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 Abstract. This paper reports some numerical investigation carried out on hydraulic fills. A methodology based on the numerical 
solution of the differential equation presented herein is introduced and tested. Typical dimensional performance curves are obtained 
and the influences of the governing parameters are discussed. A sensitivity analysis was performed in order to characterize the 
influence of the numerous parameters on the outputs of the present model.  
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1. INTRODUCTION 
  

Large underground voids are created in the process of removing ores from the mines. These underground voids are 
known as stopes and they can be approximated as rectangular prism with plan dimensions in the order of 20-60 m and 
heights as much as 200 m. Different types of backfills are used to fill the stopes and hydraulic fills are most popular 
backfill type used worldwide. Hydraulic fills are uncemented classified mine tailing or sand deposits mined off the site, 
with not more than 10% by weight of size less than 10 μm (Grice, 1988). Hydraulic backfill slurries are transported by 
gravity through boreholes and pipelines to the stopes. Slurry density is greater than 70% (solid by weight). The drainage 
is one of the main concerns in hydraulic backfills. Figure 1 shows the typical hydraulic fill stope. The barricades are 
made of free draining porous bricks and are used to block the horizontal access drives to retain the fill and prevent it 
from entering the drives. Hence, the free water is allowed to drain through the fill and the barricades into the empty 
drives. Mining accidents due to barricade failures are often catastrophic, resulting in sudden flow of wet slurry into the 
drives, trapping the miners and machinery in the vicinity. Most of the failures take place in the early hours of filling and 
are caused by the presence of excess water within the minefill. Several mechanisms such as piping and liquefaction 
have been suggested as the triggers  (Bloss, 1998; Grice, 1988; Kuganathan, 2001).   
  

 
Figure 1 - Typical hydraulic fill stopes 

  
Sivakugan et al. (2006) measured the permeability of hydraulic fills from different Australian Mines and porous 

barricade bricks. The permeability of barricade bricks are about two to three orders of magnitude of permeability of 
hydraulic fills. A numerical model and computer program was developed to study the pore water pressure development 
within two dimensional stopes by Issacs and Carter (1983). Traves and Issacs (1991) extended this model to three 
dimensions. Rankine et al. (2003) developed three dimensional numerical model using FLAC3D to study the pore 
pressure development and drainage by considering the filling rate, hydraulic fill water content and fill characteristics. 



Sivakugan et al. (2006) studied the pore pressure developments within the two dimensional stopes using FLAC using 
method of fragments. In all previous studies, pore water pressure development within the stopes has been estimated 
assuming the constant value of permeability. Singh et al. (2008) and Singh and Sivakugan (2008), observed the 
permeability of hydraulic fills is a logarithmic function of effective vertical stress.  

The sensitivity analysis is the study of how the variation in the output of a model is influenced, qualitatively or 
quantitatively, to different sources of variation. It has been used as an important tool in many areas of knowledge 
(Porous media flow (Iglesias and Dawson, 2007), environmental flow (Khemka et al., 2006); life insurance contracts 
(Christiansen, 2008); heat transfer (Parente Jr and de Sousa Jr, 2008) and mass transfer (Vasconcellos et al., 2003)). 
Sensitivity analysis is the first and the most important step in the optimization problems, because it yields the 
information about the increment or decrement tendency of the design objective function with respect to the design 
parameter. Therefore, sensitivity analysis plays an important role in determining which parameter of the process should 
be modified for effective improvement (Sarigul and Secgin, 2004).  

In this paper, pore water pressure development within the stopes has been estimated by using the reduced total stress 
and permeability variation with height. An analytical analysis has been done using flow equation to estimate pore water 
pressure distribution within the stopes at different time. Finite Volume Method (FVM) (Patankar, 1980; Ferziger and 
Peric, 2002; Maliska, 1995) has been used to solve the partial differential equations. Numerical examples are presented 
to validate the proposed methodology and to assess the sensitivity analysis for eight parameters. 
   
2. TIME DEPENDENT SETTLEMENT IN HYDRAULIC FILLS EQUATION 
    

Following assumption were made to study the pore water pressure development of hydraulic fills within the stopes.  
    

1. Hydraulic fills are saturated and homogenous; 
2. There is no decant water above phreatic surface; 
3. Water and hydraulic fill particles are incompressible; 
4. Flow of water is in one direction; 
5. Permeability of hydraulic fill is not constant within the stopes (Singh et al., 2008);  
6. Darcy’s law is valid; and, 
7. Total stress reduces due to arching (K. Pirapakaran and Sivakugan, 2007). 
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Figure 2  – For sample C1, void ratio versus vertical effective stress (left), adapted from Singh et al. (2008), 

and void ratio versus time (right), adapted from Singh and Sivakugan (2008). 
    

The consolidation equation can be derived as following, on the basis of aforementioned assumptions. Similar 
analysis has been performed by Das (2005) or Terzaghi et al. (1996).  
     

( )
' 0

1 a
o

u a ak
y y e t u
⎛ ⎞∂ ∂ γ ⎡ ⎤− + ξ =⎜ ⎟ ⎢ ⎥∂ ∂ + σ −⎣ ⎦⎝ ⎠

 (1) 

    
where u  is pore water pressure [Kpa], k  is the permeability of hydraulic fills [mm/hr], oe  is the initial void ratio, γ  is 
the unit weight of tailing [kN/m3], aσ  is the arching stress [kPa] and  t  is the time [min]. Values of a are obtained 
from experimental data, Figure 2 (left), and values of 'a are obtained from experimental data, Figure 2 (right). 
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aσ  can be expressed as following (K. Pirapakaran and Sivakugan, 2007) 
    

2 tan
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where w  is the width of stopes, l  is the length of stopes, K  is the Earth pressure coefficient, and δ  is the wall . 

Singh et al. (2008) measured the permeability of hydraulic fills under surcharge. The permeability of hydraulic fills 
varies linearly with logarithmic of vertical effective stress. The permeability variation with vertical effective stress of 
one hydraulic fill sample is shown in Figure 3. Using Eq. (3) the permeability variation can be expressed as following. 
    

( )ln ak d c u= − σ −  (3) 
    
where c

 
and d are parameters which are functions of load pressure. Details about this experimental procedure can be 

seen at Singh et al. (2008). 
The backfilling in the stopes is done in batches. In this analysis, it has been assumed that the load increment due to 

batching is constant; hence the rate of load increment is given as following 
    

t
∂σ

= ξ
∂

, with 0ξ >  (4) 

    
where ξ  is a constant and given value.  

100 101 102 103 104

1.2x10-4

1.4x10-4

1.6x10-4

1.8x10-4

2.0x10-4

P
er

m
ea

bi
lit

y 
[m

/m
in

]

Vertical Effective Stress [kPa]

Sample C1
with c = 1.21x10-5 and d = 2.174x10-4

 
Figure 3  – Permeability versus Vertical effective stress (right), adapted from Singh et al. (2008). 

    
Two sets of different boundary conditions are analyzed in this work; the first is used to model this phenomenon for 

pervious barricade wall,  
    

0u =  at 0y =  (top) (5) 
0u =  at y l=  (bottom) (6) 

    
and, the other set is used to model for impervious barricade walls, 
    

0u =  at 0y =  (top) (7) 

0du
dy

=  at y l=  (bottom) (8) 

    
Actually we are not modeling the problem shown in Figure 1; Eq. (1) is one-dimensional while the real problem 

shown in Figure 1 is two-dimensional. The numerical model presented herein will be used to simulate an experimental 
apparatus (one-dimensional) which has been built to understand some aspects of the problem shown in Figure 1. 
    
  



3. SOLUTION METHODOLOGY 
    

In the present work, equations Eq. (1) was solved numerically using the finite volume method (Patankar, 1980; 
Ferziger and Peric, 2002; Maliska, 1995). In this methodology, the first step is to divide the solution domain in small 
non-overlapping control volumes whose faces are aligned with the coordinate lines, as shown in Figure 4. Next, the 
equation is integrated along each one of these control volumes yielding a set of algebraic equation. For any internal 
finite volume, the integration of Eq. (1)  is: 
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The pressure derivatives along the faces of the control volumes are approximated using piecewise linear profiles, 

then Eq. (9) can be rewritten as, 
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 (10) 

    
where nk  and sk  are respectively the values of k  at interface north and south of each volume. Their values are 
calculated using the geometric average as proposed by Patankar (1980), 
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Figure 4  – Schematic diagram of the control volume used to integrate Eq. (9). 
    

The subscript P  refers to the control volume properly which neighbors are at North and South. Equation (10)  is 
non-linear because the coefficients “ k ”, which are related with Eq. (3), depend upon the pore water pressure itself. 
After rearrangements all algebraic equations are cast into the following formula 
    

p p n n s s PA u A u A u S= + +  (12) 
    

For a given iteration, the coefficients were evaluated using the pressure value from the previous iteration. The 
solution was considered to be converged when, for all grid points, the difference in pressure between two consecutive 
interactions divided by the difference between the highest and the lowest pressure was less than 10-8.  
    
4. RESULTS 
    

Figure 5 shows pore water pressure versus height for different times, considering two different types of boundary 
conditions. All lines in the left plot of this figure have the behavior expected for this problem (Das, 2005).  
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Figure 5  – Height versus Pore water pressure for different times (Porous barricade wall) and  

pervious barricade wall (left plot) and impervious barricade wall (right plot) 
    
5. SENSITIVITY ANALYSIS 
    

The scope of sensitivity analysis is to rank the importance of the various parameters of the mathematical model. In 
the present work, we analyze the scaled sensitivity coefficients, which are defined as 
    

( ) ( )
s s

s

u t
X t

∂
= β

∂β
 (13) 

    
where sβ  are the parameters used in the present sensitivity analysis and may be one of these parameters: 

{ }0; '; ; ; ; ; ;a a c d eδ γ ξ . As it can be observed in Eq. (13), the scaled sensitivity coefficients have all the same units of u , 
therefore a direct comparison between each sensitivity coefficients is then possible.  

Figure 6 shows the sensitivity of a  and ξ  parameters. It can be seen that any increasing of a  or ξ  due to 
extremely low sensitivity of ( )u t  with respect to these parameters one could say that the water porous pressure is not 
affected these parameters. 
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Figure 6  – Sensitivity of Coefficients a  and ξ  with respect to time and position (height) (left) and  

with respect to load pressure and position (height) (right) 
    

Figure 7 shows the sensitivity of the parameter 'a . For these values of sensitivity, ones may infer that 'a  plays an 
important role in this model and for that reason this value should be evaluated carefully. Small errors on 'a  evaluation 
will lead to errors on ( )u t solutions. A very similar behavior has been found for { }0'; ; ; ;a c d e γ parameters; therefore 
these plots will not be presented herein. 
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Figure 7  – Sensitivity of Coefficients a  and ξ  with respect to time and position (height) (left) and with respect to load 

pressure and position (height) (right) 
    
Figure 8 illustrates the evolution in time of porous water pressure sensitivities with respect to parameters 
{ }0; '; ; ; ; ; ;a a c d eδ γ ξ  at 66.6 [ ]y m= .  Looking at Figure 8 it is possible to say if one parameter is more or less 
sensitivity than other. An important requirement in parameter estimation is that the sensitivity coefficients should not be 
of small magnitude, and when two or more parameters are estimated simultaneously, their sensitivity coefficients must 
be linearly independent over the experimental time domain (Beck et al., 1985). Similar shapes (time dependence) of 
sensitivity coefficients for two different parameters indicate that their effects on the model response are similar, being, 
therefore, impossible to tell them apart. Larger sensitivity coefficients are related to better chances of obtaining good 
estimates. The sensitivity analysis performed herein shows that only { }'; ;a c d  are linearly independent for an 
experimental time lower than 10 minutes, therefore just these parameters might be estimated simultaneously  
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Figure 8  – Sensitivity analysis for 66.6 [ ]y m=  

    
6. CONCLUSIONS 
  

Numerical simulation of time dependent settlements in hydraulic fills is presented in this paper. The application of 
sensitivity calculations with respect to process variables permits a quantitative determination of how process variables 
govern performance, and allows us to identify the parameters with higher influence on the model. In this study, it was 
shown that these parameters { }'; ;a c d  are the most sensivitiy and important in the model presented herein. 
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