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Abstract. The monocolumn platform is a newer offshore platform concept that presents some advantages compared to 

the conventional concepts of semi-submersible and FPSO units. Particularly, the good seakeeping performance and 

the high storage capacity are the most attractive characteristics. However, monocolumn platforms usually show an 

undesirable response in heave motion. In recent years, many research projects have been carried out about the 

problem suggesting that the moonpool geometry has an important effect on damping the amplitude of the heave 

motion. In order to obtain a better comprehension of the dynamics of the damping process, a numerical analysis of the 

water motion inside the moonpool was conducted. In this paper, the numerical results obtained for the water motion 

inside the moonpool of a monocolumn platform were presented and discussed. The numerical model adopted for the 

simulations was developed in full scale with the experimental model, having both geometric and dynamic similarity. A 

good agreement between the numerical and the experimental decaying curves was achieved, suggesting that the 

numerical model is able to reproduce the flow behavior inside the moonpool. 
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1. INTRODUCTION 

 

The monocolumn platform is a newer offshore platform concept that presents some advantages compared to the 

conventional concepts of semi-submersible and FPSO units. Particularly, the good seakeeping performance and the high 

storage capacity are the most attractive characteristics. However, monocolumn platforms usually show an undesirable 

response in heave motion. In recent years, many research projects have been carried out about the problem (Aalbers, 

1984; Matsuura, 1995), suggesting that the moonpool geometry has an important effect on damping the amplitude of the 

heave motion. During the last few years, the use of the moonpool as a vertical motion absorption tank in mono-column 

type platforms is being studied by PETROBRAS as part of the MonoBR Project. 

The main goal of the MonoBR project is to develop an efficient design for monocolumn platforms, based on the 

concept of a unique circular column hull equipped with an open central moonpool (Torres et al., 2004; Barrera et al., 

2005, Sphaier et al., 2007). Experimental investigations were carried out at LabOceano ocean basin (COPPE/UFRJ, Rio 

de Janeiro) for different moonpool geometries in order to study its influence on the platform response in heave motion. 

The geometry of the moonpool was modified by the installation of bottom skirts with different internal diameters. The 

results obtained demonstrate that the geometry of the moonpool deeply affects the dynamic behavior of the platform 

(Torres et al., 2007). 

The use of the potential theory is a common practice in the analysis of the dynamic behavior of floating structures in 

regular waves, coupling wave and viscous effects. This approach works well when the viscous effects have a minor 

influence on the potential character of the flow around the body. In this case, it is possible to estimate a damping 

coefficient depending on the wave amplitude to take into account the viscous effect. Basically, the viscous effects affect 

the response around the natural frequency. In the present case, the experimental results showed that it seems like the 

viscous effects around a skirt at the bottom of the moonpool may have a stronger contribution in the fluid flow. It seems 

that the representation of these phenomena can not be well described by a single parameter based on the wave 

amplitude. 

In order to study the viscous effects caused by the bottom skirts a set of free decaying experimental tests was carried 

out with simplified monocolumn geometry. As in the case of the first experimental tests, skirts with different internal 

diameters were installed at the bottom of the moonpool. It was observed that the flow inside the moonpool presents a 

very complex behavior, characterized by the onset of complex vortex structures. Numerical simulations of the water 

flow inside the moonpool were carried out in order to obtain a better insight into the physics related to the damping 

process. The numerical model adopted for the simulations was developed in full scale with the experimental model, 

having both geometric and dynamic similarity. A good agreement between the numerical and the experimental decaying 

curves was achieved, suggesting that the numerical model is able to reproduce the flow behavior inside the moonpool. 

 



 

Figure 1. The aluminum monocolumn model – scale 1:100. 

 

 

2. FREE DECAYING TESTS 

 

The free decaying tests were conducted with a simply monocolumn geometry, consisting of a circular monocolumn 

model with a central moonpool (Fig.1). The model was built in aluminum in a 1:100 scale to the prototype. The full 

scale prototype has an external diameter equal to 110 meters with a moonpool diameter of 50 meters. The draft at full 

scale equals to 30 meters. Skirts with different internal diameters were installed at the bottom of the moonpool in order 

to obtain different magnitudes for the damping process. Two configurations were used as reference for this study: a) 

moonpool with no skirt (Model A - 50.0 centimeters opening); b) moonpool with a 4.6 centimeters wide skirt (Model B 

- 40.8 centimeters opening). 

The tests consist of imposing an initial difference between the water level inside the moonpool and the water surface 

outside the model and then let the water oscillate in a free decaying motion. During the tests the model was maintained 

at a fixed position with no degrees of freedom. The initial hydrostatic pressure difference was obtained by pumping 

compressed air inside the moonpool to pull down the water. The tests were started by releasing the compressed air to the 

atmosphere. A mechanical device installed at the top of the moonpool was used to control the air release. The water 

motion inside the moonpool was monitored by four cameras positioned in different angles of view. A wave probe 

installed at the central vertical axis of the moonpool was used to record the water level during the tests. Some pictures 

of the experimental arrangement are presented in Fig. 2. 

Figure 3 shows the decaying curves for the configurations used as reference. As can be seen, the installation of the 

skirt causes a remarkable influence on the decaying of the water. Not only the amplitude of the motion was influenced 

but also the period of oscillation was modified by the presence of the skirt. The amplitude of the first oscillation was 

reduced in 15%. In the case of the natural period, the variation equals to 0.16 seconds, representing a change of 13%. As 

expected, these results confirm that the viscous effects originated by a skirt play an important role on the dynamic 

behavior of a monocolumn platform. 

 

 

 

 a) Model installed at LabOceano basin. b) Position of internal cameras. 

 

Figure 2. Views of the experimental arrangement of the free decaying tests. 
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Figure 3. Decaying curves of the water motion inside the moonpool. 

 

 

 

3. NUMERICAL SIMULATIONS 

 

As mentioned before, numerical simulations of the water flow inside the moonpool were carried out in order to 

obtain a better insight into the physics related to the damping process. The numerical model was developed in full scale, 

having both geometric and dynamic similarity with the experimental model. 

Computations were conducted on a 2D domain taking the advantage of the radial symmetry of the monocolumn 

structure. A slice type geometry was developed for the domain with an angle of rotation about the moonpool vertical 

axis of 0.5 degrees. A cartesian (x, y, z) coordinate system was used, with the Z coordinate as the vertical direction 

vertical and the bottom of the domain representing the x = 0 cm coordinate (Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 2D numerical domain, slice type geometry. 

 

Mesh detail near the skirt. 
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The domain was discretized by a structured mesh consisting of hexahedrons. An extensive domain and grid-

independence tests were performed resulting in a final non-uniform, body-fitted mesh with 1200k hexahedral elements. 

The mesh was particularly refined in the near wall region so as to completely resolve the inner turbulent and viscous 

sub-layers. As a result of the grid-independence test, a fine grid with y
+
 varying from 0.5 to 2 was obtained. The cell-

aspect ratios in the region near the internal skirt/bottom of the hull were 1.0/1.0. At the bottom and the outer regions of 

the domain, a relatively coarse mesh was used, with cell-aspect ratio of 50/1. The boundary conditions at the hull and 

the symmetry planes are immediately defined. The dynamics of the air and the water flows, respectively, at the top and 

the outer edge of the domain were modeled adopting an opening type boundary condition. 

The equations governing the problem were solved using the well known code ANSYS CFX, release 11. The code 

solves the Reynolds averaged Navier-Stokes equations (RANS) through a finite volume approach. The solution 

procedure is based on a fully implicit discretization of the governing equations. In the present work, the well-known 

eddy viscosity model SST (Shear Stress transport)  κ−ω Based Model was adopted for the computation of the turbulent 

properties. The Volume of Fluid (VOF) method was adopted for the simulation of free surface flow. 

The κ−ω model considers that the turbulent viscosity, ντ, is related to the turbulent kinetic energy,  κ, and the 

turbulent frequency,  ω, through the expression 

 

ντ = κ/ω (1) 
 

The κ−ω based model formulation has become very popular over the last few years for its apparent superior 

performance for the treatment of near wall conditions. The κ−ω model does not require the introduction of the typical 

non-linear dumping functions present in the κ−ε model and, for this reason, should be more accurate and robust. As a 

matter of fact, the κ−ω model can be resolved with a near wall resolution of y
+
 < 2. 

The two transport equations for the κ−ω model can be written as 
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where u  represents the mean flow velocity. 

 

The κ−ω model constants are given by 

 

9/5=α  

075.0=β ; 09.0'=β  

2=κσ ; 2=ωσ  

 

The Shear Stress Transport (SST) κ−ω Model accounts for turbulent shear stress transport by considering 
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where 
2F  is a blending function and S is an invariant measure of the strain rate. 

 

The blending function 
2F  is given by 
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Numerical computations of the flow inside the moonpool were carried out for two configurations. The first model, 

named Model A (50.0 centimeters opening), does not have any restriction at bottom of the moonpool. The other model 

selected for the numerical investigations was Model B (40.8 centimeters opening), which has a skirt installed at the 

bottom of the moonpool. 

The numerical simulations covered the first 3 seconds of the experimental tests. In Fig. 5 and Fig. 6, the numerical 

results obtained for the variation of the water level inside the moonpool are compared to the experimental data for each 

model. As can be seen, a good agreement between the numerical and the experimental decaying curves was achieved, 

suggesting that the numerical model is able to reproduce the flow behavior. Considering that, the numerical results can 

be used to obtain a better understanding of the physics of the flow inside the moonpool. 

A sequence of vector plots showing the velocity field inside the moonpool of Model A is presented in appendix (Fig. 

A1..A7). As the flow enters the moonpool a vortex structure is formed near the bottom edge. The vortex structure grows 

until the water level reaches its maximum level. As it leaves the moonpool, a counter vortex is formed. This vortex 

actually acts as a buffer of energy. When the second cycle begins, a higher amount of energy is transferred to the vortex 

that is formed at the bottom edge, resulting in a larger structure. It is important to notice that the original vortex did not 

vanish. 

The energy dissipation inside the moonpool is governed by the vortex formation process. The higher the vortex 

structure the higher dissipation of energy. The maximum size that a vortex can attain inside the moonpool is a function 

of the magnitude of the flow velocity near the bottom edge. Since the flow inside the moonpool is mainly governed by 

the hydrostatic pressure gradient, the scale of the vortexes structures is directly influenced by the local draft at the 

moonpool. It can be clearly observed in the results obtained for the Model B (see vector plots in appendix: Fig. B1..B7). 

The initial displacement of the free surface adopted for the experimental test of Model B was higher compared to Model 

A. Tests with Model A were conducted with an initial displacement of the free surface of 6.0 centimeters, while an 

initial displacement of the free surface of 10.3centimeters was used for the experimental tests with Model B. These 

initial displacements conditions are comparable to full scale conditions. 

As predictable, the initial vortex structure that appears in Model B is larger than that observed in Model A. This is a 

direct effect of the higher flow velocity at the bottom edge caused by the higher initial draft step. The existence of the 

skirt results in a more complex vortex pattern. Counter vortexes appear near the skirt edge during the entire test. An 

important behavior that was observed in the test of Model B is that the vortex initially formed did not leave the 

moonpool. Even when the flow is coming downward the vortex did not come out of the moonpool. It can be noticed 

that the vortex scale almost reach the moonpool radius. When the flow comes upward at the beginning of the next cycle 

this huge vortex structure goes up towards the free surface. As it comes upward with the flow another vortex structure is 

formed at the end of the skirt. The presence of this new vortex structure will result in an interesting effect. The first 

vortex that goes upward with the flow remains confined near the free surface by the new vortex. As the flow goes 

upward and downward the first vortex grows until it reaches the free surface. At this moment, a spurt occurs at the free 

surface, dissipating the vortex energy. 
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Figure 5. Experimental and numerical decaying curves - Model A. 
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Figure 6. Experimental and numerical decaying curves - Model B. 

 

 

 

4. CONCLUSIONS 

 

Experimental results showed that the viscous effects caused by a skirt installed at the bottom of the moonpool may 

have a stronger influence on the dynamic behavior of a monocolumn platform. Although the use of the potential theory 

is a common practice in the analysis of the dynamic behavior of floating structures in regular waves, coupling wave and 

viscous effects, it seems that the representation of the complex flow around the skirt can not be well described by a 

single parameters. 

In order to obtain a better insight into the flow characteristics around the skirt numerical simulations of the water 

flow inside the moonpool were carried out using as reference a set of free decaying experimental tests. It was observed 

that the flow inside the moonpool presents a very complex behavior, characterized by the onset of complex vortex 

structures. A good agreement between the numerical and the experimental decaying curves was achieved, suggesting 

that the numerical model is able to reproduce the flow behavior inside the moonpool. 
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7. APPENDIX 

 

 

 

Figure A1. Model A – t = 0.6s. 

 

Figure B1. Model B – t = 0.6s. 

 

Figure A2. Model A – t = 1.0s. 

 

Figure B2. Model B – t = 1.0s. 



 

Figure A3. Model A – t = 1.4s. 

 

Figure B3. Model A – t = 1.4s. 

 

Figure A4. Model A – t = 1.8s. 

 

Figure B4. Model A – t = 1.8s. 

 

Figure A5. Model A – t = 2.6. 

 

Figure B5. Model A – t = 2.6. 

 

Figure A6. Model A – t = 3.0s. 

 

Figure B6. Model A – t = 3.0s. 

 

 


