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Abstract. The main objective of this paper is to study hypersonic viscous flows dominated by shock-wave / laminar 
boundary-layer interaction over a compression corner.  The shock-wave / boundary-layer interaction is studied using 
numerical solutions of the Navier-Stokes equations for unsteady flows using a Mach number equal to 10.30. The flows 
are simulated using the Finite Element Method with two explicit Taylor-Galerkin schemes (a one-step iterative scheme 
and a two-step non iterative scheme) with linear tetrahedral and tri-linear hexahedral elements. Results include 
surface pressure, skin friction and velocity/pressure/density profiles in several stations. 
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1. INTRODUCTION  
 

The problem of shock wave / boundary layer interactions (SWBLI) in supersonic and hypersonic flows has been 
studied for decades (Dolling, 2001) due to its direct application in various configurations such as aircraft/spacecraft 
(control surfaces and wing-fuselage junction), missiles and projectiles, among others. In these configurations the 
SWBLI has a strong influence in the following items: the levels of heating, the size of the recirculation regions, the loss 
of efficiency of control surfaces and the oscillation of transient pressure loads. The geometry formed by the flat plate 
and the ramp is a typical example in the study of the SWBLI. Although the geometry is simple, the physical phenomena 
in this problem are very complex; they are the boundary layer separation induced by the shock wave / boundary layer 
interaction and the strong gradients generated in the recompression region. The main parameters affectting the SWBLI 
are: the Mach number, the Reynolds number, the surface temperature, the boundary layer (laminar or turbulent), the 
deflection angle of the ramp and the chemical state of the gas. 

Due to great interest in hypersonic problems, the NATO Research Technology Organization - Advanced Vehicle 
Technology - Panel Working Group 10 (RTO-TR-AVT-007-V3), proposed some examples for validation of 
Computational Fluid Dynamics capability for specific flow phenomena relevant to hypersonic flight, which allows a 
detailed analysis of the influence of different schemes and meshes. The geometry is slightly modified with respect to 
that employed by Chantz et al. (1998). The experiments were conducted for Mach numbers ranging from 10.16 and 
12.49 over a range of Reynolds numbers low enough to ensure the flows remained laminar over the model. The local 
temperature does not exceed high values where chemical and non-thermal equilibrium effects are initiated. 

In the present work, Navier-Stokes simulations are applied for cold hypersonic gas flow past a compression corner. 
An in-house developed Navier-Stokes code with structured and unstructured meshes is employed for these 
computations. The aim of the present work is to study the performance of two explicit Taylor-Galerkin schemes and 
two types of elements at hypersonic flow. One case is studied and results are compared with experimental and 
computational results available in the literature. 
 
2. THE GOVERNING EQUATIONS 
 

Let sdnΩ R⊂ and (0,T) be the spatial and temporal domains, respectively, where nsd = 3 is the number of space 
dimensions, and let Γ denote the boundary of Ω. The spatial and temporal coordinates are denoted by x and t. We 
consider the conservative form of the Navier-Stokes equations governing unsteady compressible flows with no source 
terms, written here in their dimensionless form 
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where U is the unknown vector of the conservation variables, Fi and Gi are, respectively, the advective and diffusive 
flux vectors given by 
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with i, j = 1,2,3. Here vi is the velocity component in the direction of the coordinate xi, ρ is the specific mass, p is the 
thermodynamic pressure, τij are the components of the viscous stress tensor, qj is the heat flux vector, e is the total 
specific energy and δij is the Kronecker delta function. 

For a calorically perfect gas, the equation of state and internal energy i are given by the following equations 
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where p is the pressure, T is the temperature and p vc cγ =  with cp and cv being the specific heat coefficients at constant 
pressure and constant volume, respectively. The dynamic viscosity and coefficient of thermal conductivity depend a 
temperature and therefore are modeled using Sutherland’s law. Initial and boundary conditions must be added to Eq. (1) 
in order to define uniquely the problem. 
 
3. A TAYLOR-GALERKIN FORMULATION 
 

The numerical scheme is obtained expanding in Taylor series the governing equation and applying after the space 
discretization process, using the Finite Element Method (FEM) in the context of the classical Bubnov-Galerkin scheme. 
Two schemes for explicit time integration (one-step and two-step methods) are investigated for solving the 
compressible viscous flow problems. The formulation exclusively employs tetrahedral and hexahedral finite elements 
which provide second-order spatial accuracy.  
 
3.1. Time discretization: One-step scheme 
 
The one-step scheme is similar to that presented by Donea (1984). Expanding the conservation variables U at 1nt t +=  in 
Taylor series including the first and second derivatives, and substituing Eq. (1) and its second derivative, and neglecting 
high-order terms, we obtain 
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with 1 1n n n+ +∆ = −U U U , the time step 1n nt t t∆ += − , n and n+1 indicates t and t+∆t, respectively. I is an iteration 
counter, 1 1n n n

i i i
+ +∆ = −F F F , 1 1n n n

i i i
+ +∆ = −G G G  and iA  is the convection Jacobian defined as i i= ∂ ∂A F U . In 

expression (4), the variables at time level n+1 are involved in the left and right sides of the equation; therefore it is 
necessary to use an iterative scheme.  
 
3.2. Time discretization: Two-step scheme 
 

The two-step scheme is similar to that presented by Kawahara and Hirano (1983). In the first step, corresponding to 
the time interval [ 1 2,n nt t + ], the unknown vector U at 1 2nt t +=  is expanded in Taylor series. Substituting equation (1) 
and its second derivative, and neglecting high-order terms, gives 
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with 1 2 1 2n n n+ +∆ = −U U U . In the second step, U at time 1nt +  is determined by expanding equation (1) in Taylor series. 
Substituting equation (1) and its second derivative, and neglecting high-order terms, the following expression is 
obtained 
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where 1 1n n n+ +∆ = −U U U  and the convection Jacobian iA  is defined as i i= ∂ ∂A F U .  
 
3.3. Spatial discretization 
 

Applying the classical Bubnov-Galerkin weighted residual method in the context of the FEM to Eq. (4), for the one-
step scheme, and Eqs. (5) and (6), for the two-step scheme, spatial discretization are obtained for both cases. Details of 
the explicit matrix form of Eqs. (4), (5) and  (6) can be found in Bono (2008). The computational domain was divided 
into a finite number of tri-linear hexahedral elements (structured mesh) or linear tetrahedral elements (unstructured 
mesh). The consistent mass matrix is substituted by the lumped mass matrix and then these equations are solved with an 
explicit scheme. 

The explicit character of the algorithm implies that it will be subjected to the Courant-Friedrichs-Lewy stability 
criterion. At supersonic speeds, an additional numerical damping is necessary to capture shocks and to smooth local 
oscillations in the vicinity of shocks. An artificial viscosity model, as proposed by Argyris et al. (1990), due to its 
simplicity and efficiency in terms of CPU time, is adopted here. 
 
4. ADAPTIVE UNSTRUCTURED MESH REFINEMENT 
 

The unstructured mesh-based CFD methodology has undergone considerable development in the last decade in term 
of both mesh generation and solution algorithm development. The concentration of the node in the mesh is very 
important to obtain good quality solutions. The nodes need to be concentrated in regions where some variable gradients 
are high with respect to a specific criterium. 

Local physical phenomena in the flow are detected with error indicators or errors estimators. In this work, these 
error indicators take into account regions with low velocities, changes in velocity directions, velocity gradients, pressure 
gradients and internal energy gradients. The criterion for mesh adaptation is based in the normal distribution of the error 
indicators and their mean values and standard deviation. The adaptive process was performed using the h-refinement 
method. Details of the error indicators, mesh adaptation and the refinement process can be found in Popiolek and 
Awruch (2006). 
 
5. NUMERICAL RESULTS 
 

In this section one test case is presented in order to evaluate the accuracy, the capability and the performance of the 
two explicit Taylor-Galerkin schemes in the context of structured/unstructured meshes applied to the solution of 
hypersonic flows. These programs do not take into account high temperature effects, such as, vibrational excitation and 
chemical reaction. Although in the present work only two-dimensional (2-D) examples are presented, they were 
simulated with a three-dimensional solver taking one layer of elements in the z-direction, which is perpendicular to the 
flow direction. The boundary conditions are chosen so that a 2-D flow field is simulated. Fluid properties are considered 
constant, with γ = 1.4 and Prandtl Number Pr = 0.72.  
 
5.1. Supersonic flow past a compression corner 
 

In this example the case 14 studied by Holden et al. (2006) is considered. This test case has been studied extensively 
using experimental and computational techniques. The fluid properties are given by a Mach number equal to 10.30 and 
a Reynolds number equal to 24624.6 (with relation to the values of the free stream conditions and the length of the flat 
plate). With this example it is intended to validate the various schemes implemented and the method of adaptive 
refinement in hypersonic flow, as well as contribute to understanding the physical characteristics of the problem of 
shock wave / laminar boundary layer interaction. 

The numerical schemes employed for the solution of the Navier-Stokes equations are the one-step and two-step 
schemes with hexahedral (H) and tetrahedral (T) elements. In order to capture de boundary layers effects the elements 
are concentrated near the solid contours. The mesh with tetrahedral elements is obtained by subdividing each 
hexahedral element into five tetrahedral elements. The identification for each example, the number of nodes (nno), the 



number of elements (nele), the number of nodes on the wall (nnoCS), the length (∆l) of the recirculation, the maximum 
pressure coefficient (CPmax), the minimum time step (∆t) and the artificial damping coefficient (CAF) are  shown in 
Tab. 1.  
 

Table 1. Numerical and physical parameters for the SWBLI simulation. 
 

elem. / scheme mesh nno nele nnoCS ∆l Cpmax ∆t CAF 
M1H 31232 15300 482 0.551 0.967 4.10-5 0.7 
M2H 48422 23800 642 0.677 1.051 4.10-5 0.7 
M3H 68202 33600 782 0.706 1.058 3.10-5 0.7 

hexahedral /  
1-step 

M3aH 68202 33600 782 0.743 1.123 3.10-5 0.4 
M2Hp2 48422 23800 642 0.741 1.055 4.10-5 0.7 hexahedral /  

2-step M2aHp2 48422 23800 642 0.764 1.128 4.10-5 0.4 
M2T 26112 63750 482 0.349 0.834 3.10-5 0.7 

M2TR1 66860 220131 1443 0.509 0.875 1.10-5 0.7 tetrahedral /  
1-step 

M2TR2 246882 1067740 4805 0.542 0.998 6.10-6 0.7 
M2Tp2 26112 63750 482 0.269 0.786 3.10-5 0.7 

M2Tp2R1 66860 220131 1443 0.480 0.845 1.10-5 0.7 tetrahedral /  
2-step 

M2Tp2R2 246882 1067740 4805 0.554 0.953 6.10-6 0.7 
         

The meshes with tetrahedral elements are adapted with the following errors indicators: low velocity components, 
change in the velocity components, velocity gradients, pressure gradients and internal energy gradients. The first and 
second refinements are identified as R1 and R2, respectively. 

The computed pressure coefficient and skin friction coefficient for the meshes M1H, M2H, M3H and M3aH are 
shown in Fig. 1. In the last mesh the CAF was reduced from 0.70 to 0.40. The pressure coefficient is very close to the 
experimental results obtained by Holden et al. (2006) near the recompression region. However, in the recirculation 
region, in the peak pressure and in the plateau pressure, the numerical computation overestimate the pressure 
coefficient. The skin friction coefficient increases rapidly downstream of the attachment. The initial mesh M1H gives 
the best results compared with the experimental results in the recirculation region, but disagreement occurs with the 
successive refinements of the mesh. The meshes M2H and M3H show a recirculation region and peak pressures greater 
than those presented by Holden et al. (2006) and mesh M1H; these results are representative of a problem with an 
higher Reynolds number. 
 

      
 

Figure 1. Pressure coefficient and skin friction coefficient on the meshes M1H, M2H, M3H and M3aH, compared with 
result obtained experimentally by Holden et al. (2006) 

 
The differences between the experimental and numerical results can not be attributed to the mesh refinement, 

because the small difference between the pressure coefficient on the M2H and M3H meshes indicate that the solutions 
on those meshes may be regarded as nearly mesh independent. The artificial damping coefficient was reduced from 0.7 
to 0.4 in the mesh M3H with the aim of study its influence. Reduction of CAF (mesh M3aH) increases slightly the peak 
pressure and recirculation region compared with the previous results (see Fig. 1). 

The pressure coefficient and skin friction coefficient for the mesh with hexahedral elements using the two-step 
scheme (M2Hp2) are shown in Fig. 2. The tests with the one-step and two-step schemes with hexahedral mesh look 
similar. For the same artificial damping coefficient (CAF = 0.7), the two-step scheme (M2Hp2) is more diffusive than 
the one-step scheme (M2H). Reducing the coefficient CAF to 0.4, no improvements are obtained in the results (see 
M2aHp2). 
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The discrepancies obtained with the hexahedral meshes, possibly have origin in the discretization used, since the 
refinement and the reduction of the CAF do not improve computational results. With an higher concentration of 
elements at the beginning of the plate and at the intersection flat-plate/ramp, probably the separation of the boundary 
layer would be best captured. 
 

      
 

Figure 2. Pressure coefficient and skin friction coefficient on the mesh M2H using the one-step and two-step (p2) 
schemes 

 
Contours of Mach number and specific mass for the meshes M2T, M2TR1 and M2TR2 with tetrahedral elements 

using the one-step scheme and the mesh adaption technique is shown in Fig. 3. The recirculation and recompression 
regions and the reflected shock wave are efficiently resolved with a mesh refinement using an automatic adaptive 
technique. 

      
 

Figure 3. Mach number and specific mass contours on the meshes M2T, M2TR1 and M2TR2 with tetrahedral elements 
 
The pressure coefficient and skin friction coefficient distributions, Cp and Cf, are shown in Fig. 4. This plot 

demonstrates the important role of the adaptive mesh refinement in capturing physical phenomena. M2TR2 mesh (two 
refinements levels) shows a good agreement with the experimental results presented by Holden et al. (2006), mainly in 
the recirculation region and the position and value of peak pressure. The computational results determined with the 
hexahedral meshes in the recompression region (Fig. 1) are slightly better than those obtained with tetrahedral meshes, 
but with the successive refinements the results in the M2T mesh are closer to those presented by Holden et al. (2006). 

The value of the pressure coefficient in the plateau pressure region is approximately 0.61 with the M2T meshes; this 
value practically is coincident with the pressure coefficient obtained in the case of a non-viscous problem (Cpinvisc = 
0.628). This difference is practically the same to that obtained with the hexahedral meshes. 

The pressure coefficient and skin friction coefficient using tetrahedral meshes M2TR2 (one-step scheme) and 
M2Tp2R2 (two-step scheme) are plotted on Fig. 5, together with experimental and numerical results (Numer. 1 = 
Gnoffo , Numer. 2 = Tannehill) presented by Holden et al. (2006). Numerical results are in almost perfect agreement 
with the length of the interaction regions and the recompression region. The meshes M2T and M2Tp2 over predicted 
the pressures in the forebody region. 



 

      
 

Figure 4. Pressure coefficient and skin friction coefficient on the meshes M2T, M2TR1 and M2TR2, compared with 
result obtained experimentally by Holden et al. (2006) 

 
As shown in Fig. 5, while Gnoffo and Tannehill predictions of the pressure peak region achieve excellent agreement 

with experiments, the present computational results (M2TR2 and M2Tp2R2) overpredicts the pressure peak region. 
Nevertheless, the position of the peak pressure is better captured with the present simulation. 
 

      
 

Figure 5. Pressure coefficient and skin friction coefficient on the meshes M2TR2 (one-step scheme) and M2Tp2R2 
(two-step scheme), compared with result obtained experimentally by Holden et al. (2006) 

 
Finally, with the purpose of analyzing the mechanism of shock wave / laminar boundary layer interaction, the 

pressure coefficient and skin friction coefficient in Fig. 6 shows the formation of a recirculation region and a shock 
wave at different non-dimensional times in the meshes M2T, M2TR1 and M2TR2. During the first stage (t = 0.21) is 
formed a small recirculation region (negative Cf) in the intersection region between the flat-plate and the ramp (x / L = 
1.0). After this point the pressure has a slight peak due to the compression wave reattachment. After the recompression 
region the pressure value is approximately, Cp = 0.60, while for non-viscous problem Cp is about 0.628. 

It should be noted that with time increase, the separation region length also increases. Initially the growth is greater 
on the flat-plate, and later on the ramp. The point of boundary layer reattachment remains practically fixed when time 
reaches t = 3.15, but the point of boundary layer separation moves continuously until t = 4.428. It must be observed that 
for the last two times showed in Fig. 6 (t = 4.05 and 4.428) the recirculation region grows less in comparison with the 
growth of the pressure peak. 

The computed velocities profiles (v1 and v2) at stations x / L = 0.25, 0.5, 0.75, 1.0, 1.25, 1.40, 1.50 and 1.75 at the 
time t = 4.428 are displayed in Fig. 7. The abscissa is the component of velocity, and the ordinate is the distance 
measured normal to the wall. In Holden et al. (2006), the authors did not report experimental data for velocities, 
pressure and specific mass profiles. 

The profile x / L = 0.25, is located upstream of the separation line and x / L = 1.25 is located downstream of the 
reattachment point. The skin friction coefficient increases rapidly downstream of the attachment due to the increase of 
the gradient on the stations x / L = 1.40 and 1.50. The distortion of velocity profile is due to the shocks generated by the 
leading edge and the recirculation region. 
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Figure 6. Pressure coefficient and skin friction coefficient on the meshes M2T/R1/R2 at different non-dimensional 
times 

 

 
 

Figure 7. Velocities profiles (v1 and v2) at different stations (x/L) 
 
Specific mass and pressure profiles are shown in Figs. 8 and 9. It can be observed that the specific mass and the 

pressure increase considerably after the reattachment point (x / L = 1.40 and 1.50). 
 

      
 

Figure 8. Specific mass profiles at different stations (x/L) 
 



      
 

Figure 9. Pressure profiles at different stations (x/L) 
 

2. CONCLUSIONS 
 

In this paper we studied the shock wave/laminar boundary layer interaction over a compression corner with two 
explicit Taylor-Galerkin schemes in the context of meshes with hexahedral and tetrahedral elements. Based on the 
simulations examined in this study, no clear advantage was observed in choosing one scheme over the other, although it 
seems that the two-step algorithm is more diffusive with respect to the iterative one-step method; for this reason, results 
between these two techniques show some slight differences. The results presented in this paper have shown that the 
tetrahedral mesh with an adaptive technique presented solutions with better quality than the solution using hexahedral 
meshes. In the best Navier-Stokes solution the structure of the flow field was captured quite exactly with respect to the 
experimental model. The detailed characteristics of the distributions of pressure through the interaction regions were 
well predicted. A slight disagreement of the pressure on the forebody region was obtained. More tests need to be done 
to understand why the numerical solutions with hexahedral elements are inaccurate in some regions.  

Based on the results obtained here, it may be concluded that an automatic adaptive technique have produced 
important improvements. Error indicators for low velocity components, change in the velocity direction, velocity 
gradients, pressure gradients and internal energy gradients, together with a mesh adaptation criterion identify correctly 
regions where refinements were necessary to obtain more accurate solutions. This test case also show that the use of a 
mesh adaptation procedure relieves the user from the tedious task of constructing an appropriate mesh and leads to a 
really optimal mesh that substantially reduces the amount of artificial dissipation needed in the flow solver. 
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