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Abstract. A viscous correction method is applied to the solution of the two-dimensional Euler equation. In transonic
flows the interaction between shock waves and boundary layer can have large influence on the pressure distribution.
The objective of the study is to improve transonic results for which shock/boundary-layer interaction is important but
generates no (or very little) flow separation. The boundary-layer displacement thickness is calculated, with an integral
method, using the results from the inviscid flow analysis. The calculated displacement thickness is then used to modify
the lifting surface geometry and a new inviscid result is obtained. This process is repeated until convergence is achieved.
The main reason for solving the Euler equation is computational cost when compared to the solution of the Navier-Stokes
equations. An existing two-dimensional Euler computer code is extended to include the viscous correction. The Euler
equations are approximated using the finite volume method and solved through time integration up to a steady state
solution. Results for several airfoil sections are obtained. The results are compared with published experimental data and
with inviscid solutions for steady transonic pressure distribution.
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1. INTRODUCTION

The computer simulation of fluid flows (Computational Fluid Dynamics, CFD) came in the second half of the twentieth
century with the advent of high-speed computers, making it possible to quantify the properties of the fluids without the
drawbacks inherent in the experimental approach. Drawbacks such as the high cost of building the infrastructure (wind
tunnels, instrumentation, models and prototypes) necessary to carry out the tests, and the difficulty of reproduction of
certain flow conditions (e.g. hypersonic outlets and laminar flow). The great flexibility to simulate various types of flow
on complex geometries raised CFD to the status of essential tool in many different fields, especially in aerodynamics.
Its use, similar to that of other areas of simulation, is composed basically of two steps: modeling, including simplifying
assumptions and derivation of governing equations, and; solving those equations, subject to the particularities of the
problem in question, through an appropriate numerical method.

Many current problems stem from earlier questions in CFD, when the evaluation and simulation of the involved
phenomena were poor or even non-existent. A recurrent issue is the study of dynamic aeroelasticity problems in transonic
flight, dating from the end of World War II. Transonic flow (Anderson, 2003) is characterized by the presence of mixed
regions (subsonic and supersonic) on the aerodynamic surfaces, with the occurrence of non-linear phenomena from the
effects of compressibility, such as the formation of shock waves and their interaction with the boundary layer. Often
this interaction can be neglected in the study of flutter and other aeroelastic phenomena. However, reasonably strong
transonic shocks, even for small angles of attack, can have significant influence on the boundary layer. In the case of limit
cycle oscillations (LCO), that interaction can not be ignored, given the potentially large amplitude of motion. Therefore,
the computer simulation of these flows requires the presence of viscous effects, allowing development of the boundary
layer. This can be done by adopting the Navier-Stokes equations, because they already include fluid viscosity effects
in their formulation thus providing, in theory, realistic results. The solution of simplified models, such as the Euler
equations (which neglects fluid viscosity), composed with corrections to account for viscous effects, represents a more
economical and sufficiently accurate procedure when applied to certain cases. That is the main objective of the present
work: correction of viscous effects (via calculation of compressible turbulent boundary layer) in the solution of the Euler
equations for unsteady transonic flow to simulate the interaction between shock wave and boundary layer in aeroelastic
phenomena such as flutter, especially in cases where there is no separated flow.

Viscous correction is implemented in an existing CFD code, Bru2D (Yagua, Basso, Azevedo, 1998), which has the
capability of solving both the Reynolds Averaged Navier-Stokes (RANS) and the Euler equations for two-dimensional,
unsteady, compressible flow. The viscous correction is introduced by integrating a subroutine which calculates a com-
pressible turbulent boundary layer (method described by Sasman and Cresci, Sasman, Cresci, 1966) to the Bru2D code,
so that interaction between viscous and inviscid flow is conducted by two flow variables: Mach number distribution on
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the aerodynamic surface and boundary layer displacement thickness. Thus, Mach number distribution is used to calculate
boundary layer displacement thickness which, in turn, is used to modify the surface geometry. This change produces a
new Mach number distribution and the process is repeated until convergence is reached.

2. METHODOLOGY

As mentioned before, our goal is to introduce a viscous correction method in an inviscid flow simulation code to
produce acceptable results when compared to results of codes that include viscosity (involving the solution of the Navier-
Stokes equations, for example). The main advantage, then, is to reduce the processing time. As a starting point, we
adopted an existing computer code, the Bru2D (Yagua, Basso, Azevedo, 1998) which, although capable of simulating
viscous flows, will be used to obtain the inviscid Mach number distribution on airfoil section surfaces.

2.1 Inviscid flow simulation

The unsteady two-dimensional Euler equations (Anderson, 1991) in conservative form can be written as:
Continuity

∂ρ

∂t
+
∂ (ρu)
∂x

+
∂ (ρv)
∂y

= 0 (1)

Momentum in the x direction

∂ (ρu)
∂t

+
∂
(
ρu2
)

∂x
+
∂ (ρuv)
∂y

+
∂p

∂x
= 0 (2)

Momentum in the y direction

∂ (ρv)
∂t

+
∂ (ρuv)
∂x

+
∂
(
ρv2
)

∂y
+
∂p

∂y
= 0 (3)

Energy

∂E

∂t
+
∂ [u (E + p)]

∂x
+
∂ [v (E + p)]

∂y
= 0 (4)

where u and v are, respectively, the flow velocity in the x and y directions, p is pressure, ρ is density andE is total energy,
described as:

E = ρ

[
e+

(
u2 + v2

2

)]
(5)

where e is internal energy which, for ideal gases is given by:

e =
R

γ − 1
T (6)

where T is absolute temperature and γ is the specific heat ratio (1.4 for all considered cases). Therefore, given the local
velocity components, u and v, local density, ρ, and total energy, E, it is possible to calculated the local temperature, T .
With the local temperature it is possible to calculate the local Mach number.

Equations (1) to (4) are rewritten in compact form which allows for a more stable and direct solution procedure,
especially for flows with supersonic regions, which is the case of transonic flows, present subject of study. In conservation
form Eqs. (1) to (4) can be grouped into a vector of conserved variables, Q, and two vectors of convective flow, F e G:

Q =


ρ
ρu
ρv
E

 , F =


ρu

ρu2 + p
ρuv

u (E + p)

 , G =


ρv
ρvu

ρv2 + p
v (E + p)

 (7)

With these definitions Eqs. (1) to (4) can be rewritten as:

∂Q

∂t
= −∂F

∂x
− ∂G

∂y
(8)

where the desired solution comes from vector Q, in the form of flux variables. Other variables of interest, such as pres-
sure, are calculated as a function of the flux variables. The computer code works mostly with the Q vector components,
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minimizing work with the primitive variables. Equation (8) can be solved through an explicit time integration procedure,
lending an unsteady solution. The steady results presented here are obtained integrating the equations in time up to a
steady-state condition. For each time step a new solution is calculated. Convergence to steady-state is reached when the
difference between new and previous solution (on all grid points) fall bellow a specified convergence criterion. There-
fore the RHS of Eq. (8) should be less than the specified convergence criterion. The equations are solved with a fifth
order Runge-Kutta method (second order accurate in time) applied to an unstructured mesh composed of triangular finite
volumes. Details can be found in Yagua, Basso, Azevedo, 1998.

Main parameters for running a steady simulation in Bru2D are the free flow Mach number and Reynolds number, the
latter used only for density calculation in the inviscid case. Having the Mach number distribution on the airfoil surface
the boundary layer displacement thickness can be calculated.

2.2 Boundary layer calculation

A conventional integral method (Sasman, Cresci, 1966) was adopted for compressible and turbulent boundary layer
calculation. It is also described by Lee, 1990 implemented in the Full Potential Transonic code TAIR and, later, in the
Unsteady Transonic Small Disturbance code UsTSD (Lee, 2007). In the present study the method is implemented in
the solution process of the Euler equations. Prandtl equations for steady, compressible and turbulent boundary layer all
variables are time averaged:

∂ (ρu)
∂s

+
∂ (ρv)
∂n

= 0 (9)

ρu
∂u

∂s
+ ρv

∂u

∂n
= −dp

ds
+
∂τ

∂n
(10)

In Eqs. (9) and (10), s represents the direction tangent to the airfoil surface, n is the normal direction, and τ is the shearing
stress between the airfoil surface and the flow. Mager transformation (Mager, 1958) is employed to simplify the equations.
Actually, through the transformed equations, the density variation due to the temperature gradient in the boundary layer
can be described in a simpler form. The transformed equations are described by:

ŝ =
∫ s

0

(
T0

Tref

)(
Te
T0

) γ+1
2(γ−1)

ds (11)

n̂ =
(
Te
T0

)1/2 ∫ n

0

ρ

ρ0
dn (12)

where ŝ and n̂ are the transformed variables. Subscripts e and 0 denote, respectively, the boundary layer edge and the
stagnation properties. A reference temperature, Tref , is given as a function of the Prandtl number, Pr:

Tref
T0

=
1
2
Tw
T0

+ 0.22 3
√

Pr +
(

1
2
− 0.22 3

√
Pr
)(

Te
T0

)
(13)

where Tw is the wall (airfoil surface) temperature. Adopted Prandtl number for the air flow is the standard value of 0.72.
The adopted value for Tw/T0 is unity representing adiabatic wall condition. Shape factor, H , and momentum thickness,
θ, are related to the transformed shape factor, Ĥ , and transformed momentum thickness, θ̂, by:

H =
(

1− γ − 1
2

M2
e

)
Ĥ +

γ − 1
2

M2
e (14)

θ =
(
Te
T0

) γ+1
2(γ−1)

θ̂ (15)

where H = δ∗/θ, and Me is the Mach number at the boundary layer edge which, in the present work, comes from
the inviscid flow calculation. The boundary layer displacement thickness can, then, be expressed as a function of its
transformed equivalent and of the transformed momentum thickness as:

δ∗ =
(
θ̂ + δ̂∗

)(T0

Te

) 3γ−1
2(γ−1)

−
(
T0

Te

) γ+1
2(γ−1)

θ̂ (16)

The specific heat ratio, γ, was considered constant with a standard air value of 1.4. With adiabatic wall condition the
transformed displacement thickness, δ̂∗, and transformed momentum thickness, θ̂, are given by:

δ̂∗ =
∫ δ̂

0

(
1− Û

Ûe

)
dn̂ (17)
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θ̂ =
∫ δ̂

0

Û

Ûe

(
1− Û

Ûe

)
dn̂ (18)

where δ̂ is the transformed boundary layer thickness. The transformed velocity in the s direction, Û , in Eqs. 17 e 18, is
given by:

Û = u

(
T0

Te

)1/2

(19)

Using the power law for transformed velocity distribution in the boundary layer gives:

Û

Ûe
=
(
n̂

δ̂

) Ĥi−1
2

(20)

where Ĥi is the transformed adiabatic shape factor (Ĥi = δ̂∗
/
θ̂). Using the previous equations, it is possible to obtain

the transformed integral equations:

dθ̂

dŝ
+
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Ûe

dÛe
dŝ

(
2 +

Tw
T0
Ĥi
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(21)
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)2 (
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Ĥ2
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(
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ρeÛ2
e

[
Ĥi −

(
Ĥi + 1

)∫ 1

0

τ

τw
d

(
n̂

δ̂

)]
(22)

Equations (21) and (22) are ordinary differential equations and can be numerically integrated. However, a few modifi-
cations are still necessary to improve numerical stability and simplify their implementation. The boundary layer edge
transformed velocity,Ûe), is replaced by the expression involving the local Mach number,Me:

Me =
Ue
ae

=
Ue
a0

a0

ae
=
Ue
a0

√
γRT0√
γRTe

=
Ue
a0

√
T0

Te
(23)

and, from Eq. (19):

Ûe = Mea0 (24)

Equations (21) e (22) are rewritten using the boundary layer edge Mach number as the only inviscid calculation variable.
The integral involving the wall shear stress, τw (Eq. (22)), is estimated using a semi-empirical relation:∫ 1

0

τ

τw
d

(
n̂

δ̂

)
≈ 0.022

Cf

(
Ĥi − 1
Ĥi

)2

(25)

which is applicable to both favorable and adverse pressure gradient conditions. The skin friction coefficient,Cf , is adapted
for compressible flow, as:

Cf = 0.246 · e−1.561Ĥi

(
T0

Te

)−1(
Tref
T0

)−1(
µref
µ0

)0.268
(
Mea0θ̂

ν0

)−0.268

(26)

where µref and µ0 are the air dynamic viscosity coefficients at, respectively Tref and T0, with values which can be
extracted from a standard atmosphere table. Equivalently, ν0 is the air kinematic viscosity coefficient at T0. The T0/Te
ratio is described by:

T0

Te
= 1 +

γ − 1
2

M2
e (27)

A new variable is defined:

f =

(
Ûeθ̂

ν0

)1.268

=

(
Mea0θ̂

ν0

)1.268

(28)

to eliminate the singularity in Eq. (21) for θ̂ = 0. Using Eqs. (24) to (28), the final form of the integral equations is
obtained:

df

ds
= 1.268

[
A− f

Me

dMe

ds

(
2 + Ĥi

)]
(29)
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dĤi
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Ĥi + 1

)(Ĥi − 1
Ĥi

)2
−

(
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where A is given by:

A = 0.123e−1.561Ĥi

(
Mea0

ν0

)(
Te
Tref

)(
Te
T0

)3(
µref
µ0

)0.268

(31)

Both Eqs. (29) and (30) have the influence of Mach number distribution at the boundary layer edge, Me. That is the
mechanism which will transmit information from the inviscid calculation to the boundary layer. Information is then sent
back to the inviscid flow through the boundary layer displacement thickness which is used to modify the airfoil geometry.

Numerical solution of Eqs. (29) and (30) is carried out using a hybrid fourth and fifth order Runge-Kutta method.
Adopted initial conditions for all cases are Hi = 1.7 and θ = 0. The second condition still produces singularity in Eq.
(30) and, in the first integration step, the value of Hi is kept constant. For the following steps θ is no longer null and Hi

can be normally calculated. The first initial condition, Hi = 1.7, is a typical reference value for turbulent flow and rapidly
converges to values consistent with the solution of Eqs. (29) and (30).

The result sent back to the inviscid flow calculation is the displacement thickness, δ∗, which is used to modify the
airfoil geometry. The modification consists of simply adding δ∗ to the airfoil thickness (normal to the surface). Therefore,
the solution starts with the original airfoil section and ends up with a thicker, new airfoil geometry reproducing the
boundary layer effect on the inviscid flow. The displacement thickness is calculated using Eq. (16) considering that
Ĥi = δ̂∗/θ̂ (where Ĥi e θ̂, the latter obtained from Eq. (28), are the solutions of Eqs. (29) and (30)). The new inviscid
solution is used to calculate the boundary layer again. This process is repeated until convergence to steady state is
achieved.

The simulation is limited to cases with no (or very little) flow separation restricting simulation to small angles of attack.
It is assumed that the boundary layer is totally turbulent, reasonable for transonic high Reynolds flow where the laminar
region is very small. Prediction of transonic flutter at low angle of attack would be a viable application since the stability
analysis use small perturbations. Better prediction of shock intensity and position, with little added computational cost, is
a potential advantage of the presented method.

3. RESULTS

Initially, inviscid simulations were conducted, with the Bru2D code, for several Mach number and angle of attack
conditions. The computational meshes were generated using the commercial software ANSYS ICEM CFD and consist
of unstructured meshes with triangular elements in a circular domain. The use of sub grid regions allowed for better
refinement control. Figure 1 shows an example of mesh for the NACA 0012 airfoil section.

Figure 1. General view of the computational mesh (unstructured) generated for the NACA 0012 airfoil section (left), and
enlarged airfoil region showing refinement details in the shock wave region (right).

After convergence to steady state the Mach number distribution on the airfoil surface were loaded in the viscous
correction routine and a boundary layer displacement thickness distribution was obtained. Free stream properties were
adjusted to produce a specified Reynolds number, typically between 5 and 8 million for transonic wind tunnel tests.
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Under those conditions the flow around a NACA 0012 airfoil section (Fig. 2) was simulated for a few angles of attack
(small), leading to stable solutions for the boundary layer integration procedure.

Figure 2. NACA 0012 airfoil section.

Figure 3 shows the Mach number distribution on the upper surface of the NACA 0012 airfoil for angle of attack,α,
equal to 0o and free stream Mach number, M∞, equal to 0.755. A shock wave (characterized by the abrupt decrease from
supersonic to subsonic) is formed around x/c = 0.3. This Mach number distribution was used to calculate the boundary
layer displacement thickness shown in Fig. 4. Reynolds number, Re, is 5.3 million.

Figure 4 shows a slight increase in displacement thickness coinciding with the shock position around x/c = 0.3, as
seen in Fig. 3. Figure 5 shows the pressure coefficient distribution on the airfoil upper surface, calculated by Bru2D
(black marks) and from experimental data (Thibert, Ohman, 1979, red marks).

The inviscid numerical results overestimate the shock wave intensity for this result without viscous correction. The
effect of the boundary layer, when introduced, should be of pushing the shock wave upstream and reducing its intensity,
improving the correlation with the experimental results. A secondary effect of the viscous correction is the exponential
like thickening at the trailing edge which is also likely to modify the corrected pressure distribution. Only the upper
surface results are shown since the case should be symmetrical. Actually there is a small asymmetry between upper and
lower surfaces due to an asymmetry of the unstructured mesh.

Figures 6, 7 e 8 show the results, no viscous correction, withM∞ = 0.8 and α = 0◦. For this condition the shock wave
is stronger than that for M∞ = 0.755. This increase in shock intensity is followed by a larger increase in displacement
thickness on the shock location. It can be noted in Fig. 4 that, immediately downstream of the shock position, there is
a reduction in δ∗ indicating restitution of boundary layer. This behavior is consistent with that observed in Fig. 5 which
shows a slight favorable pressure gradient after the shock.

Through an initial implementation of the viscous correction in the Bru2D code, preliminary results for steady-state
condition were obtained, as shown in Figures 9 through 13. These results were acquired by introducing only a percent of
the boundary layer displacement thickness into the airfoil surface and, then, allowing the inviscid code (Bru2D) to cope
with the change in geometry during a few iterations. After an acceptable residue (RHS in Equation 8) is obtained, the
initial percent is increased and the (recalculated) boundary layer displacement thickness is reintroduced, and this process
is conducted until it is fully inserted. However, due to some instabilities pertaining to both Bru2D code and viscous
correction routine, sometimes it was not possible to reach convergence when 100% of the boundary layer displacement
thickness was introduced. In this case, convergence can be reached only for lesser percents.

Figure 9 shows the Mach number distribution on the upper surface of the NACA 0012 airfoil for angle of attack,
α, equal to 0o and free stream Mach number, M∞, equal to 0.755. Comparing with the inviscid result, it can be seen
that the shock was moved upstream and had its intensity slightly reduced. The same can be observed from Figure 10,
where experimental results for the same condition are shown. Figure 11 shows the boundary layer displacement thickness
calculated for this case. As expected, at approximately 30% of the chord, which corresponds to the shock position, there
is a slight increase in the boundary layer displacement thickness. These results were obtained by introducing 85% of the
boundary layer displacement thickness, although some noise can be seen immediately after the shock and at the trailing
edge.

Figures 12 through 13 show the results obtained for NACA 0012 airfoil for angle of attack, α, equal to 0o and free
stream Mach number, M∞, equal to 0.829. Although only 45% of the total boundary layer was inserted, the increase in
the free stream Mach number caused a more intensive shock and also larger oscillations after the shock and at the trailing
edge. Nevertheless, the effect of the viscous correction, depicted by the new position of the shock upstream (better showed
by Figure 13), still can be observed.
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Figure 3. Mach number distribution on the upper surface of the NACA 0012 airfoil. Inviscid simulation (no viscous
correction) from Bru2D code with M∞ = 0.755 and α = 0◦.

Figure 4. Boundary layer displacement thickness on the upper surface of the NACA 0012 airfoil. Simulation with
M∞ = 0.755, α = 0◦ and Re = 5.3× 106.
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Figure 5. Pressure coefficient distribution on the upper surface of the NACA 0012 airfoil. Inviscid simulation (no
viscous correction) from Bru2D code with M∞ = 0.755 and α = 0◦ and comparison with experimental results

(Thibert, Ohman, 1979).

Figure 6. Mach number distribution on the upper surface of the NACA 0012 airfoil. Inviscid simulation (no viscous
correction) from Bru2D code with M∞ = 0.8 and α = 0◦.
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Figure 7. Boundary layer displacement thickness on the upper surface of the NACA 0012 airfoil. Simulation with
M∞ = 0.8, α = 0◦ and Re = 5.3× 106.

Figure 8. Pressure coefficient distribution on the upper surface of the NACA 0012 airfoil. Inviscid simulation (no viscous
correction) from Bru2D code with M∞ = 0.8 and α = 0◦.
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Figure 9. Mach number distribution on the upper surface of the NACA 0012 airfoil. Inviscid simulation from Bru2D code
and results obtained from the viscous correction with M∞ = 0.755 and α = 0◦.

Figure 10. Pressure coefficient distribution on the upper surface of the NACA 0012 airfoil. Inviscid simulation from
Bru2D code and results obtained from the viscous correction with M∞ = 0.755 and α = 0◦ and comparison with

experimental results (Thibert, Ohman, 1979).
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Figure 11. Boundary layer displacement thickness on the upper surface of the NACA 0012 airfoil. Simulation with
M∞ = 0.755, α = 0◦ and Re = 5.3× 106.

Figure 12. Mach number distribution on the upper surface of the NACA 0012 airfoil. Inviscid simulation from Bru2D
code and results obtained from the viscous correction with M∞ = 0.755 and α = 0◦.
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Figure 13. Pressure coefficient distribution on the upper surface of the NACA 0012 airfoil. Inviscid simulation from
Bru2D code and results obtained from the viscous correction with M∞ = 0.755 and α = 0◦ and comparison with

experimental results (Thibert, Ohman, 1979).

Figure 14. Boundary layer displacement thickness on the upper surface of the NACA 0012 airfoil. Simulation with
M∞ = 0.755, α = 0◦ and Re = 5.3× 106.



Proceedings of ENCIT 2008
Copyright c© 2008 by ABCM

12th Brazilian Congress of Thermal Engineering and Sciences
November 10-14, 2008, Belo Horizonte, MG

4. CONCLUSION

The present work describes a method for viscous correction of the Euler equations. Simulation of viscous flows
using the Navier-Stokes equations usually have much higher computational cost than inviscid models. Solving the Euler
equations with viscous corrections can potentially generate good results, within limits of application, with lower cost. The
results show good potential for solving two-dimensional, low angle of attack, transonic cases in which shock/boundary-
layer is significant but there is little or no flow separation.

Application of the described method will be extended to unsteady cases in which the boundary layer will be updated
at each time step. It will also be extended to three-dimensional cases using a stream wise two-dimensional approximation
for the boundary layer. The main final objective is to reach a good methodology for low cost transonic flutter analysis of
three dimensional configurations.
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