
Proceedings of ENCIT 2008                                                                      12th  Brazilian  Congress of Thermal Engineering and Sciences 
Copyright © 2008 by ABCM November 10-14, 2008, Belo Horizonte, MG 

 

MODELING OF THE FLOW AROUND A STALLED AIRFOIL USING THE 
VORTEX METHOD AND THE LAMINAR INTEGRAL BOUNDARY-

LAYER THEORY 
 

Marcus V. G.Muniz, marcusmuniz@gmail.com 
Victor Santoro Santiago, vsantoro@ig.com.br 
Gustavo C. R. Bodstein, gustavo@mecanica.coppe.ufrj.br 
Federal University of Rio de Janeiro, Department of Mechanical Engineering – Politécnica/COPPE 
Centro de Tecnologia, Bloco G, sala 204 – Ilha do Fundão, 21945-970 Rio de Janeiro, RJ – Brazil 
 
Abstract. The aerodynamic characteristics of airfoils are extremely important for the design of general lifting surfaces. 
The incompressible flow around an airfoil depends strongly on the airfoil shape, angle of atack and Reynolds number. 
When the angle of attack is low, the boundary layer stays attached to the surface of the body, but it separates when the 
angle of attack is high. At separated conditions (stall), the lifting coefficient drops sharply and the boundary layer 
vorticity is shed into the flow from the separation points located on the upper surface of the airfoil and at the trailling 
edge, generating oscillatory aerodynamic loads and wake. In this paper, we use the Discrete Vortex Method coupled 
with a piecewise-continuous linear-vortex Panel Method distributed over flat panels to simulate the unsteady flow 
around an aerodynamic profile. For an airfoil subject to stall conditions through a sudden change of the angle of 
attack, the boundary layer vorticity shedding is modeled employing constant-vorticity panels located at two separation 
points, one fixed to the trailling edge and the other fixed to the upper surface of the airfoil. The upper surface 
separation point is predicted applying the method of Walz within the context of the Karman-Pohlhausen integral 
boundary-layer theory for laminar flows. These separation panels are transformed into Lamb vortices, forming a 
vortex cloud that moves by diffusion and convection. The induced velocity and the diffusive displacements of the 
vortices are evaluated by the Biot-Savart law and the Random-Walk Method, respectively. The aerodynamic loads over 
the airfoil obtained with this model are compared to experimental results available in the literature. 
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1. INTRODUCTION 
 

The aerodynamic characteristics of airfoils are important for the design of wings, turbomachine blades, helicopter 
rotors and other lifting surfaces. Due to the complexity of the physics involved in this problem, elaborate mathematical 
and numerical models for the simulation of the flow around airfoils have been developed during the past decades. The 
approach more frequently used nowadays is to solve the Navier-Stokes equations employing sophisticated numerical 
methods devised to run on a mesh that discretizes the fluid domain and its boundary.  

A couple of decades ago, when there were limited computer hardware and incipient numerical methods available, 
flow modeling was based upon simplifying assumptions, such as irrotational flow. With this approach, it is possible to 
preserve the main physical flow features and to obtain numerical solutions with low CPU cost and, hopefully, 
acceptable accuracy for engineering applications (Vezza and Galbraith, 1985). These simplified models are still 
employed nowadays in preliminary steps of any design process. In this work we adopt this simplified modeling 
approach to study the incompressible unsteady flow around an airfoil under stall conditions. We use a Lagrangian 
numerical methodology based upon the Vortex Method (Cottet and Koumoutsakos, 2000) to evaluate the motion of a 
cloud of Lamb vortices generated near the body surface to model the viscous wake that emanates from the airfoil’s 
separation points. We assume that the boundary layer vorticity is shed into the flow to form the wake from (fixed) 
calculated separation points. We also assume that the flow is laminar on the entire airfoil surface. The Lamb vortex is 
the element that transports vorticity through convective and diffusive displacements, evaluated using the Biot-Savart 
Law and the Random Walk Method (Lewis, 1991), respectively. To compute the potential flow we discretize the airfoil 
surface with flat panels and use a piecewise-continuous linear-vortex Panel Method (Katz e Plotkin, 2001). 

Teixeira et al. (2006) present a model for the unsteady incompressible flow around a stalled airfoil based upon the 
models of Basu and Hancock (1978) and Vezza and Galbraith (1985). Vorticity is shed from fixed separation points at 
the airfoil upper surface and at the trailing edge. The upper separation point is kept fixed and is input to the code from 
known experimental data. Constant-vortex panels are used to model the shear layers that emanate from the separation 
points, which are transformed into Lamb vortices subsequently. The main objective of this paper is to improve one 
fundamental aspect of the model presented by Teixeira et al. (2006): we add a model to evaluate the position of the 
upper separation point using the Karman-Pohlhausen integral boundary layer theory with the method of Walz 
(Schlichting and Gersten, 2000), instead of inputting this information from experiments. Ultimately, we wish to develop 
a simplified, but fast and accurate, model to evaluate the aerodynamic loads over airfoils immersed in a uniform 
incompressible flow subject to stall. 
 



2. MATHEMATICAL MODEL 
 

Consider a uniform flow around an airfoil that undergoes a sudden change of its angle of attack beyond stall. The 
boundary layer is laminar, but the Reynolds number is large. At high angle of attack, the boundary layer over the body 
separates from the trailing edge and from a point on the upper surface of the airfoil, developing shear layers that 
emanate from these separation points to form the wake downstream of the body. The separation phenomenon at these 
two points is the only mechanism that sheds vorticity into the wake. We model the shear layers using flat constant-
vortex panels that are, eventually, transformed into Lamb vortices. We assume that the flow is two-dimensional, 
incompressible, unsteady and rotational (in the core of the vortices), governed by the continuity and the Navier-Stokes 
equations. By taking the curl of the Navier-Stokes equations and using the incompressible continuity equation we obtain 
the vorticity transport equation, which can be written in nondimensional form for two-dimensional flows as 
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In Equation (1), u is the velocity field and ω is the only non-zero component of the vorticity vector, which is normal to 
the plane of the flow. The Reynolds number is defined as Re ≡ U∞c/ν, where U∞ is the speed of the uniform flow at 
infinity, c is the airfoil chord and ν is the fluid kinematic viscosity. All the quantities bellow are nondimensionalized by 
U∞ e c. As illustrated in Fig. 1, this flow presents two distinct regions: one rotational, region R2, which incorporates all 
the wake vorticity and is defined as the region between the two shear layers that emanate from the upper surface and the 
trailing edge separation points, indicated by a' and b' in Fig. 1; and a second region bounded by points a and b in Fig. 1, 
region R1, that is totally irrotational (ω = 0) and corresponds to the flow outside the wake region. In irrotational flow 
region we can define the velocity potential φ, such that u ≡ ∇φ, and the Navier-Stokes equation becomes the Euler 
equation, which produces the unsteady Bernoulli Equation after integration.  
 
2.1. Boundary Layer Modeling 
 

The effect of the boundary layer is taken into account by two models. In the first one, we assume that the boundary 
layer vorticity is concentrated into a thin vortex sheet distributed over the surface of the body, such that the local jump 
in the tangential velocity of the sheet is equal to the local sheet strength (Lewis, 1991). In this paper, the vortex sheet 
strength on the airfoil surface is evaluated using the Panel Method (Katz and Plotkin, 2001) with a piecewise-
continuous linear-vortex distribution over flat panels, as shown in Fig. 2. 

The second model is intended to estimate the separation point on the upper surface of the airfoil using as initial data 
the potential flow velocity distribution on the airfoil surface calculated using the panel method. The position of the 
separation point is evaluated employing the Karman-Pohlhausen integral boundary layer theory coupled with the 
method of Walz (Schlichting and Gersten, 2000) for laminar flows. According to this methodology, it is assumed that 
the velocity profiles in the boundary layer correspond locally to a Hartree profile, known as “local similarity”, which 
are solutions of the single-parameter Falkner-Skan equation and, therefore, represent a single-parameter profile family 
based on the Falkner-Skan parameterβ. The reader is referred to Schlichting and Gersten (2000) for the details of the 
theory. The separation point is calculated from the profile parameter K(s), denoted by Γ(s) in Schlichting and Gersten 
(2000), and the thickness parameter Z, which are given by  
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where s is a local tangential coordinate along the airfoil surface with origin located at the trailing-edge and going around 
the airfoil in the counterclockwise direction, δ2(s) is the momentum thickness, U(s) is the potential flow velocity on the 
airfoil surface and (∂2u/∂y2)w is the concavity of the boundary layer velocity profile at the wall. If x is the coordinate 
coinciding with the chord line with origin at the leading-edge, then s = s(x), and the separation point xs is the position 
along the airfoil chord where the profile parameter K takes the value K(xs) = Ks. For the method of Walz, the parameter 
K is in the range –0.10 < K < 0.10 and is calculated with a = 0.441 and b = 4.165, if K > 0, and a = 0.441 and b = 4.579, 
if K < 0. Separation occurs when Ks = −0.0681.  
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2.2. Unsteady Kutta Condition 
 

In order to obtain a unique solution, it is necessary to impose the Kutta condition, which expresses a condition of 
continuity of the static pressure at the separation points of the airfoil and is related to the vorticity shedding at these 
points. The unsteady Kutta condition can be described as a function of the circulation Γ around the airfoil and the 
strength of the constant-vortex panels at the upper separation point, γs, and at the trailing edge, γN+1 (shown in Figs. 1 
and 2) according to the equation 
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2.3. Vortex Convection and Diffusion 
 

In the rotational region of the wake, where the flow is governed by the vorticity transport equation – Eq. (1), all the 
vorticity is modeled as a cloud of Lamb vortices. To capture the solution of Eq. (1), each vortex in a cloud of Nv 
vortices must convect according to the following system of ordinary differential equations 
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where vortex i has strength Γi, position xi and core radius σi ≡ (νt)1/2, for 1 ≤ i ≤ Nv. The velocity on the right-hand side 
of Eq. (4) comes from integration of the Biot-Savart law to compute the induced velocities of the vortices. 
 
2.4. Pressure Distribution Over the Airfoil Surface 
 

The pressure distribution is obtained from the Euler equation calculated on the airfoil surface, which can be written 
in nondimensional form as 
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where s again is the coordinate along the surface, p0 is the stagnation pressure defined as 2

0p p U≡ + , p is static 
pressure, U is the potential flow velocity on the body surface in the s direction, and t is time. The static and stagnation 
pressures are nondimensionalized by ρU∞/2, where ρ is the fluid density. 
 
3. NUMERICAL METHOD 
 

The contribution of the airfoil to the entire flow is obtained using a piecewise-continuous linear-vortex Panel 
Method (Katz e Plotkin, 2001). We model the vorticity of the shear layer that emanates from the separation points fixed 
at the upper surface and at the trailing edge with constant-vortex panels and the vorticity present in the wake with Lamb 
vortices. The Discrete Vortex Method is responsible for the evaluation of the vorticity transport in the flow. 
 

Figure 1. Airfoil with fixed separation points: 
regions R1 and R2 of the flow (Vezza and 
Galbraith 1985). 

Figure 2. Airfoil with the panels, separation points and 
additional unknowns due to extra panels (Vezza and 
Galbraith, 1985). 



3.1. Panel Method 
 

The panel method (Katz e Plotkin, 2001) is employed to evaluate the potential flow. As illustrated in Fig. 2, the 
body contour is discretized into small flat or curved elements, called panels, which possess a distribution of 
mathematical singularities, such as source, doublet or vortex, along their length. We use flat panels with a vorticity 
distribution that varies linearly along the panel length. The panel middle point, called control (or collocation) point, is 
the location where the impermeability condition is imposed, whereas the panel endpoints, called nodes (or nodal 
points), are the boundary points where the unknown strength γi of the linear-vortex distribution of the panels are 
calculated. 
 
3.2. System of Linear Algebraic Equations 
 

The discretization of the body into N panels with linear vorticity distribution subject to the impermeability 
boundary condition imposed at the N collocation points of the airfoil panels leads to N linear algebraic equations. The 
unknowns are the N+1 node values of γi, that is, γ1 to γN+1, the two unknowns related to the strength of the extra panels 
with constant vorticity that model the vorticity shedding at the separation points, one at the trailing edge and the other at 
the upper surface of the airfoil, γw and γs, and the two unknowns related to the strength on either side of the extra panel 
located at the upper surface separation point of the airfoil, γs

+ and γs
−. Therefore the system contains N equations and 

N+5 unknowns. Figure 2 helps to define these quantities. Following the model of Vezza and Galbraith (1985), we 
assume: γs

+ = 0, γ1 = 0, γs
− = γs and γN+1 = γw, where γw is the strength of the constant-vortex extra panel at the trailing 

edge. Hence, the linear system of algebraic equations that represents the impermeability condition on the ith panel of the 
airfoil for the incompressible two-dimensional unsteady flow studied in this paper present the same standard 
configuration that characterizes the steady-flow linear-vortex panel method, with N equations and N+1 unknowns (Katz 
e Plotkin, 2001). This system of equations may be concisely written as 
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The coefficients in Eq. (6) and their mathematical derivations can be found in Teixeira (2006). This system still 

requires the unsteady Kutta condition for the solution to be unique. If where Γm−1 and Γm are the airfoil circulation at 
tm−1 and tm, and Δ1 and λ are the lengths of the upper separation and the trailing edge panels, respectively, Eq. (2) can be 
expanded (Teixeira, 2006) in the form 
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The system formed by Eqs. (6) and (7a) is solved each time step with the aid of Eqs. (7b,c), generating Ne extra 
panels at the upper surface of the airfoil with known strength and length at the Ne initial time steps. Two Lamb vortices 
are created at the subsequent time step, with strength given by the product of the strength by the length of the last extra 
panel. These vortices generate the viscous wake, which will make the flow evolve from a step-function initial condition 
to a statistically-permanent oscillatory flow. The points from which these two nascent vortices are created correspond to 
a distance γN+1Δt and γNeΔt from the collocation points of the panels at the trailing edge and the last extra panel, in the 
direction of the panels. The lengths of the separation extra panels λ and Δ1 are obtained iteratively, solving the 
equations formed by Eqs (6), and (7) successively for each time step until a converged valued is reached. The initial 
value of the iteration is taken to be the average length of the airfoil panels and, at subsequent time steps, the initial 
values are taken to be the converged values from the previous time step. At the initial time of the simulation, when the 
flow is irrotational, the system of equations is formed by Eq. (6), containing only the first two terms (that correspond to 
the uniform flow and the airfoil panels) and the Kutta condition for steady flow, expressed as γ1 + γN+1 = 0 for flat panels 
with linear vorticity distribution. The solution to the linear system of algebraic equations (6) supply the tangential 
velocity at the airfoil surface U(s) = γ(s) (and its derivative dU/ds) to evaluate Z and K in Eqs. (2), where γ(s) is 
evaluated at the control point located at the position s as the arithmetic mean of the values of γ at the panel nodes. 

The angle βsep between the separation extra panel and the corresponding separation panel at the upper surface of the 
airfoil and the angle Δβsep between adjacent pairs of extra panels are both input data and are kept constant during the 
simulation. These angles are based either upon mean experimental data for separated flows over airfoils (Vezza and 
Galbraith, 1985) or numerical experiments run with our numerical model. On the other hand, the angle between the 
trailing-edge panel and the airfoil chord line, which is obtained by iteration in Vezza and Galbraith (1985), is modeled 
here according to Mook and Dong (1994), following the model of Teixeira et al. (2006). As shown in Fig. 3, the 
vorticity is shed from the trailing edge as a constant-vortex extra panel in a direction tangent to the lower surface of the 
body when the circulation around the airfoil increases in time, and in a direction tangent to the upper surface when the 
circulation decreases in time.  
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Figure 3. Physical Model to the flow at the trailing edge (Mook and Dong, 1994). 
 

3.3. Evaluation of the Separation Point 
 

As described in section 2.1, the separation point xs occurs when K(xs) ≡ Ks = −0.0681, for K and Γ calculated from 
Eqs. (2). Using a linear distribution for U(s) and forward finite differences for dU/ds, Eqs. (2) can be written in 
descretized form as 
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At the first step of the simulation, xs is evaluated from the potential flow around the airfoil subject to a zero angle of 

attack. From the second step on, the angle of attack is changed to the value of the simulation, maintaining the separation 
point evaluated at the first time step and using U(s) from the potential flow solution. The simulation evolves up to t = 6, 
with time-integrated values of γ = U(s) being computed in the range t = 3 to t =6, when a new separation point is 
evaluated employing these mean values of γ for the panels. The separation panels are, then, moved to the new value of 
xs and the simulation evolves from t = 6 to t =12, with another new value of xs being calculated with mean values of γ 
computed in the range t = 9 to t =12, and so on. This procedure is repeated for every period of 6 units of 
(nondimensional) time, until t = 24 is reached. Our numerical experiments show that this total simulation time is enough 
for the flow to reach a statiscally-permanent oscillatory regime and for the value of xs to converge.  
 
3.4. Discrete Vortex Method 
 

In the Discrete Vortex Method the dynamics of the vorticity shed into the wake from the separation points is 
simulated with a cloud of Lamb vortices that convect and diffuse vorticity as they move in the flow as Lagragian 
particles. The temporal evolution of the flow is governed by Eq. (1), decomposed into one purely convective and 
diffusive vorticity equations (Chorin, 1973), written in the form 
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To evaluate the velocity u of a specific vortex it is necessary to add the velocity contributions due the uniform flow, 

the body panels, the constant separation panels and the vortex cloud. The convective displacement of the vortices, Δxc, 
is evaluated by integration of Eq. (4) with the 2nd-order Adams-Basthford time-marching scheme, i.e., 
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The diffusive process is simulated with the aid of the Random Walk Method (Lewis, 1991), where two random 

numbers P and Q, drawn from a uniform probability distribution, are used to calculate the random Cartesian 
displacement of the vortices in the x and y direction, respectively, given by 
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The total displacement is given by the sum of diffusive and convective displacements, i.e.,  
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3.5. Evaluation of the Pressure Coefficient 
 

The methodology used in this work to evaluate the static pressure, p, on the surface of the airfoil is inspired on the 
method of Lewis (1991), which does not require the knowledge of the velocity potential, φ, as in Vezza and Galbraith 
(1985). Integrating Eq. (5) for the two regions R1 and R2 defined in Fig. 1, the expression for p at the collocation point 
m of each region is obtained. Thus, using an index m to specify the collocation points and the value m = IPANEL for 
the collocation point of the upper separation panel, the nondimensional static pressures are given by 
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where γm and γn are the vorticity at the panel collocation points and γs represents the jump in the stagnation pressure as 
the separation point is crossed from R1 to R2. Knowing the pressure at the collocation points from Eqs. (13) and the 
stagnation pressure (maximum pm), the pressure coefficients can be evaluated using the expression Cp(m) = pm + 1 – p0. 
The aerodynamic loads can be determined by integrating Cp(m) on the body surface. 
 
4. RESULTS AND DISCUSSION 
 

In this section we present results of our simulations of the flow around the GU25-5(11)8 airfoil section. This airfoil 
belongs to a family of sections that have been developed for man-powered flight (Cotton and Galbraith, 1989). We have 
chosen this airfoil in order to compare our numerical results with the experimental data obtained by Kelling (1968) and 
presented in graphic form in Cotton and Galbraith (1989) for a (laminar) Reynolds number of Re = 70,000 and angle of 
attack α = 12.6°. In all simulations the values of the following numerical parameters have been kept fixed: number of 
panels, N = 46; angle between the separation extra panel and the corresponding separation panel at the upper surface of 
the airfoil, βsep = 10°; angle between adjacent pairs of extra panels, Δβsep = 0°; radius of the Lamb vortex core, σ = 0.05; 
final time of the simulation, t = 24. The values of the number of extra panels, Ne, the time step, Δt, and the number of 
time steps, M, depend on the simulation. We have run four cases, according to the value of the time step and the number 
of extra panels: Δt = 0.04 and Ne = 5; Δt = 0.02 and Ne = 10; Δt = 0.01 and Ne = 20; Δt = 0.005 and Ne = 40. Note that 
these pairs of values for Δt and Ne are chosen such that the length of the shear layer that emanates from the upper 
separation point is approximately 0.2. With this choice, we believe that the physics is well represented for this type of 
simulation. 

Figure 4 presents the convergence of the upper separation point during the evolution of the simulation and the 
variation of the converged values as the time step is reduced. Figure 4(a) shows the convergence of xs as a function of 
time for all four values of Δt. The results for Δt = 0.005, Δt = 0.01 and Δt = 0.02 coincide with each other and the value 
of xs converges to 0.275 from t = 12 on. The converged xs for the coarsest value Δt = 0.04 is xs = 0.225, as shown in 
Figure 4(b), which is not as close to the experimental results, as discussed in the Cp analysis below. 

In order to provide a visualization of the early stages of the wake evolution, Figure 5 shows the position of the wake 
vortices at t = 6 (end of the first cycle). Figures 5(a) and 5(b) correspond to the cases run with Δt = 0.01 and Δt = 0.005, 
respectively, since they are the most accurate. Both wakes illustrate the boundary-layer separation process occurring at 
xs and at the trailing-edge and the associated oscillatory vortex shedding and roll-up mechanisms that form counter-
rotating vortex pairs. As expected, the case run with Δt = 0.005 presents finer resolution. 

Figure 6 depicts the oscillatory time history of the lift and drag coefficients. We observe an approximate periodic 
behavior within the period t = 12–24, which is used to calculate time-integrated averages for Cp and Cl. This procedure 
is carried out over the last 3 time units of each of the two periods of 6 time units that we use to estimate xs, as described 
in section 3.3. The arithmetic mean of these two time-integrated averages provide the following values for the lift 
coefficients: Cl = 0.82, computed for Δt = 0.01; and Cl = 0.78, for Δt = 0.005. As a reference, the experimental value is 
Cl,exp = 0.74. Our computed results are about 10% and 5%, respectively, higher than the experimental one. We should 
point out that this experimental value is only approximate, since it has been read off the graph (Figure 13) of Cotton and 
Galbraith (1989) (in addition to the experimental uncertainties of the experiment itself).  

Figure 7 shows the mean pressure coefficient distribution over the airfoil chord for Δt = 0.01 and Δt = 0.005. Both 
Cp distributions are very similar, indicating that the position of the separation point is well estimated with the method of 
Walz. On the upper airfoil surface, the general shape of each graph shows a slightly overpredicted suction peak at x = 
0.10, approximately, a separation plateau covering the region 0.275 < x < 0.70, and a secondary suction peak in the 
trailing-edge region, due to a high concentration of wake vortices in that area. As pointed out by Teixeira et al. (2006), 
the parameters associated with the extra panels, Ne, βsep and Δβsep, have a non-negligible effect on the simulation. In 
addition, the number of panels that we use, N = 46, produces a fairly coarse mesh on the airfoil surface. All these 
combined effects are responsible for the discrepancies in Cp and Cl. 
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 (a) effect of t; (b) effect of Δt 
 Figure 4. Convergence of the separation point as a function of t and Δt. 
 

  
 (a) Δt = 0.01; (b) Δt = 0.005; 
 Figure 5. Position of the wake vortices at t = 6 for Δt = 0.01 and Δt = 0.005.  

  
 (a) Δt = 0.01; (b) Δt = 0.005; 
 Figure 6. Time history of the drag and lift coefficients for Δt = 0.01 and Δt = 0.005.  

  
 (a) Δt = 0.01; (b) Δt = 0.005; 
 Figure 7. Pressure coefficient distribution along the chord for Δt = 0.01 and Δt = 0.005.  



 
5. CONCLUSIONS 
 

We have modeled the two-dimensional unsteady incompressible flow around a stalled airfoil using the Discrete 
Vortex Method coupled with a linear-vortex panel method and the integral boundary-layer theory to calculate the 
separation point. Our numerical simulations indicate that the runs for Δt = 0.01 and Δt = 0.005 furnish results similar to 
experimental data, both in terms of accuracy and general physical behavior. Although the run for Δt = 0.02 converges 
for the same separation point, the results are considered not as accurate as the other two cases. In particular, because the 
accuracy of the simulation is related to the convective stepping of the vortices, we note that the value Δt = 0.01 for the 
time step corresponds to a quarter of the panel size, approximately. As these results attest, this stepping procedure is 
enough to guarantee reasonable accuracy and quick runs for this type of simulation, and there is no need to use tighter 
values of the time step, such as Δt = 0.005 in this case. Therefore, we believe that if Δt is approximately Δs/4, where Δs 
is the average panel size, the simulation will provide reasonably good results for the early stages of design applications. 
However, there is still need to further investigate the influence of the numerical parameters associated with the 
separation extra panel and, if possible, to model them, in such a way that these numerical parameters are all calculated 
during the simulation instead of being input to the numerical code. 
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