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Abstract. A Computer Program in ForTran-77 is developed as primary tool in applying the liquid rocket thrust 

chamber performance prediction methodology. The code allows improvements incorporated of the Nozzle Contour 

Optimization to be used as a powerful design tool, as well as an analysis program. 

The conventional approach to design a nozzle configuration incorporates a RAO technique, which generates an 

optimum nozzle contour for an inviscid flow for a perfect gas with a constant isentropic exponent. An alternative 

method uses an optimum truncated ‘perfect’ nozzle solution. Both of these methods ignore the effects of kinetics, 

boundary layer losses, base pressure, and external flow interaction. The recent interest in the linear aerospike engine 

emphasizes the need to include the preceding effects when optimizing for system performance, since the interaction of 

the free stream with the inviscid flow and boundary layer tend to dominate the overall performance.  
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1. INTRODUCTION  

 
Figure 1, summarizes the principle flow phenomena of plug nozzles with full length and truncated central bodies at 

off-design (top and bottom) and design (center) pressure ratios observed in experiments and numerical simulations 

(Hagemann et al., 1998).  For pressure ratios lower than the design pressure ratio of a plug nozzle with a well-contoured 

central body, the flow expands near the central plug body without separation, and a system of recompression shocks and 

expansion waves adapts the exhaust flow to the ambient pressure pamb.  
The characteristic barrel-like form with several inflections of the shear-layer results from various interactions of 

compression and expansion waves with the shear layer, and turbulent diffusion enlarges the shear layer farther 
downstream of the throat. The existence of the overexpansion and recompression processes is inferred from up - and 
down-variations of plug wall pressure profiles observed in various cold-flow tests and numerical simulations. At the 
design pressure ratio (see Fig. 1, left column, center), the characteristic with the design Mach number should be a 
straight line emanating to the tip of the central plug body, and the shear layer is parallel to the centerline.  
 
2.  STEADY TWO-DIMENSIONAL TRANSONIC FLOW IN AEROSPIKE NOZZLES 

The determination of the flow pattern in the throat region of a 2-d aerospike nozzle under choked conditions may be 

accomplished by applying small perturbation techniques to the equations governing the choked flow Zucrow (1977)and 

Wisse (2005). Of the several methods that have been proposed for analyzing the flow field in the throat region of a two-

dimensional nozzle, that due to Sauer (1947) is the simplest. Figures 2 and  3 illustrate schematically the general 

features of the throat region of a aerospike nozzle. The contour  of the nozzle is symmetrical with respect to the axis x, 

and it is assumed that the fluid flows in positive direction  of the x axis. Figure 3 it is anticipated that the cross-section 

of the sonic surface, termed the sonic line, is a parabola; It is seen in Figure 3 that the sonic line starts from the wall of 

the nozzle at a point slightly upstream from the throat G, the minimum flow area, proceeds downstream, and  crosses 

the centerline of the nozzle at point 0. Point 0 denotes the origin of the coordinate system employed in the analysis due 

to Sauer(1942). It corresponds to the intersection of the sonic line with the x axis. The location of point 0, the distance ε 

downstream from the throat G, is determined from the analysis. For either a two-dimensional planar or axisymmetric 

irrotational flow, the perturbation equation is Zucrow (1977): 
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where, δ=0 for a planar flow and  δ=1 for an axissymmetric flow. Because the flow in the throat region is 1-d and 

sonic, the undisturbed free-stream velocity U∞ = a*=1 ⇒Mach number M∞ =1. Substituting  into equation (1),obtain: 
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By definition,let *a/uu =′  and  *a/vv =′ , Where u´ and v´ are termed the nondimensional perturbation velocity 

components. Introducing  u´ and v´ into Equation (2) transforms it to: 
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Figure 1 Flow Phenomena of a Aerospike Nozzle and Truncated Body [Plug] at Different Pressure ratio po/patm,Off-

Design (top,bottom) and Design center) Pressure Ratio from Hagemann at al.(1998) 

 

 

                  Figure 2    Aerospike Nozzle                       Figure 3 Geometric of the Throat and Coordinate System 

Since the flow in the throat region is irrotational,it is possible to define a potential function φ for the velocity. Hence, 

by definition : 
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where φ´ is the nondimensional perturbation velocity potential. Consequently, 
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where u=φ´x and v = φ´y   .Substituting Equations (5) and  Equation (6) into Equation (3),obtain:                                       
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Equation (7) is the governing equation for the nondimensional perturbation velocity potential for a transonic flow. 

His solution is given by Zucrow and Holmann (1977) . Thus, 
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where y
0
 = 1. The corresponding expressions  for terms yxxx φφφ ′′′ ,, and 

yy
φ ′ are accordingly 



........y)x(fy)x(f)x(fφ
4

4
2

20x +′+′+′=′                                                                                                                    (9) 

........y)x(fy)x(f)x(fφ 4
4

2
20xx +′′+′′+′′=′                                                                                                                  (10) 

........y)x(f4y)x(f2φ 3
42y ++=′                                                                                                                              (11) 

........y)x(f12)x(f2φ
2

42y ++=′′                                                                                                                               (12)  

where f ’0(x) denotes df0(x)/dx,and so forth. Substituting the above expressions into Equation (7) and rearranging 

the result, yields the following polynomial in y. Thus, 
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Since the polynomial Equation (13) must be satisfied for all arbitrary values of x and y,the coefficients of each 

power of y must be identically zero. Sauer,(1947) truncated the series after the f4(x)y4 term. Setting the coefficients de 

y
0
 and y 

2
 equal to zero and solving for f2(x) and f4(x) yields: 
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This f2(x) and f4(x) may be determine from the derivatives of f0(x). When y=0, u´(x,0) = f´o(x), where u´(x,0) defines 
the nondimensional perturbation velocity distribution along the x axis. Consequently, knowing u´(x,0), one can 
determine f2(x) and f4(x) from Equations (14) and (15),and, therefore,the flow field. If the axial perturbation velocity 
distribution is assumed to be linear, u´(x,0) is given by : 
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where α is a constant,termed the coefficient of the linear nondimensional axial perturbation velocity. Substituting 
Equation (16) into Equations (14) and (15) gives: 

( )
( )δ

αγ

+

+
=

12

1
)(

2

2

x
xf                                                                                                                                                     (17) 

( )
( )( )δ3δ18

α1γ
)x(f

3

4
++

+
=                                                                                                                                               (18) 

Substituting equations (17) and (18) into equation (8),yields 
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Substituting equation (19) into equations (5) and (6) yields: 
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Equations (20) and (21) yield the nondimensional perturbation velocities for a linear axial perturbation velocity 

distribution. The critical curve where M=1 and  ( ) 2
*22

av~u~ =+ may be determined as follows .First, substitute the 

definition of nondimensional perturbation velocities.Thus,  
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Dividing through by a*2 yields: 
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Expanding Equation (23) and neglecting powers of u´and v´yields:u´= 0,consequently, the Critical curve where M=1 
is established by setting u´= 0 in equation (20).Thus, 
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Next, it is necessary to locate the origin of the coordinate system in the nozzle. From Figure 3 it is seen that  

0~ =′== vvv  in x=ε and y=y t. Substituting those values for x and y into equation (21) yields: 
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Equation (25) locates the origin of the coordinate system relative to the nozzle throat. 

3. DETERMINATION OF THE NOZZLE CONTOUR 

Figure 4 illustrates the geometric model employed for determining the curvature k of the nozzle wall at the 

narrowest cross-section (throat). From Figure 4: 
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At the point T,the curvature k is given by  
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To the differentiate dv´/ds one may write 
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Considerer a nozzle throat with a radius of curvature ρt,which is large compared to the throat radius yt.  

Hence, ρt >>yt, (dx/ds) ≅1,and (dy/ds) ≅0. Accordingly,Equation (28) : 
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From equation (21) v´x  is given by  
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The value de v´x at the point T, where x = ε and y = y t,may be determined from equation (31), one obtain the 
following Equation (31). Substituting that result into Equation (30), obtain the following equation for the radius of 
curvature ρy. Thus, 
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Solving equation (32)  for α yields: 
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Substituting  equation (33) for α into equation (25) yields the following equation for ε.Thus, 
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4. INITIAL-VALUE LINE FOR SUPERSONIC FLOW FIELD CALCULATIONS 

 To initiate for the two-dimensional supersonic flow field by the method of characteristics, a line along which M > 1 
across the entire throat is needed.The sonic line determined by Sauer´s  Method (1947) is unsuitable because Mach lines 
from the sonic line intersect the nozzle wall upstream from the throat point T. Because point T was employed as a 
boundary condition in the evaluation Equation (32), the region of the flow field upstream from point it is within the 
range of influence of point T, and the method of characteristics cannot be initiated from an initial-value line that is in 
range of influence of downstream point. The line where 0v~ = , which is only a slight distance further downstream than 
the sonic line,may be employed as an initial-value line for the method of characteristics. The equation of the line, which 
is the locus for 0v~ = , is obtained from equation  (21) by setting v´= 0.Thus, 
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5. MASS FLOW RATE AND THRUST 

Mass flow rate cross the v=0 line , is given by Zucrow and Holmann(1977). The actual integration of equation (36) 

is accomplished by applying Simpson´s  rule. Dividing the integration interval NPI-1 equal subintervals, yields the 

following algorithm: 
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Thrust across the v=0 line.  

O thrust is the sum of the pressure forces and the momentum flux, Zucrow and Holmann (1977).  Equation (37) may 
be integrated by Simpson´s rule. Thus, 
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Mass flow rate dm crossing the element of area dA (Aerospike  nozzle) is given by Pires(1996): 
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Substituting equation (39) into Equation (38) and neglecting dy
2
 obtain:   
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The actual integration of Equation (40) is accomplished by applying Simpson´s  rule. Dividing the integration 

interval NPI-1 subintervals yields the following algorithm. 
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Similarly for thrust in aerospike nozzle   
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To determined flow field or the plug nozzle is admitted isentropic expansion of the jet to the final pressure produces 

a jet Mach number M, and if γ is the ratio of specific heats, then the angle of refraction is: 
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Based upon a value of  ν = Mach 1. In Aerospike Nozzle of the type shown in Figure 2 all the supersonic expansion 
occurs externally. It is of course possible, and in many cases advantageous,to piece to the total expansion between 
internal and external expansion Berman,(1960).  If  assume that the internal expansion is a simple corner expansion, the 
total expansion angle is the sum of the internal and external expansions:  
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where ν is called the Prandtl-Meyer angle. 

6. SOLUTION METHOD 

The basic contour design of the linear aerospike nozzle is in principle based on the application of the inviscid 

irrotational supersonic Prandtl-Meyer flow theory (1908) derived from the Euler equations. The contour is two-

dimensional, since the segments are placed linearly next to each other. The determination of the  contour surface of  the  

aerospike nozzle is done of the form  where the direction of a frictionless wall is changed by an angle δ at the point 

where the incident expansion wave impinges on it. No reflected wave is required for causing the streamlines crossing 

wave to become parallel to the surface. The incident expansion wave ends at the surface because its inclination is such 



that the reflected wave is neutralized or canceled.  i.e., if  a weak wave of the angle ∆θ incident about the surface of 

aerospike nozzle, a reflection wave  equal strength must be present of the form to satisfy the boundary condition in 

surface of the aerospike nozzle. Similarity obtain all points on the aerospike nozzle. If we know the position and the 

properties of a point on the wall, we can easily determine those of the adjacent point until we reach the exit section 

point. The plug nozzle Figure 3 is designed admitting design pressure in 5 region equal ambient pressure in a 

determined altitude of the flight. In this case, how the waves splitting the regions are equal families,  hence,  the waves 

of the fan expansion of Prandtl-Meyer are equal strength.  
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Of the 1 region  to 2 region there is one Mach line or characteristic of same family. Thus 
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where j,iα  i = region , j = angle α with i,j = 1…n  
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Figure 5 a): Contour plots of pressure (upper half)  and Mach number (lower half) distributions  ( Pressure Ratio 71) Ito at al 
(1999) b) Mach Lines 
 
Thus, knowing  all  coordinate and angle of the points on wall with the  axis line,determine the ordinate Ycc of the 
radius cone of the aerospike nozzle. Figure 6b 
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Equation (49)  is applicable  for all n Mach lines. Variation of the Thrust on Aerospike nozzle, Pires, (1996) is given 

by: 
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7.RESULT 

    Pires(1996), Lee (1963 and 1964) developed computational codes written in Fortran 77 to analyse  different nozzle 
concepts with improvements in performance as compared to conventional nozzle  achieved by altitude adaptation and, 
thus, minimizing  losses caused by over-or underexpansion. The aerospike nozzle provides, at least theoretically a 
continuous altitude adaptation up to their geometrical area ratio. The Figure 6 shows the thrust coefficient (CF) of the 
aerospike Nozzle plotted against the pressure ratio. The solid red line denote the ideal thrust coefficient and the dashed 
green  line the theoretical CF of the conventional nozzle. In the low pressure ratio region,the standard nozzle not 
produce as much thrust as the aerospike nozzle (blue line). That  is the reason for higher performance of the 
aerospikenozzle at lower altitudes.  

8. CONCLUSION 

The results clearly showed the main advantages of the aerospike nozzle.Conventional Bell-type rocket nozzles, 
which are in use in practically all of today’s rockets, limit the overall engine performance during the ascent of the 
launcher owing to their fixed geometry. Significant performance losses are induced during the off-design operation of 
the nozzles,when the flow is overexpanded during low-altitude operation with ambient pressures higher than the nozzle 
exit pressure,or underexpanded during high-altitude operation with ambient pressures lower than the  nozzle exit 
pressure. In the case of overexpanded flow, oblique shocks emanating into the flow flowfield adapt the exhaust flow to 
the ambient pressure. Further downstream,a system of shocks and expansion waves leads to the characteristic barrel-like 
form of  the exhaust flow. In contrast,the underexpansion of the flow results in a further expansion of the exhaust gases 
behind the rocket. Off-design operations with either overexpanded or underexpanded It is shown that significant 
performance gains result from the adaptation of the exhaust flow to the ambient pressure 
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