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Abstract. The Vortex Method is based on the discretization of the vorticity field as a superposition of Lamb vortices 
that move within a Lagrangian framework to simulate the convective and diffusive transports of vorticity in the flow. 
Among the several vorticity diffusion methods available in the literature, the Corrected Core-Spreading Method is 
characterized by the expansion of the vortex core radius in time, followed by the splitting of the vortex into four new 
vortices with smaller cores as soon as the radius reaches a maximum value. The splitting process results in an 
exponential growth of the number of vortices, N. This problem may be circumvented through the use of an algorithm 
that merges groups of vortices with a high degree of spatial overlapping. However, this procedure requires that the 
distance between vortices be calculated, producing a floating-point operation count of the order of N2. For large N, 
this step becomes a bottleneck for long-time vortex-method simulations. In this paper we propose to merge vortices 
located in small meshes, or boxes, obtained by refining the largest computational box, drawn to encompass all vortices 
in the flow, into a hierarchy of smaller boxes, with a non-uniform size and spatial distribution. This hierarchy of boxes 
was originally developed for the Adaptive Fast Multipole Method (AFMM) to accelerate the induced velocity 
calculation at each vortex location, since the direct calculation using the Biot-Savart law also requires an operation 
count of the order of N2. The use of the AFMM boxes produces a large reduction of the CPU time required to merge 
vortices in the cloud. Results for several clouds of vortices with different non-uniform spatial distributions are 
presented and their CPU times are compared to those obtained with the direct merging algorithm, which does not use 
the AFMM boxes. 
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1. INTRODUCTION 
 

The Vortex Method (VM) is a numerical approach for the simulation of incompressible flows that solves the Navier-
Stokes equations in terms of the vorticity field, instead of the velocity field (Barba et al., 2005). The vorticity field is 
discretized into a cloud of Lamb vortices, also called Gaussian basis functions (Rossi, 1996), which move with the fluid 
within a Lagrangian framework to simulate the convective and diffusive transports of vorticity in the flow. Vortex 
methods make use of the Helmholtz theorems that state that in an inviscid incompressible flow a vortex tube convects 
with the fluid and its strength remains constant. From a given discretized vorticity field ω, the velocity field u may be 
obtained by inverting the mathematical definition of the vorticity vector, ω ≡ ∇×u, to produce the velocity field in terms 
of an integral over the vorticity field, well known as the Biot-Savart law. The vortex method converges if the vortex 
core radius σ tends to zero (Rossi, 1996) and its accuracy depends on whether the overlap ratio h/σ is small enough 
(Barba et al., 2005), where h is the inter-particle spacing. The latter requirement means that high core overlapping must 
exist for high resolution simulations to be carried out. 

In order to convect the vortices in space as Lagrangian particles the velocity vector at the centroid of each vortex 
must be determined. The use of the Biot-Savart law for the velocity calculation due to the vortex-vortex interaction 
produces a numerical scheme with a floating-point operation count of order N2, if the vortex cloud has N elements. This 
difficulty has been overcome by the application of the Adaptive Fast Multipole Method (AFMM), devised by Carrier et 
al. (1988), which consists of clustering vortices into a computational box divided up into a hierarchy of meshes, or 
smaller boxes, that expresses different mesh levels for particles located at different spatial lengths. The refinement 
process produces boxes with a non-uniform size distribution in space. The algorithm consists of using multipole 
expansions to evaluate the interactions between boxes that are sufficiently far away from each other – the Box-Box 
scheme, whereas interactions between nearby particles are computed directly. This procedure transforms a particle-
particle interaction scheme into a box-box interaction scheme, which has an operation count of order N. 

At least seven numerical methods are available in the literature to simulate vorticity diffusion using particles (Barba 
et al., 2005). The Corrected Core-Spreading Method (Rossi, 1996) simulates vorticity diffusion through the expansion 
of the vortex core radius in time and its subsequent splitting into four new vortices as soon as the core radius reaches a 
prescribed maximum value. The splitting process creates four new vortices around the original vortex, positioned within 
90° from each other and with smaller core sizes. If no action is taken this procedure results in an exponential growth of 
the number of vortices. To attenuate this problem Rossi (1997) proposed an algorithm that merges groups of vortices 
with a high degree of overlapping in space. Similarly to the Biot-Savart direct vortex-vortex velocity calculation, 
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Rossi’s scheme requires the computation of the distance between vortices, producing again an N2 operation count. For 
large N, the merging step becomes a bottleneck for long-time vortex-method simulations. 

The idea of this paper is to use the AFMM computational box, with its associate hierarchy of boxes, to merge 
vortices located in each box instead of merging vortices in the cloud directly. This algorithm produces a large reduction 
of the CPU time required to merge vortices in the cloud. As shown below, results for several types of vortex clouds with 
different non-uniform spatial distributions are presented and their CPU times are compared to those obtained with the 
direct merging algorithm that does not use the AFMM boxes. 

 
2. THE VORTEX METHOD 
 

The vortex method employs a cloud of vortices to discretize the vorticity field and simulate the flow dynamics. 
Through the Lagrangian motion of these vortices, the velocity field can be evaluated everywhere. For two-dimensional 
flows, the VM attempts to approximate the solution to the vorticity transport equation in the form 
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through the superposition of Lamb vortices with a Gaussian vorticity distribution ω(x), given by 
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where Γi is the strength of vortex i with core radius σi, for 1 ≤ i ≤ N. Equation (2) is an exact solution to the Navier-
Stokes equation for a point vortex in an infinite domain that undergoes viscous diffusion with σi ≡ (νt)1/2. To capture the 
solution of Eq. (1), each vortex in the cloud must convect and diffuse, according to the following system of ordinary 
differential equations 
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The body contribution to the total flow can be calculated to satisfy the continuity equation, the no-penetration 
boundary condition and the boundary condition at infinity. To this end, the Panel Method (Katz and Plotkin, 2001) is 
used very often due to its ability to handle bodies with general shape. Because vorticity is generated on the body 
surface, vortices are generated close to the surface such that the no-slip boundary condition and the condition of 
conservation of circulation are enforced. The trajectory of each vortex is computed from the integration of Eq. (3) using, 
in general, the 2nd-order Adams-Basforth time-marching scheme. 

Using the AFMM instead of the Biot-Savart law the induced velocities at each vortex centroid are calculated. The 
AFMM algorithm reduces the operation count to order N instead of order N2, as shown by Santiago et al. (2006) for 
typical wakes obtained from 2D flow simulations around bodies. The diffusive vorticity transport using the Corrected 
Core-Spreading method (Rossi 1996) is based on Eq. (4). The original core-spreading method (Leonard, 1980) 
simulates vorticity diffusion through the core expansion of the vortex. Greengard (1985) showed that the solution 
obtained from this procedure does not converge to the Navier-Stokes equation. Rossi’s Corrected Core-Spreading 
method (1996) turns Leonard’s scheme convergent by splitting the vortex into four overlapping vortices with smaller 
cores. More details of the VM can be found in Cottet and Koumoutsakos (1999) and Silva and Bodstein (2005). Figure 
1 shows the basic algorithm of the VM. 

 
Figure 1. Basic Algorithm of the Vortex Method. 
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2.1. Convection Step: Adaptive Fast Multipole Method (AFMM) 
 
The calculation of the velocity at the centroid of each vortex in the cloud is performed using the Adaptive Fast 

Multipole Method (Carrier et al. 1988). The idea behind the AFMM is to group the cloud vortices in boxes of different 
sizes according to the local density of vortices and evaluate the interaction between boxes that are far enough apart. The 
evaluation of the interaction between vortices that belong to either the same box or to adjacent boxes is performed 
directly using the Biot-Savart law. In summary, the AFMM may be described as follows. Suppose there are m particles 
with strength qi, located at zi, i = 1, ... , m, such that zi < r, where r is the radius of a finite region in the cloud containing 
the particles. For all z ∈ C, where C the set of complex numbers, and zi > r, the complex potential φ(z) defined by the 
cloud of particles can be written as 
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Carrier et al. (1988) consider c = 2 for boxes that are well separated. Therefore, in order to obtain a relative 

precision ε , p must be of the order −log2ε according to Eq. (6). The algorithm begins with the choice of ε, which 
determines the number of terms p in the multipole expansion. The domain is then divided sequentially into square boxes 
up to a point where the number of vortices in each box is less than a maximum prescribed value. This parameter has 
influence on the algorithm performance, but it does not imply in loss of accuracy. A list of criteria is then specified to 
establish the box hierarchy according to box size and distance to its neighbors.  

The algorithm starts by dividing up the fluid domain, or computational box, in four square boxes, which are divided 
again in four more boxes and so on, until each box contains a number of particles less than the maximum value. A tree 
structure is imposed on this box hierarchy such that several levels of boxes are formed, called parents, children or 
colleagues, depending on whether they are the boxes that gave birth to, were born from or belong to the same stage of 
the division process (that is, those that have the same size as the box being considered), respectively. At the end of the 
division process of the fluid domain, each box has five lists of boxes associated to it, as illustrated in Fig. (2), where all 
five lists, numbered 1 to 5, are related to box b in the following manner: List 1 of a box b is empty if b is a parent box 
and, if b is childless, it consists of b and all childless boxes adjacent to b; List 2 of a box b is formed by all the children 
of the colleagues of b’s parent that are well separated from b; List 3 of a box b is empty if b is a parent box, and consists 
of all descendants of b’s colleagues whose parents are adjacent to b, but who are not adjacent to b themselves, if b is a 
childless box; List 4 of a box b is formed by all boxes that have b in their List 3; finally, List 5 of a box b consists of all 
boxes that are well separated from b’s parents. The reader is referred to the original paper by Carrier et al. (1988) for a 
detailed description of the AFMM algorithm. 

 

 
Figure 2. Family of boxes related to box b (Carrier et al., 1988). 



Santiago et al. (2006) applied the original AFMM Fortran code developed by Carrier et al. (1988) to several 
different patterns of body wakes and concluded that the CPU time obtained with the AFMM algorithm indeed reduces 
from order N2 to order N the operation count of the induced velocity calculation for large vortex clouds. The RMS error, 
defined with respect to the direct vortex-vortex Biot-Savart calculation, obtained for all test cases were kept below 
10−11, showing the expected accuracy of the AFMM algorithm.  

In this work we demonstrate that the use of the AFMM box hierarchy to conduct the merging process of overlapping 
vortices within each box instead of merging directly the vortices of the entire cloud is extremely more efficient. As we 
show below for several test cases, the AFMM box structure provides and efficient grid to merge vortices of highly non-
uniform wake patterns. 

 
2.2. Diffusive step: Corrected Core-Spreading Method (CCSM) 
 

The VM adoption of a Lagrangian flow description adds the advantage of turning the method mesh-free. On the 
other hand, simulating diffusion without a mesh is not as simple as simulating diffusion on a mesh. Historically, the first 
attempt to simulate vorticity diffusion using vortices is due to Chorin (1973), who devised the Random-Walk Method 
(RWM) based on a Brownian motion of particles. The idea is to simulate the vorticity diffusion transport through 
random displacements of the vortices calculated from a Gaussian probability distribution, which is an interpretation of 
the solution to the diffusion equation. The RWM is grid-free, easily and efficiently implemented in a numerical code 
and, for these reasons, has been widely applied to engineering problems. However, the RWM relies on the operator 
splitting of the vorticity equation, presents low convergence rates, needs a large number of particles to obtain reasonable 
accuracy, requires averaging over several time steps to calculate the loadings because of its stochastic nature, and is 
intended only for high Reynolds number flows. 

As discussed in detail by Barba et al. (2005), there are many proven Lagrangian numerical methods available in the 
literature to simulate vorticity diffusion nowadays. The Corrected Core-Spreading Method – CCSM (Rossi, 1996) is a 
fully localized, Lagrangian and deterministic method that is very simple to implement, has been proven to converge and 
provides spatial refinement automatically because of the splitting of the vortices. The method is based on the original 
core-spreading method (Leonard, 1980), which allows the vortex core radius to increase in time according to Eq. (4). 
Leonard’s core-spreading method is inconsistent (Greengard, 1985) because it simulates convection without 
deformation of larger and larger vortices as they spread. Rossi proposed a correction to Leonard’s method that allows 
the vortex to split as soon as the core radius reaches a prescribed maximum value and, as a consequence, turns the 
method consistent. Rossi’s CCSM has an additional advantage that does not require the operator splitting of the 
vorticity equation as the RWM method does. The RWM operator splitting algorithm does not affect convergence but 
introduces a numerical error that is not present in the CCSM. 

The CCSM simulates diffusion by letting the core radius σi(t) grow in time according to Eq. (4). The core radius of 
a vortex with strength Γi grows from a minimum initial value lm = αl up to a maximum value lM = l, when it splits into 
four new vortices with strength Γi/4. The numerical parameters α and l, where 0 ≤ α ≤ 1, determine the splitting 
frequency and the resulting spatial refinement. These new vortices are positioned 90° from each other, at a radial 
distance r = 2σ(1−α)1/2 from the center of the original vortex, where r is calculated to conserve the second moment of 
vorticity. This arrangement and the value of α guarantee the core overlapping that is required for convergence and good 
spatial accuracy of the CCSM. 
 
2.3. Vortex Merging: Rossi Merging Method (RMM) 
 

The splitting mechanism associated to the CCSM produces an exponential growth of the number of vortices N. In 
order to control this process and avoid extremely large problem sizes (value of N), Rossi (1997) proposed a merging 
method that conserves zeroth, first and second moments of vorticity.  

Equation (2) shows that the vorticity ωi of each Lamb vortex is well defined by the three parameters (Γi, xi, σi), i.e., 
its strength, position and core radius. The vortex strength Γi is calculated during the vortex generation step of the VM, 
such that the boundary conditions are satisfied on a solid wall and the total vorticity is conserved to obey Kelvin’s 
theorem. As the flow evolves in time the position xi is evaluated from the convective displacement of the vortex. The 
initial core radius σi is determined as a function of the model used to estimate the vorticity flux at the wall during the 
vortex generation step of the VM, which depends on the flow Reynolds number. The value of σi is related to the 
resolution one wishes to obtain for the simulation, since small values tend to improve the overall resolution and 
guarantee convergence of the VM, as long as the required overlapping is maintained, but requires larger N. Smaller 
values of N may be obtained when we use large values of σi, obtained either from the vortex generation step or from the 
merging of several vortices, but this choice may cause consistency and convergence errors. Therefore, we must keep σi 
as small as possible and in the range lm ≤ σi ≤ lM, with 1 ≤ i ≤ N, lm = αl, lM = l and 0 ≤ α ≤ 1, where lm and lM define the 
maximum and minimum resolutions, respectively. 
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We may summarize the Rossi Merging Method (RMM) as follows. If n vortices are merged, the error e(x) 
introduced in the local vorticity field at x is given by  
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The objective of the RMM is to obtain one vortex with parameters (Γ0, x0, σ0) after merging a set of n vortices such 
that the error is small and bounded. Initially, the choice of the postmerger element such that e(x) is bounded requires 
conservation of the zeroth, first and second moments of vorticity. These constraints define the numerical merging 
process and determine the parameters (Γ0, x0, σ0) as follows 
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Rossi’s algorithm consists in identifying the set of n vortices that can be merged according to Eqs. (8), for e(x), 
given by Eq. (7), under control and subject to the condition lm ≤ σi ≤ lM. Keeping e(x) below a specified tolerance 
without altering lm or lM ensures that the computational vorticity field experiences only “controllably small 
instantaneous disturbances”, as stated by Rossi. The condition lm ≤ σi ≤ lM is necessary to maintain accuracy. Because 
the algorithm requires that only overlapping vortices are merged, the error related to the numerical merging of a set of n 
vortices is restricted to the spatial region where it occurs and, therefore, globally merging errors will not accumulate in 
the same spatial region. In other words, one expects that the merging process implies that the greatest pointwise error in 
the total vorticity field is likely to be of the same order of the greatest pointwise error in an individual merging event. 
Using the nondimensional variable 0ˆ / 2σ=x x , the merging error e(x) in one single event given by Eq. (7) becomes 
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For all Γi’s with the same sign and using Eq. (8a), Eq. (9) may be interpreted as an arithmetic mean of the quantity 
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Using Eq. (10), we may replace Eq. (9) for the merging error of a set of n vortices for  
 

0
2 1
0

ˆ( ) max
4 ii n

e z
πσ ≤ ≤

Γ
≤x . (11) 

The inequality (11) states that the error e(x) can be bounded in terms of the largest value of Eq. (10). Thus, 
bounding the total error of merging n vortices is equivalent to bounding the difference between a pair of Gaussians. The 
error is zero when both functions overlap perfectly, that is,  and σˆ 0→x 0/σi →1. If the parameters σ0/σi and  are 
restricted to a compact set, the continuity of Eq. (10) ensures the existence of a maximum value, M, for z
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Equations (12) and (13) comprise the numerical conditions required to merge n vortices into one single vortex with 
parameters (Γ0, x0, σ0) subject to a merging error ε. However, the application of these conditions is extremely expensive 
from a computational point of view, since it is necessary to calculate (Γ0, x0, σ0) using Eqs. (8) every time a new 
candidate is added to the merging set. For this reason, Rossi proposes to use the following more restrictive conditions 
based on Eqs. (12a) and (13) 
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for all j and one particular i of the merging candidate set. Equation (14a) replaces Eq. (12a) and Eq. (14b) replaces Eq. 
(13), since we know that σ0 ≥ lm and ⎜xj – x0⎟2 ≤ D. The latter inequality comes from the fact that ⎜xj − xi⎟2 ≤ D/4. 
Equations (14) and (12b) form the conditions to merge the set of candidates with the same sign of Γi. 

Although very effective, Rossi’s merging algorithm still requires N2 evaluations of the distance dij between particles. 
The computational cost of this procedure is very high, and it brings back the N2 bottleneck on the overall performance 
of the VM algorithm. For this reason, we propose in this paper to use the AFMM hierarchy of boxes, shown in Fig. (2), 
to merge vortices in such a way that Rossi’s merging algorithm is applied locally to the vortices in each box instead of 
being applied directly to the entire cloud of vortices. 
 
3. COMPARATIVE RESULTS BETWEEN THE DIRECT MERGING ALGORITHM AND BOX MERGING 

ALGORITHM 
 

We refer to the original RMM algorithm applied directly to the entire cloud of vortices as “Direct Merging” (DM), 
whereas the proposed algorithm that uses the AFMM boxes as “Box Merging” (BM). In what follows we present the 
results obtained for several types of vortex wakes, having different degrees of non-uniformity in space. We compare the 
CPU time and the efficiency of the merging algorithm obtained with the DM and BM algorithms. 

For the test case shown in Fig. (3), which corresponds to a statistically-uniform distribution of vortices in a square 
box, Fig. (4) allows us to infer that the behavior of the CPU time as a function of N changes from order N2 for the DM 
algorithm to order N when the BM algorithm is employed. Additionally, the efficiency of the merging process, defined 
as the number of merging events that occurs in the cloud with N vortices, is the same regardless the algorithm used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. CPU time for  
the uniform distribution 

Figure 5. Number of vortices for  
the uniform distribution 

Figure 3. Uniform 
distribution 

 
In Figures (6), (9) and (12) we present results for three test cases characterized by statistically non-uniform vortex 

distributions. The results obtained for the CPU time, illustrated by the graphs of Figs. (7), (10) and (13), respectively, 
demonstrate that the BM algorithm is one order of magnitude faster than the DM algorithm, although the BM algorithm 
still presents a order N2-type behavior. Although we expected an N-type behavior for these cases also, the results 
indicate that there is a dependence of the AFMM algorithm on the relation between the core radius and the box size, for 
a fixed maximum number of vortices per box, that affects the performance of the AFMM algorithm during the box 
refinement process (Santiago et al., 2006). For clouds that are very dense locally, the box size may become so small that 
it gets smaller than the core radius. In these cases the AFMM algorithm requires an increase of the maximum number of 
vortices per box, so that the box size becomes greater than core radius. In such situations, the total number of boxes in 
the computational box decreases and the number of vortices per box increases, producing a dominance of the N2-type 
behavior in each box. As a consequence, the CPU time does not follow the N-type behavior. Regardless of this 
observation, the reduction on the CPU time in one order of magnitude is outstanding, and the BM algorithm is shown to 
be much faster than the DM algorithm for all cases studied. Figures (8), (11) and (14) again demonstrate that the 
merging efficiency is the same for both algorithms. For all these cases studied we see that the DM algorithm is more 
efficient only if N is small, which only occurs at early stages of the simulation for fluid dynamics applications. 
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The last test case chosen to study the performance of the BM algorithm in comparison with the DM algorithm 
corresponds to a VM simulation (Santiago et al., 2006) of the flow around a NACA 0012 airfoil set at an angle of attack 
equal to 10°. Figure (15) shows the position of the wake vortices at t = 10, illustrating the wake pattern and the non-
uniform vortex distribution in space that we obtain in a simulation of this type. As shown in Fig. (16), the results of the 
CPU time as a function of N obtained for the merging step of the VM code using the BM algorithm are one order of 
magnitude lower than the results for the DM algorithm. Each value of N corresponds to a specific time t and wake 
pattern of the simulation. This result corroborates the main conclusion drawn for the previous test cases that the 
computational reduction observed in the CPU time of the merging step is vital to turn feasible any long-time simulation 
of the flow around a body. We may also appreciate from Fig. (17) that, again, both algorithms merge the same number 
of vortices for a given wake (or a given time t).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 7. CPU time as a function  
        of the number of vortices 

    Figure 8. Number of merging  
                   events 

Figure 6. Non-uniform
distribution  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 10. CPU time as a function

of the number of vortices 
Figure 11. Number of merging  
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 Figure 13. CPU time as a function 

of the number of vortices
Figure 14. Number of 

merging events 
Figure 12. Non-uniform
sinusoidal distribution 



 
 
 
 
 
 
 
 
 
 
 

Figure 16. CPU time as a function
of the number of vortices 

Figure 17. Number of
merging events 

Figure 15. NACA 0012
airfoil at 10º angle of attack 

 
 
 
 
 
4. CONCLUSIONS 

 
The calculations presented in this paper demonstrate that there is an exceptional reduction on the CPU time of long-

time VM simulations around bodies if the BM algorithm is used to replace the DM algorithm. Three test cases with 
non-uniform vortex distribution in space show a one order of magnitude reduction on the CPU time for large N, 
whereas the case with uniform distribution indicate an even higher reduction, since the slope of the CPU time versus N 
curve changes from N2 to N. In all cases the BM algorithm allowed the merging of 500,000 vortices to be carried out in 
a reasonable amount of time. When the BM algorithm is used in a typical VM simulation around an airfoil the reduction 
observed on the CPU time is also one order of magnitude lower than when the DM algorithm is used. In conclusion, our 
results show that the idea of employing the AFMM hierarchy of boxes to merge vortices in the wake during a VM 
simulation is very effective, since it produces an enormous reduction on the total CPU time of the complete simulation. 
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