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Abstract. The The space-time conservation finite volume and solution on unstructured mesh method is applied to solve 
compressible fluid flow problems with detached bow shock. In this work an explicit Runge-Kutta of third order solver 
for the Euler equations that govern the flow of a compressible inviscid flow, with application to blunt bodies is 
presented. The Euler equations are discretized in space using an edge-based finite volume formulation on arbitrary 
polygonal unstructured mesh. The resulting system of nonlinear ordinary differential equations is solved using a third 
order Runge-Kutta explicit scheme. The solver is tested with a single airfoil in the transonic flow regime in order to 
validate it. In this work the solver is tested by solving the Euler equations for a set of different blunt bodies geometries 
and Mach numbers. It is showed that the scheme is able to capture shocks and other discontinuous solutions sharply 
and accurately. Results show the solver to be accurate and also competitive with other solvers. 
 
Keywords: Edge-based finite volume CFD, detached bow shock simulation, Explicit Runge-Kutta third order. 

 
1. INTRODUCTION  
 
      The space-time conservation finite volume and solution on unstructured mesh method described as  edge-based 
finite volume and used here is applied for external flow problem and has some key features that distinguish it from 
other approaches as described in (Barth, 1992), (Barth and Ohlberger, 2004), (Berglind, 2000), (Lyra at al. 2002a), 
(Lyra at al., 2004b). These include a finite difference treatment of space and explicit third order Runge-Kutta scheme in 
time, and a thoughtfully designed grid data structure for enforcing conservation laws. The computational domain is 
discretized using a finite volume formulation in which the control volumes are arbitrary polygonal volumes. These 
volumes compose a grid, formed by connecting the vertexes of a triangular grid, as shown in fig. 1. 

 The rest of the paper is organized as this. Section 2 describes the numerical scheme. Section 3 describes the time 
integration. Section 4 presents numerical results for a benchmark test problem and other tests. Section 5 concludes the 
paper.  
  
2. THE NUMERICAL SCHEME 
 

The integral conservative form of the Euler equations for an unsteady, two-dimensional, compressible inviscid flow 

across a surfaceW , can be expressed as: 
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Here Q is a vector of conserved flow variables, F=F(Q) is the inviscid flux tensor:  
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The dimensional variables, density r , velocity vu ,  and total energy e , are non-dimensionalized using freestream 

values: 
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Where rg /p  is the speed of sound. Pressure is related to the conserved variables by the equation of state for a 

perfect gas: 
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which provides closure for Eq.(1), by relating the thermodynamic variables. 
 

2.1. Finite Volume Discretization 
 

The computational domain consists of geometries multi-connected. The tessellation of this region into a collection 
of non-overlapping triangular control volumes is carried out using a mesh generator developed by (Persson and Strang, 
2004). Their ideas are based upon a refined version of the classical Delaunay algorithm. The advantage of their mesh 
generator is that it is able to produce smooth and nearly equilateral triangular grids which are a desirable property for a 

simple finite volume method. Consider a representative volume k from the interior of the domain, whose kjn  is the 

outward normal at the edge formed by edge j, as shown in Fig. 1. The volume has an area kW and outward normal 

defined as ||/)( kjkjkjkj nxyn D-D= .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                                                               Figure 1. Volume element “k” 
 

The four conserved variables of the solution vector kQ  are stored at the volume element k. Using Gauss' theorern in 

two dimensions, it as applied transforms surface integrals into line integrals, then Eq. (1) can be rewritten as: 
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Where W¶ is the contour enclosing surface W and n is a vector outwardly normal to the surface. For volume k, this 

equation is discretized as: 
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Where kj represents the nodes index of triangle to left of edge j and to right of edge j. en is the total number of 

edges. The vector kjn is the unit outward normal, kjds is the length of the edge kj, and kjF
r

is the numerical flux vector. 

The evaluation of the numerical flux in Eq. (6) is based on the Riemann problem defined by the solutions on the left and 
right of the volume edges, as in the first order MUSCL scheme given by (Van Leer, 1977). An important matrix of the 
1D upwind schemes for systems of equations is the definition of the approximated flux Jacobian matrix A (Roe, 1986), 
built at the edges of the volume k. The 2D numerical upwind flux in Eq. (6) is obtained by applying the expression 
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in a 1D form to each edge of the computational volume. 
The numerical flux is finally written as 
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                                                                                                        (8) 
The ij used here represents the nodes index of triangle to left of edge and to right of edge as one goes from node 1 to 

node 2. 
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3. TIME INTEGRATION 
 

The semi-discrete system given by eq. (6) can be integrated in time using explicit third order Runge-Kutta scheme 
(Cockburn and Shu, 1998) written as: 
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                                                                                                              (9) 
The scheme as defined above is linearly stable for a CFL (Courant number) less than or equal 1.0 which is quite 

restrictive CFL condition. Convergence is accelerated using a local time stepping for steady state solutions. The local 

time step tD  on each volume kW is determined by the following expression 
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Where 
e

Cmax is the maximum edge sound propagation speed, and ed is the length of the edge. An illustration of a 

pseudo code is presented showing the edge data structure implemented in the solver. 
 
do while (n < nstep) 
       ! First step of RK3 
       ! Calculate the flux at each interior edge 
  do i = 1,Nedege 
    flux calculation F  
    residual calculation R 
    edge sound velocity Cmax 
    time step dt 
enddo 
! Apply bc at flux on each boundary edge 
  do i = 1,Nbedge 
     ! Outer boundary 
     flux calculation F 
     !Body boundary 
     flux calculation F 
     residual calculation R 
     time step dt 
  enddo 
     !Local time step calculation dt/A 
        dtA = CFL/dt 
         Calculation of Q(1) 
       ! Second step of RK3 
       !...repeat as before   
        Calculation of Q(2) 
       ! Third step of RK3 
       !...repeat as before 
        Calculation of Q(n+1) 
end do ! End iterative while 
 
The time step is frozen at the first step of RK3. 
 
 

 
 



 
3.1 Boundary Conditions 
 
The cornputational domain presents two types of boundaries: the body boundary of the solid airfoil in the domain, 

and the far field boundary or outer-boundary. It need impose certain conditions in order to properly model the flow 
field. At body surface boundaries the normal component of the flow velocity is zero, then 
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where n is the local unit vector normal to the body surface and the pressure p is corrected by the tangential condition 

V.n=0. At the outer-boundary simple enforcement of freestream condition is applied. 
 

4. NUMERICAL RESULTS 
 
The following results are presented in an attempt to show that in some cases the solver here developed produces 

quite good results as it is assessed with experimental tests. The second order upwind scheme was robust enough to 
capture the first shock on the upper surface and also the secondary shock on the lower surface for the NACA0012. The 
subject of geometrical effects of the grid in this type of scheme plays an important role in obtaining a good numerical 
solution as will be shown in the following cases. All solutions presented in this section are initiated using a freestream 
start. The NACA0012 aerofoil at a freestream Mach number of 0.80 and angle of attack equal to 1.25 degrees in a 
transonic regime is simulated and appears to be a very difficult case as discussed by (Rizzi and Vivand, 1981). Rizzi 
and Vivand pointed out that in a number of numerical results given in (Rizzi and Vivand, 1981) all results obtained by 
potential solutions, except one, give no shock on the lower surface, whereas all the Euler solutions give one. This 
simulation is important to test the edge-based finite volume upwind scheme in order to capture the weak shock on the 
lower surface. The CFL of 0.9 is used. Figure 2 shows the residual history. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                Figure 2. Residual history 
 
In figure 3 the pressure coefficient is shown, and on the lower surface the Cp curve distribution shows the weak 

shock which can be easily identified. This Cp results are compared with the numerical results of case 9 in (AGARD, 
1985) report. As can be seen the lower surface result show a good agreement, however the upper surface does not 
follow the (AGARD, 1985) result. Similar behavior is also shown in the (AGARD, 1985) for other numerical 
calculations using structured mesh with different grid sizes which does not invalidate the present result but justify how 
difficult is this test case. 
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                                                                             Figure 3. Cp comparison 
 
In figure 4 the isobar lines are shown with interpolation lines number equal 30.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                  Figure 4. Isobar lines 
 
The mesh used for this simulation has the following parameters: Number of Edge elements = 552, Number of 

elements = 10424, Number of unique vertices = 5488. The elapsed time taken was 8.451344e+003 seconds for the 3000 
time steps. In figure 5 is depicted a close up of this mesh for illustration. 

 

 



 
                                                                          Figure 5. Unstructured mesh 
 
The following results are for the cylinder case at Mach number of 2.0. In figure 6 is shown the color Mach flow  
field. 
 

 
 
                                                                               Figure 6. Isomach lines 
 
It is shown in figure 7 the pressure contour. 

 
                                                                                    Figure 7. Isobar lines 
 
The pressure distribution on the cylinder is shown in figure 8. It should be noted that the stagnation point pressure 

for a blunt body at zero degree of attack angle is analytically predicted by 
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which is derived using the analogy of the Rayleigh formula for the supersonic Pitot tube and gives 5.64 while the 

numerically calculated value in this flow simulation is 5.81 indicating an error of less than 2.9%. 

 
                                                                       
                                                                               Figure 9. Pressure distribution the cylinder 
 
The mesh used for this case is depicted in figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                         
               
                                                                                  Figure 9. Unstructured Mesh 
 
The following figures show a typical 2D blunt nosed cone vehicle configuration in supersonic Mach number of 2.0. 

The nose’s radius is 0.8. In figure 10 is shown the Mach number flow field. The flow around a two-dimensional blunt 
nosed cone geometry in supersonic regime yields to a strong detached bow shock. It is also important to notice the 
symmetry of the flow field which is kept in the lower and upper regions of the domain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                        Figure 10. Mach flow field 

 

 

 



The case for Mach 3.0 and attach angle of 15.0 degrees as shown as follow. Figure 11 show the Mach flow field. 
 

 
                                                                       Figure 11. Mach flow field  
 

 
5. CONCLUSION 

 
The results presented for this benchmark case provide significant information that the edge-based finite volume 

upwind scheme can simulate the correct flow field with results comparable to results found in GAMM as in (Rizzi and 
Vivand, 1981) and AGARD as in (AGARD, 1985). 
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