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Abstract. Many oil well drilling fluids are designed to gel when it is not submitted to shear stress. The purpose is to 
avoid cuttings to lie over the bit during the circulation stoppage. When circulation resumes the pumping pressure rises 
above the circulation pressure in order to overcome the gel strength. Due to its thyxotropic effect, the gel viscosity 
remains high for a while after the circulation restarts. The gelation may have significant importance, specially, in deep 
waters where high pressures and low temperatures take place. The current work presents a compressible transient flow 
model of the start-up flow of drilling fluids, in order to predict borehole pressures. The model comprises the one-
dimensional conservation equations of mass and momentum. A second order differential equation is derived from the 
sum of the governing equations. This equation is one variable dependent, the velocity, and it is easier to solve. it is 
discretized by the Finite Volume Method and solved. The pressure is obtained after the whole velocity field for each 
time-step is found. This alternative solution is compared to the simultaneous solution of the conservation equations of 
mass and momentum. The viscous effect is modeled by employing the friction factor approach. The Fanning friction 
factor for Bingham fluid is changed in order to avoid indetermination when velocity tends to zero and a fourth order 
solution is proposed for the friction factor. The results are corroborated with the literature. A sensibility analysis with 
respect to Reynolds number, Bingham number and compressibility was also carried out. 
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1. INTRODUCTION 
 

Well drilling is not a continuous operation and interruptions for maintenance are quite common. The drilling fluid 
builds up a gel-like structure when the flow stops, in order to avoid the cuttings to lie over the drill bit and therefore to 
obstruct and damage it. On the other hand, pump pressures higher than the continuous operation pressure are needed to 
break the gel.  

Several works have developed models for the start-up of fluid flows. Sestak et al. (1987), for example, has discussed 
an approach to predict the time to clear out a pipeline full of gelled crude oils. The clearing Newtonian fluid was 
modeled as incompressible and the gelled fluid as compressible non-Newtonian. The time dependent rheology 
properties were described by Houska´s thyxotropy model (apud Sestak et al., 1987), which is a generalization of 
Bingham and Power Law fluid models. Escudier (1996) investigated some fluids with thixotropic characteristics and 
emphasized the importance of the studies about this kind of flow. The author says the Herschel-Bulkley model 
describes quite well the laminar and turbulent flows of a thyxotropic fluid. However, instabilities were observed in the 
flow transition.  

Chang et al. (1998) conducted experimental tests to evaluate the Wardhaugh and Boger´s (1991) theory for 
thyxotropic fluids under shear stress. This theory divides the fluid stress response into three: elastic response, creep and 
fracture. Engineers are mostly interested in the static yield stress (the stress value when the fracture occurs) as this stress 
value effectively determines the pump capacity required to initiate the flow.  

In their later work, Chang et al. (1999) developed a mathematical model for an isothermal start-up flow of a waxy 
crude oil. The model was based on the three yield stresses response described in the previous work. The time response 
of the flow rate and the clean-up time of an incompressible gel were evaluated. The inlet pressure was considered a 
constant value and the Bingham fluid model was employed.  

Vinay et al. (2006 and 2007) compared a two-dimensional with a one-dimensional mathematical model for the 
gelled fluid flow in axisymmetric pipes. They showed the results are very similar. However, the calculations for the 
two-dimensional model are quite slow in comparison to the one-dimensional ones. 

The current work presents a model for the start-up of drilling fluids in a horizontal pipe. The transient fluid flow is 
considered one-dimensional and compressible. The non-linear differential equations are discretized and solved by the 
Finite Volume Method and the non-Newtonian drilling fluid is considered as a Bingham fluid.  
 
 



2. MATHEMATICAL MODELING 
 

The transient flow of the Bingham fluid is modeled as one-dimensional and compressible in a horizontal pipe. The 
viscosity and the fluid compressibility are considered constant. The Fanning friction factor is employed to take into 
account the wall shear stress. The behavior of the Bingham fluid can be described as: 
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where τ  is the shear stress, 0τ  is the yield stress, pμ  is the plastic viscosity and γ  is the shear strain rate. According 
to Eq. (1), the fluid flows only if the shear stress is greater than the yield stress. In a pipeline, the flow of a Bingham 
fluid presents a uniform velocity plug because of the yield stress: a central core in which no shearing takes place (see 
Fig. 1). 
 

 
 

Figure 1 – Representation of the developed velocity profile in a pipe for a Bingham fluid. 
 

The problem domain consists of a pipe with diameter D  and length L . The flow is described by the conservation 
equation of mass: 
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and momentum: 
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where ( ),u u x t=  is the flow velocity, ( ),P P x t=  is the pressure, α  is the fluid compressibility, ρ  is the fluid 

density and f  is the Fanning friction factor, defined as 21
2
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=  . wτ  is the shear stress on the pipe wall. 

One can see the axial change of density and velocity, respectively, in the conservation equation of mass and 
momentum are disregarded. Although these hypotheses were also adopted by Cawkwell and Charles (1987) these 
effects will be evaluated in a future work.  

The friction factor for the laminar flow of a Bingham fluid can be computed as: 
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where Re / puDρ μ=  is the Reynolds number and 2 2

0He / pDτ ρ μ=  is the Hedstrom number.  
Initially, the fluid stands still within the pipe and therefore the initial conditions are described as: 

 
 ( ),0 0u x =  (5) 
 
 ( ),0 0P x =  (6) 
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A pressure pulse is thus imposed at the pipe inlet:  
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where PB is a constant pressure value and ( )us t  is a step function. At the outlet, the pressure is kept equal to zero: 

 
 0sP t= ∀  (8) 
 

Note that Eqs. (2) and (3) must be solved simultaneously in order to obtain the solution for both velocity and 
pressure. A mathematical manipulation is carried out in order to simply the solution. First of all, Eq. (2) is differentiated 
with respect to x  and Eq. (3) with respect to t. The resulting equations are subtracted from each other and the following 
equation is found:  
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As can be seen, Eq. (9) depends only on the velocity and is solved independently on the pressure. Once velocity is 

known it can be substituted either in Eq. (2) or (3) in order to obtain the pressure. However, the non-linear Eq. (9) 
requires an iterative solution, which is discussed in section 2.2. Two initial and two boundary conditions are needed in 
Eq. (9). As the fluid is stagnant at the start-up, the velocity field (Eq. (4)) and its time change (

0
0

t
u x

=
∂ ∂ = ) are 

considered null. According to Eq. (7) and (8), the pressures are known at both boundary but not the velocity. To find the 
velocity boundary conditions, Eq. (2) is applied at the inlet and outlet: 
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where ( )tδ  is the Dirac Delta function, also called as Unit Impulse function, which is the result of the differentiation of  

function ( )us t . 
 

2.1. The Friction Factor’s Equation 
 

Once Eq. (4) is a non-linear implicit equation the friction factor must be obtained iteratively.  However, if Eq. (4) is 
written as, 

 

 
4

4 3
2 8

16 8He 16He 0
Re 3Re 3Re

f f ⎛ ⎞− + + =⎜ ⎟
⎝ ⎠

 (12) 

 
a solution can be found for the fourth order equation. Two of the four roots of  Eq. (11) are complex and only one of the 
real ones is physically possible. To find out which is the feasible one, the definition of uniform velocity plug radius is 
used.  Actually, only one of the roots presents a uniform velocity plug plug radius smaller than the pipe radius. This is 
accomplished by satisfying the following condition: 

 

 2

He 1
Re
f

≤  (13) 

 
As the velocity field starts from the rest, the Reynolds number approaches to zero and therefore the friction factor 

tends to infinity (see Figure 2a). This singularity must be solved otherwise Eq. (9) cannot be solved. Note, however, that 
the product 2Ref  comes close to a constant value as the Reynolds number goes to zero (see Fig. 2b). This constant 



value depends only on the Hedstrom number. The product 2Ref can be directly substituted in Eq. (9) as the friction 
term depends on the product of friction factor and velocity square. Hence, Eq. (12) is modified and written as:  
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Equation (14) has two known real roots which are shown in Rocha (2007). 
 

10-5 10-3 10-1 101 103 105

Re

10-5

100

105

1010

1015

f
He = 1

He = 105

10-5 10-3 10-1 101 103 105

Re

100

102

104

106

f Re2

He = 1

He = 105

(a) f x Re (b) f Re2 x Re  
 

Figure 2 – (a) f  and (b) 2Ref ⋅  as a function of Re for various He. 
 
2.2. The Solution Algorithm 
 

As already mentioned, the governing Eq. (9) is a non-linear partial differential equation and therefore requires an 
iterative numerical solution. Besides, this equation is hyperbolic and one of its boundary condition is a discontinuous 
function (Eq. (10)). Because of the hyperbolic characteristic of the equation the time and space grid sizes have to satisfy 
the Courant-Friedrichs-Lewy (CFL) stability criterion (Fortuna, 2000). The CFL criterion establishes that the ratio of 
space and time grid sizes must be smaller than or equal to the pressure wave speed. The velocity and pressure grids are 
staggered. Different from the usual staggered grids, the pressures are placed at the boundary of the domain. Both space 
and time grids are uniform.  
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Figure 3 – Space discretization scheme 

 
Equation (9) is discretized by the Finite Volume Method and a set of algebraic equations is obtained: 
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where the index i  corresponds to the ith velocity position and 1n +  corresponds to the future time step. The coefficients 
are defined for each point of the domain, as follows:  
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where xΔ  is the space grid size, tΔ  is the temporal increment and N  is the number of finite volumes.  

Equation (2) is also discretized by Finite Volume Method in order to compute the pressure field at each time-step: 
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The set of Eq. (15) is solved by TDMA Algorithm (Three-Diagonal Matrix Algorithm). However, the coefficient Di 

(Eq. (19))* depends on the velocity field being calculated and therefore, an iterative solution is employed each time-
step. The solution algorithm follows the steps below: 

 

1. Initialization: BP , L , D , ρ , μ , α , yoτ , yτ ∞ ,  κ , N  (or xΔ ) tΔ , ( ), 0 0u x t = =  and ( ), 0 0u x t
t

∂
= =

∂
. 

2. Estimation of the initial velocity field ( 1n
iu + ) for 0n =  and calculation of ( ) 12 n

i
fu

+
. 

3. Calculation of the coefficients iA , iB , iC  and iD  and the solution of Eq. (15) by TDMA to obtain 1n
iu + . 

4. If the difference between the velocity field in two consequent iterations is greater than a convergence criterion 
( ε ), return to step 2 otherwise go to step 5. 

5. Calculation of 1n
IP +  (Eq. (20)) based on the values of 1n

iu + . 
6. In case the flow has achieved the steady state, the algorithm is stopped, otherwise return to step 2 for the next 

time-step ( 1n n= + ). 
 
3. RESULTS AND DISCUSSION 
 

 In order to compare the current model with the literature data, the results are normalized according to Vinay et al. 
(2007). Three parameters for the Bingham fluid flow in a pipe are defined: the Reynolds number ( *Re ), the Bingham 
number ( *B ) and a dimensionless compressibility ( *α ): 
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The dimensionless axial coordinate and pressure are, respectively, Lxx /* =  and BPPP /* = . The dimensionless 

velocity and time are defined, respectively, as: 
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Figure 4 shows a comparison of current model results with the Vinay´s et al. (2007) data for *Re 0.001= , *B 0.1=  

and * 0.1α = . One can see the results are quite similar for this compressibility. However, for higher compressibility, 
discrepancies between the models are noted. The inlet and outlet velocities are compared in Figure 5 for *Re 0.001= , 

*B 0.1=  and * 1.0α = . Note that the steady inlet and outlet velocities of the current model coincide to each other. On 
the other hand the Vinay´s counterpart values are quite different from each other as the flow accelerates from the inlet 
to the outlet. As the axial density changes are disregarded in the continuity equation, the current model results do not 
show such acceleration. Therefore, the current model is adequate for low but not high compressibility. 
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Figure 5 – Time change of the inlet and outlet (dashed line) velocities for *Re 0.001= , *B 0.1=  and * 1.0α =  . 

(a) Current model and (b) obtained from VINAY et al. (2007) 
 
A sensitivity analysis is now conducted. Figure 6 shows the sensitivity of the pressure at the position z*=0.9 with 

respect to the Reynolds number, the Bingham number and to the dimensionless compressibility. As can be seen, the 
pressure oscillates in a high frequency for low compressibility values and the first peak reaches almost 60% of the inlet 
pressure for Re*=0.4. These oscillations are caused by the reflection of the pressure wave at the pipe outlet and inlet, 
because the pressures are fixed at those positions. As the viscous effect dampens the pressure propagation, the reduction 
of the Reynolds number diminishes the amplitude of the pressure peaks maintaining the oscillation frequency. The 
increase of the compressibility also softens the pressure amplitude and reduces the time needed for steady state to be 
reached (Compare Figures 6a and 6b). Although the increase of Bingham slightly reduces the pressure peaks the 
oscillation frequency does not change. 
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Figure 6 – Pressure temporal variation in * 0.9z =  for different values of *Re , *B  and *α . 



 
4. CONCLUSION AND PERSPECTIVES 
 

This work presents a mathematical model for the start-up flow of a drilling fluid in a horizontal pipe. The flow of a 
Bingham fluid, considered one-dimensional and compressible, is modeled by the conservation equations of mass and 
momentum. The Fanning friction factor for the Bingham fluid was employed to take into account the viscous effect. 
The mass and momentum conservation equations were differentiated with respect to time and space, respectively. They 
were subtracted from each other leading to a second order differential equation for the velocity. The resulting equation 
is a hyperbolic non-linear equation and is solved by an iterative numerical approach. As soon as the velocity field is 
known the pressure values is directly obtained from the continuity equation. 

A solution for a singularity in the governing equation is proposed. Although the friction factor tends to infinity the 
product 2Ref  goes to a constant (actually, a Hedstrom number dependent) value as the Reynolds number approaches 
to zero. Instead of the friction the product 2Ref  is substituted into the governing equation. 

The results of the current model are corroborated with the literature data for low compressibility values ( * 0.1α ≤ ). 
For high compressibility values, the results differ from Vinay´s et al. (2007) data because the current model neglects the 
axial variations of density in the continuity equation.  

A sensibility analysis with respect to Reynolds number, Bingham number and compressibility was also carried out. 
For low compressibility values, the pressure presents oscillations of which frequency depends on the compressibility 
itself (actually, on the pressure wave speed as they are related). The higher the Reynolds number the higher the pressure 
peaks, because of the reduction of the viscous effect. These peaks reach values five times larger than the steady state 
pressures. The increase of the Bingham number slightly reduces the pressure peaks but does not changes the oscillation 
frequency. The amplitude of the pressure peaks reduce or even vanish as the fluid compressibility increases. 
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