weighting factor, such that 

( ) 0 lλ α = = λ  and ( 1) vλ α = = λ , ( 0) lμ α = = μ  and ( 1) vμ α = = μ . These material parameters must be such that 0μ ≥  

and 2
3

0λ + μ ≥ in order to satisfy Eq. (15). The equations (19-22) should be analyzed for three distinct 

situations; [0,1]∈α , α = 0 and α = 1, which correspond to the existence of liquid along with vapor, pure liquid and 

pure vapor, respectively. 
For [0,1]∈α , it is possible to prove (Freitas Rachid, 2003) that Eqs. (19-22) are reduce to: 
 

l v
)(g gΓ = β −                                                                                                                                                          (24) 

v l
p pεα = −                                                                                                                                                             (25) 

 
On the other hand, for both α = 0 and α = 1, it is possible to show that Γ =0 and α =0 and Eq. (22) is reduced to (Freitas 
Rachid, 2003): 
 

( )l v
l v v

p p g g 0,   if   =0− − ρ − ≥ α                                                                                                                       (26) 

( )l v
l v l

p p g g 0,    if  =1− − ρ − ≤ α                                                                                                                        (27) 

 
These two last inequalities provide the admissible values for pv and pl in the pseudo-fluid consisting of the liquid phase 
and vapor only. For pv = psv, then (26) requires that p = pl ≥  psv. Similarly, for pl = psv, then Eq. (27) requires that p = pv 
≤ psv, as it would be expected. 
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Eqs. (2),(3),(5),(6) along with Eqs. (17-18) and (23-27) completed by suitable boundary and initial conditions are 
sufficient to describe the isothermal momentum-driven cavitation of a compressible Newtonian fluid flow, as long as 
specific forms of the Helmholtz free energy for the liquid 

l
Ψ  and for the vapor 

v
Ψ  are provided. 

 
4 – HELMHOLTZ FREE ENERGIES OF THE LIQUID AND OF VAPOR PHASES 
 

Once the Helmholtz free energies of the liquid and vapor phases have been specified, the equations of state (EOS) 
relating the pressure and mass density, as well as the Gibbs free energy difference between the liquid and the vapor, are 
readily available. In this paper, linear and cubic equations of state will be considered, so that the model predictions 
regarding liquid-vapor transformations based on these EOS can be compared. 
 
4.1 – Linear EOS 
 

For the linear equations of state for both the liquid and vapor phases, the following Helmholtz free energies are 
chosen (Freitas Rachid, 2003): 

l l l l l l
M( , c log( ) c log() ) ρΨ ρ θ = − θ θ + ρ +                                                                                                            (28) 

 

v v v v l
( ), c log( ) K log( ) LΨ ρ θ = − θ θ + ρ +                                                                                                               (29) 

 
in which cl and cv are the specific heats at constant volume of the liquid and vapor phases, respectively. The parameters 

ˆK K ( )l l= θ , ˆK K ( )v v= θ , ˆM M( )= θ and ˆL L( )= θ  are positive material functions which depend on the temperature. 

The function L̂  is associated with the phase change latent heat and the functions 
l

K̂  e 
v

K̂  and are related to the 
isothermal compressibility of the phases. Since we have implicitly assumed that the vapor behaves as a perfect gas, then 
K̂ ( ) Rv vθ = θ , Rv being the gas constant. By virtue of Eq. (23) the partial pressures of the liquid and of the vapor are: 

l l l
p K M= ρ −                                                                                                                                                          (30) 

v v v
p K= ρ                                                                                                                                                                  (31) 

 
By taking into account that the Gibbs free energies of the liquid and the vapor are equal when the phases are in 
equilibrium at the saturation pressure psv at any temperature θ, it can be shown that:  

l sv

sl v sl l
l v l v

1 1
log log Mg g K K

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜+ + −⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠
ρ ρ− =
ρ ρ ρ ρ

                                                                                                  (32) 

 
in which ρsl and ρsv  stand for the liquid and vapor saturated mass densities, respectively, associated with the saturation 
pressure psv. 
 
4.2 – Cubic EOS 
 

For the cubic equations of state for both the liquid and vapor phases, the following Helmholtz free energies are 
chosen (Shamsudar and Lienhard, 1993): 

l

r

r

R /pr

l po
1/

l
ˆ ˆ( ) pdv c 1)d R( ), ( )(ˆ

θ

θ

θ

ρ
Ψ ρ = + θ − θ − θ − θ∫ ∫ θθ

θ
                                                                                    (33) 

v

r

r

R /pr

v po
1/

v
ˆ ˆ( ) pdv c 1)d R( ), ( )(ˆ

θ

θ

θ

ρ
Ψ ρ = + θ − θ − θ − θ∫ ∫ θθ

θ
                                                                                  (34) 

in which  

m sg

sv 2

sl
( )( )( )

( )( )

v v v v v v
p p 1

v b v 2cv d

− − −
= −

− + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                                                            (35) 

 
In the past expressions, R represents the universal gas constant, pr and θr stand for a pressure and temperature of 
reference, cpo is the specific heat at constant and low pressure, psv is the saturation pressure of fluid at any temperature 
θ; vsl =(1/ρsl ) and vsv=(1/ρsv) are the specific volumes of saturated liquid and saturated vapor at a temperature θ; and vm, 



b, c, d are constitutive parameters which depend on the temperature θ. By virtue of Eq.(23) the partial pressures of the 
liquid and of the vapor are: 

l sl l m l sv

l sv 2

l l l

( )( )( )

( )( )

v v v v v v
p p 1

v b v 2cv d

− − −
= −

− + +

⎡ ⎤
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

                                                                                                        (36) 

v sl v m v sv

v sv 2

v v v

( )( )( )

( )( )

v v v v v v
p p 1

v b v 2cv d

− − −
= −

− + +

⎡ ⎤
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

                                                                                                   (37) 

 
in which vl=(1/ρl )and vv=(1/ρv) are respectively specific volumes of liquid and vapor phases. 
By taking into account that the Gibbs free energies of the liquid and the vapor are equal when the phases are in 
equilibrium at the saturation pressure psv at any temperature θ, it can be shown that:  

1/
v

1/
l

l v

l v
l v

p p
g g pdv

ρ

ρ
ρ ρ

− = + −∫                                                                                                                            (38) 

 
5 – MODEL PREDICTIONS FOR LINEAR AND CUBIC EOS 
 

The dynamics of the phase-change transformations is now investigated from a theoretical point of view, in order to 
compare the predictions of phase-change taking into account the linear and the cubic EOS. The capability of the model 
in describing typical situations is illustrated by a simple quantitative example. For this purpose, consider a sample of a 
liquid–vapor mixture of pure water in equilibrium at a saturation pressure of psv = 2.34 kPa (θ = 293 K) having, initially 
at t = 0, a vapor volume fraction of α0= 0.2. To simplify the interpretation of the results and to reduce the number of 
material parameters to be specified, we shall consider that the phase-change transformation is the only dissipative 
mechanism present, so that ε = 0. The constitutive constants of the model for water at 293 K are taken as: Kv = 135 
kJ/kg, Kl = 990 kJ/kg, M = 988 MPa for the liner EOS and vsl=0.0010018 m3/kg , vsg= 57.79 m3/kg , vm= 0.029335 
m3/kg , b=0.000728601 m3/kg , c=0.00303702 m3/kg , d= -7.06179x10-7 (m3/kg)2 for the cubic EOS . The value of the 
coefficient β responsible for the dissipative phenomenon of phase change is assumed to be β = 10-8 kg2/m3J s. As it has 
been demonstrated in (Freitas Rachid, 2003), this value is the one for which dissipative effects in cavitation takes place.  

For water at this temperature, it has been shown in (Freitas Rachid, 2003) that for β ≥ 10-6 kg2/m3Js the phase change 
takes place in a reversible way (with no dissipation) and the fluid pressure remains constant and equal to the saturation 
pressure psv. On the other hand, for β ≤ 10-12 kg2/m3Js the phase change takes place also in a reversible way (with no 
dissipation) and the fluid pressure fluctuates to accommodate the expansion and contraction of the vapor bubbles in the 
mixture. The extreme values of β represent adequate upper and lower bounds for describing peculiar situations with no 
rate of energy dissipation. 

The mixture is confined into a device and can have its original volume expanded or contracted along the time by 
means of external actions. It is further assumed that, at anytime instant, the mixture is almost everywhere homogeneous 
throughout its volume, so that the convective terms of the balance equations of mass can be neglected. Under these 
circumstances, the time rate of the volume change per unit volume of the whole mixture is described by the term u∇⋅ , 
which is assumed to be a prescribed input function of the time as represented in Fig. 1. Since (0,1)α ∈ for this input 
function, the equations governing the behavior of the mixture are given by Eqs. (5),(6),(24) along with (30-32) whether 
the linear EOS is considered or along with (33-38) whether the cubic EOS is assumed. By virtue of the choice ε = 0, we 
can see through (25) that p = pl= pv. By combining the past equations we can arrive at an initial value non-linear 
problem of differential equations in the independent variable t for the unknowns α and ρl and ρv: 
 

2 2

v l v l v l

2 2

l v v l

l v
(1 ) u( ) (g g )( (1 ) )

(1 )

−α − α ρ ρ ∇ ⋅ ρ ρ ξ + β − αρ + − α ρ ξ
α =

αρ ρ + − α ρ ρ ξ
                                                                      (39) 

l l

l

l v
)(g g (1 ) u

1

αρ − β − − − α ρ ∇ ⋅
ρ =

− α
                                                                                                                (40) 

v v

v

l v
)(g g uβ − − αρ − αρ ∇ ⋅

ρ =
α

                                                                                                                        (41) 

 

where 
2
v v
2
l l

K
K

=ξ
ρ
ρ

 if the linear EOS is considered and 
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( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

2
3 2 2 2 3 2 3 2

v v v v v v v v v v l l l

2
3 2 2 2 3 2 3 2

l l l l l l l l l l v v v

v Dv Ev F 3v 2Av B 3v 2Dv E v Av Bv C v Av Bv C

v Dv Ev F 3v 2Av B 3v 2Dv E v Av Bv C v Av Bv C

=
+ + + + + − + + + + + + + +

+ + + + + − + + + + + + + +

⎡ ⎤
⎣ ⎦
⎡ ⎤
⎣ ⎦

ξ  

 
if the cubic EOS is considered, in which 

sl m sv
A v v v= − − −  , 

sl sv sl m m sv
B v v v v v v= + + ,  

sl m sv
C v v v= − , 

D 2c b= − , E d 2bc= −  and  F bd= − . This problem is numerically approximated by using a fourth-order  
Runge–Kutta method. Typical time-steps used in the simulation are of the order of 10-3 s. 

 
Figura 1 – Input excitation u∇⋅ as a function of time 

 
In what follows, the predictions of the model taking into account the linear EOS and the cubic EOS are compared in 

order to investigate its influence on the phase change process. 

 
Figura 2 – Mass rate of phase change as a function of time for linear and cubic EOS 

 
The mass rate phase change per unit volume, Γ, is plotted against the time in Fig. 2 for the linear and cubic EOS. As 

it can be seen, the behavior of the responses is virtually the same no matter the use of the EOS type. Due to the 



expansion in the first-half of the cycle generated by u∇⋅ , liquid is transformed into vapor until t=60s. On the other 
hand, vapor is converted into liquid due to the contraction of the mixture induced the external action in the second-half 
of the cycle. Since the areas enclosed by this curve in these two periods are not the same, the vapor generated in the first 
period is not fully transformed into liquid in the second one. 

The pressure histories for the linear and cubic EOS are shown in Fig. 3. The pressure of the mixture decreases 
during the first-half period and reaches values two times greater than the saturation pressure in the second-half of the 
cycle. In this situation, it can be noticed the presence of a relaxation phenomenon since the pressure takes ~ 20 s to 
come to its equilibrium value after the rate of volume change has vanished. Once again, the responses observed with the 
linear and with the cubic EOS are almost the same, suggesting that simpler EOS can be used in the model without 
compromising the overall dissipative phenomenon. 

 
Figura 3 – Pressure as a function of time for linear and cubic EOS 

 
Fig. 4 presents the plot of the rate of energy dissipation, Eg=BΓΓ  , as a function of time for the linear and cubic 

EOS. No significant difference is noted whether linear or cubic EOS is employed. As it has been anticipated, it is clear 
in this figure that there exists energy dissipation during the phase change process in which vapor becomes liquid and 
vice-versa. Since the energy dissipation represents the area below the curve, it becomes clear that the dissipation is 
greater in the second-half of the cycle than that observed in the first-half. It can be explained by noting in Fig. 2 that the 
amount of liquid formed in the second period is greater than that of vapor generated in the first one. A simple 
calculation reveals that the overall energy dissipation is ~ 0.75 kJ/m3.  

 
Figura 4 – Rate of energy dissipation as a function of time for linear and cubic EOS 
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The evolution of the vapor volume fraction in time is presented in Fig. 5 for the linear and cubic EOS. No noticeable 

difference is observed in Fig. 5 between the responses. The excess of liquid generated in the second-half of the cycle 
reported in the past paragraphs is responsible for an absolute difference between the final and initial values of the vapor 
volume fraction of about 6.27 × 10-10. It corresponds to an increase in the final mass density of the mixture of 1.57×10-9 
% in relation to its initial value.  

 
 

Figura 5 – Vapor volume fraction as a function of time for linear and cubic EOS 
 
Finally, the physical situations analyzed herein can be better visualized by plotting the pressure against the vapor 

volume fraction as shown in Fig. 6 for both the liner and the cubic EOS. Although the energy dissipation in the total 
process is in fact small, the model predictions of isothermal phase change transformation clearly show the existence of a 
hysteresis loop, typical of dissipative phenomena. Although a small difference between the linear and cubic EOS 
response can be noticed, it has no significance for practical purposes. 

 
 

Figura 6 – Pressure against vapor volume fraction for linear and cubic EOS 
 

The good performance exhibited by the linear EOS when compared with the cubic EOS allow us to conclude that 
the inner metasable behaviors of the cubic EOS does not play an important role in the phase change process. This fact 



can be justified by noting the fluid pressure oscillates around the saturation pressure (see Fig. 3) and the linear EOS 
provides a good approximation of the cubic EOS in the neighborhood of the saturated liquid and vapor regions. 
 
6. CONCLUDING REMARKS 
 

The influence of the use of more accurate and realistic equations of sate (EOS), such as the cubic EOS, in the 
irreversible cavitation model presented in (Freitas Rachid, 2003) has been investigated in this paper. Numerical 
simulations for a simple problem in which a liquid-vapor mixture of water is dynamically expanded and contracted 
were carried out by taking into account the cubic EOS proposed by Shamsudar and Lienhard (1993). The results 
obtained were compared with that obtained by using linear EOS, for both the liquid and vapor phases. For the cases 
analyzed herein it has been virtually noted no difference between the responses obtained with cubic and linear EOS. 
This result suggests that metastable behavior intrinsically present in the cubic EOS has little or none influence on the 
irreversible phase change transformations. 
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