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Abstract. The intermittent gas-liquid flow, or slug flow, occurs over a wide range of gas and liquid flow rates. Thus, it 
is frequently encountered on the gas and oil industry. Predicting the properties of this flow is important to well design 
pumps, risers and other components involved. The current work presents a model to predict the evolution of fluid flow 
in vertical gas-liquid slug flow with: i) aerated liquid slug, ii) no bubble interaction, iii) periodic flow in the entrance 
of the tube and iv) the entrance or exit of bubbles and slugs do not cause pressure disturbances. This approach uses the 
bubble shape model presented by Taitel and Barnea (1990) to obtain the properties in the inlet of the tube. Once 
calculated, the model predicts the properties throughout the tube. The motivation of this model is its simplicity, 
easiness of application and low computational cost. It is a useful tool of reference data generation in order to check the 
consistency of numerical slug tracking models. The numerical results are compared with experimental data. The 
potential of the model is demonstrated comparing the gas bubbles and liquid slug size and pressure drop for gas-liquid 
slug flow. 
 
Keywords: Vertical slug flow, gas-liquid, algebraic model. 

 
1. INTRODUCTION 
 

The intermittent gas-liquid flow, or slug flow, occurs over a wide range of gas and liquid flow rates. This flow 
pattern is characterized by an intermittent sequence of liquid slugs and elongated bubbles distributed irregularly on time 
and space. The liquid slug may contain disperse bubbles and the elongated bubble flows underneath or inside a thin 
liquid film. The prediction of the gas-liquid properties (lengths, frequency and velocity as well as the pressure drop) is 
necessary to design facilities operating with slug flow pattern. 

The unit-cell concept was introduced by Wallis (1969) to model the slug flow. The main idea of this concept is to 
consider a periodic flow in time and space. This simplification reduces the pipe flow modeling to a single repetition unit 
called by unit-cell, composed by an elongated bubble followed by a liquid slug as shown in Fig. 1. The lengths of the 
liquid slug and elongated bubble are LS and LB. UT is the bubble’s nose translational velocity, ULB and UGB are the 
liquid and gas velocities in the bubble zone; ULS and UGS are the liquid and gas velocities in the slug zone; RLS is the 
liquid holdup within the slug zone and RGB is the void fraction in the bubble zone. P is the gas pressure inside the 
bubble and γ is the pipe angle (90° for vertical flow). 

 

 
 

Figure 1. Vertical slug flow unit. 



There are a number of slug flow models based on the unit-cell concept. Fernandes et al. (1983) proposed one 
hydrodynamic model to predict the flow properties of a gas-liquid slug flow in vertical tubes, Taitel and Barnea (1990a) 
reported one general model for horizontal, inclined and vertical flows and more recently Abdul-Mejeed and Al-Mashat 
(2000) developed one mechanistic model to predict the flow behavior for upward vertical and inclined two-phase slug 
flow. 

Other studies were focused on experimental and numerical studies. Experimental measurements in a 50.8 mm 
diameter pipe were made by Mao (1989) and the results were compared with the model presented by Fernandes et al 
(1983). Kawaji (1997) developed and conducted numerical simulations using a Volume-of-Fluid approach to predict 
both the shape of the Taylor Bubble and the velocity profiles in the liquid phase. A description of the bubble 
propagation in both stagnant and flowing liquids was obtained using CFD by Taha Taha (2006) and an image analysis 
technique for the study of continuous co-current gas–liquid slug flow, in vertical columns, is reported by Mayor et al. 
(2007). 

Although these models are popular and quite often used on pipe flow design, their predictions are applied just to the 
unit-cell length, but not to the whole pipe extension. They also do not predict gas expansion due to the pressure drop. 
The algebraic model extends the concept of unit-cell in a sense that its solution encompasses the whole pipe extension 
and includes the gas compressibility effects. 

The main idea behind this model is to propagate a unit-cell along the pipe allowing the gas expansion. The model 
has as input the frequency at the pipe entrance, the gas and liquid superficial velocities at the exit, as well as the exit 
pressure. The unit-cells structures are propagated along the pipe using an algebraic model to calculate flow properties. 

 
2. ALGEBRAIC MODEL 

 
The development of the algebraic model is based on the same assumptions of the unit-cell models which are: (i) 

aerated liquid slug; (ii) the flow is periodic in time and space; (iii) there is no interaction between neighboring bubbles 
and (iv) the flow at the pipe entrance or pipe exit do not disturb neither the pressure nor the velocities inside the pipe. 
The present algebraic model also assumes an isothermal flow. 

The conservation of volume of gas inside at any pipe cross section may be expressed as the product of the gas 
superficial velocity and the bubble’s pressure if one uses the ideal gas law: 

 
( ) ( )G GJ z P z J P= S atm , (1) 

 
where z is the coordinate along the flow direction and JGS and Patm represent the gas velocity and the pressure at the pipe 
exit. Equation (2) shows that the gas superficial velocity at any position of the pipe is determined once the pressure at 
this point is known. As the liquid is incompressible, its average superficial velocity, JL, is constant along the pipe 
therefore the mixture average superficial velocity, J, at any position z takes the form: 

 

( ) ( )
GS atm

L
J P

J z J
P z

= + . (2) 

 
2.1. Conservative Equations 

 
Consider the flow of a slug unit, shown in Fig. 1. A mass balance of the liquid slug can be performed giving the 

following relation for the velocity of the liquid phase in the slug: 
 

( ) ( )LS
LS GS

LS

1 R
U J U

R
−

= −  (3) 

 
The Taylor bubble nose travels at a translational velocity, UT, greater than the liquid and gas in the slug. Thus, two 

relationships can be developed for the liquid and gas velocities in the slug relative to the nose of the Taylor bubble. 
Fernandes (1983) proposed the following equations for the liquid and gas phases: 
 

( ) ( )
( )

GS T
GB T LS

LB

U U
U U 1 R
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where ULS is the liquid velocity in the slug, UGB and ULB are the gas and liquid velocities in the bubble length, RLS is the 
liquid fraction in the slug and RLB is the liquid fraction in the bubble. 

Referring to Figure (1), momentum equations for the liquid film and the gas were obtained by Taitel and Barnea 
(1990), given by: 

 
LB LB LB i i LB

L LB L L
LB LB

dV S S dHdPV gsin
dz dz A A dz

τ τ
ρ = − + − + ρ γ − ρ γg cos  (6) 

GB GB GB i i LB
G GB G G

GB GB

dV S SdPV g sin
dz dz A A dz

τ τ
ρ = − + + + ρ γ − ρ γ

dH
g cos  (7) 

 
where ρL and ρG are the liquid and gas densities, γ is the tube angle, g is the gravitational acceleration; τLB, τGB and τi are 
the local shear stresses of the liquid, gas and interface; ALB and AGB are the liquid and gas cross-section areas; SLB, SGB 
and Si are the liquid, gas and interface surfaces and RLB and RGB are the liquid and gas fractions. The equations of these 
variables are presented in Table 1. The liquid and gas relative velocities are VLB = ULB – UT and VGB = UGB – UT and 
the gas and liquid cross sectional areas are given by ALB = ARLB and AGB = A (1 – RLB). 

Eliminating the pressure gradient, one can obtain a differential equation relating the bubble shape HLB(z) to the 
length z of the pipe, given by: 

 

( )

( )

GB GBLB LB
i i L G

LB GB LB GBLB
22
GBLB LB LB

L G L G
LB LB GB LB

SS 1 1S g
A A A AdH

dz VV dR dRg cos
R dH R dH

⎛ ⎞ττ
− − τ + + ρ − ρ⎜ ⎟

⎝ ⎠=
ρ − ρ γ − ρ − ρ

sin γ
 (8) 

 
The bubble length or a unit-cell can be obtained by the numerical integration of Eq. (8). For each step of length (dz), 

one can calculate an average value of HLB and the average void fraction at the bubble, RGB, given by: 
 

LB
GB

H
R 1

D
= −  (9) 

 
To reach the correct value of the bubble length, one stop criterion must be used; otherwise this integration obtains 

one infinite result. One way is performing a mass balance of the liquid in the unit cell. The equation for this stop 
criterion suggested by Taitel and Barnea (1990) is given by: 

 
( ) (U LS LS L

GB B B LS
T

L U R J
R L L 1 R

U
−

= − − )  (10) 

 
This equation uses the bubble length, LB, and the average void fraction, RGB, obtained by Eq. (9), after the 

integration of Eq. (8). One can get the value of the bubble length when this mass balance is reached. 
The unit cell length, LU, is given by: 

 
T

U
U

L
freq

=  (11) 

  
where freq is the flow frequency at the entrance of the pipe. This paper will use an experimental value of the frequency 
obtained by Rosa (2006). 

The liquid slug length can be easily obtained by:  
 

S UL L L= − B  (12) 
 

The determination of the liquid, gas and interface perimeters is based on a cross section cut of the tube, shown on 
Fig 2. 
 



  
 

Figure 2. Schematic representation of plane interface. 
 
where δ = HLB / 2. Using geometrical relations, one can easily obtain the following equations: 
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2.3. Constitutive Equations 

 
Three constitutive equations are used to calculate: the bubble velocity in the liquid slug, the bubble translational 

velocity and the liquid holdup in the slug. 
The bubble velocity in the liquid slug zone, UGS, can be calculated using the relation proposed by Barnea (1990), 

given by: 
 

( ) ( )
0.25

L G
GS 2

L

U J 1.54 g sin
ρ − ρ⎛ ⎞

= + σ γ⎜ ⎟
ρ⎝ ⎠

 (14) 

 
where σ is the surface tension. 

The bubble translational velocity, UT, is given by the kinematic relation proposed by Nicklin (1962), largely 
accepted and confirmed by many subsequent papers (Bendiksen, 1980; Cook and Behnia, 2001) as: 

 
T 0U C J C= + 1 , (15) 

 
where C0 and C1 are constants. The values of C0 and C1 are 1.0845 and 0.1696, respectively, obtained by Rosa (2006). 

The liquid holdup in the slug can be calculated by different methods. This work will use the relation proposed by 
Andreussi et al. (1993) given by: 

 
0 1

LS
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F F
R

Fr F
+

=
+

 (16) 

 
where the mixture Froude number is FrM = J/ gD  and the coefficients F0 and F1 are given by the following 
expressions: 

 
2

3 40
0 1
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D 3

−
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 (17) 

 
The Bond number is defined as Bo=gD2ΔρL/σ and the critical diameter value is D0=2.5cm. 
 

2.4. Pressure Gradient 
 
The information of the pressure along the pipe is fundamental to close the algebraic model. It is calculated through 

the pressure gradient λ, given by: 
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dP
dz

λ = , (18) 

 
Once λ is known, the pressure drop over the pipe yields: 

 

( ) ( )
L

atm
z

P z P z dz− = − λ ⋅∫ , (19) 

 
where 0 ≤ z ≤ L and z = L is the exit of the pipe. If λ is considered constant over the pipe, the pressure at any section z 
is obtained by the following linear relation: 
 

( ) ( ) atmP z L z P= −λ − + . (20) 
 

It is not possible to determine the pressure drop over the entire pipe extent at once. However, one can calculate λ for 
a unit-cell. The pressure drop on a unit-cell is due to the pressure drop on the liquid slug, ΔPLS, and on the liquid film 
along the bubble length, ΔPLB. Therefore the pressure gradient for the unit-cell, λu turns to be: 

 
LS LB

u
S B

P P
L L

Δ + Δ
λ =

+
. (21) 

 
The pressure drop on the liquid slug and on liquid film zones can be calculated by a momentum balance in a unit 

cell. Figure 3 presents gravitational forces and shear stresses acting in a unit cell. FB and FS are the gravitational forces 
in the bubble zone and in the liquid slug; τLB and τi are the average shear stresses of the liquid film and interface. 

 

 
 

Figure 3. Gravitational forces and shear stresses in the unit cell. 
 
The pressure drop on the liquid slug, ΔPLS, and on liquid film zone, ΔPLB, are given by: 
 

( ) ( )S B
LS LB LB GB GBLS S S LB B B

L L
P gsin L D and P gsin L S S

A A
Δ = ρ γ + τ π Δ = ρ γ + τ + τ BL

A
 (22) 

 
where ρS and ρB are the average densities in the slug and bubble zones. It is important to note that the shear stresses 
used in this equation are the average values along the bubble and slug lengths. 

Table 1 shows the equations for the shear stresses, the friction factors, the Reynolds number, the hydraulic diameters 
and slug and bubble zone average densities used in the bubble shape model and the pressure drop equations. 

 
3. CALCULATION PROCEDURE 

 
As seen in section 2 the sizes, velocities and pressure, at any pipe location, z, are calculated as a function of the local 

pressure, P(z). On the other hand, the local pressure, P(z) is a function of the flow properties. In order to obtain a 



solution to the flow properties including the pressure, an iterative procedure is developed to correct the pressure at any 
pipe location based on the calculated pressure drop in each iteration. Convergence is achieved considering a tolerance 
equal or less than 0.1%. The procedure consists of two parts. 
 

Table 1. Shear stress, friction factors, Reynolds number and hydraulic diameters equations. 
  

Shear Stresses 

 ( )LB LB L LB LBf U Uτ = ρ 2  (23) 

 ( )GB GB G GB GBf U Uτ = ρ 2  (24) 

 ( )( )i i G GB LB GB LBf U U U Uτ = ρ − − 2  (25) 

 2
S S Gf J 2τ = ρ  (26) 

Friction factors for phase k 
(k = LB, GB, S) 

 k k
k 0.25

k k

64 Re Re 2300
f

0.3164 Re Re 2300
<⎧

= ⎨ ≥⎩
 (27) 

 if 0.014=  (28) 

Reynolds Number  
LB L LB LB L

GB G GB GB G

S L L

Re U Dh
Re U Dh
Re JD

= ρ μ
= ρ μ

= ρ μ
  (29) 

Hydraulic diameter  ( )LB LB LB GB GB GB iDh 4A S , Dh 4A S S= = +  (30) 

Slug and bubble zone average densities  ( ) ( )S L LS G LS B L GB G GR 1 R , 1 R Rρ = ρ + ρ − ρ = ρ − + ρ B  (31) 

 
PART 1 - Properties at the pipe entrance (z = 0). 
a) Guess the pressure gradient through the pipe, λu. 
b) Calculate the pressure at the pipe entrance, P(z = 0) [Eq. (20)]. 
c) Calculate the following flow properties at the pipe entrance: JG(0) [Eq. (1)], J(0) [Eq. (2)], UT(0) [Eq. (15)], 

RLS(0) [Eq. (16)]. 
d) The bubble length is obtained by the numerical integration of Eq. (8) respecting the mass balance. 
e) Calculate the liquid slug length, LS(0). 
f) Calculate the liquid slug and film pressure drop, ΔPLS(0) and ΔPLB(0) [Eq. (22)]. 
g) Calculate the new pressure gradient, λunew(0) [Eq. (21)]. 
h) Compare λunew to λu: If the error is grater than 0.1% repeat steps b) to g), else go to part 2. 
 
PART 2 - Properties at predetermined, z, positions along the pipe. 
a) Calculate the pressure along the pipe, P(z) [Eq. (20)], using λu from part 1 (g). 
b) Calculate the flow properties along the pipe: JG(z) [Eq. (1)], J(z) [Eq. (2)], UT(z) [Eq. (15)], RLS(z) [Eq. (16)]. 
c) Calculate LB(z) along the pipe using the bubble shape model as shown in part 1 (d). 
d) Calculate the liquid slug length, LS(z). 
e) Calculate the liquid slug and film pressure drop, ΔPLS(z) and ΔPLB(z) [Eq. (22)]. 
f) Calculate the new pressure gradient in each position of the pipe, λunew(z) [Eq. (21)]. 
g) Repeat steps b) to f) using λunew(z). 
h) If the difference of all properties using λu and λunew(z) are less than 0.1%, the process is over; else, go to (b). 

 
4. RESULTS 
 

The algebraic model results are compared to experimental data obtained in vertical air-water flow. The experiments 
were done at the experimental facilities of the Energy Department of Unicamp, Brazil. Probes at two different positions 
along the pipe (z = 0 and z = 4.69m) were used to measure the local pressure, bubble velocity and bubble and liquid 
slug lengths. The fluid properties and flow configurations are presented in Table 2. 

Four experiments were done using different liquid and gas exit superficial velocities. Table 3 presents these values, 
the exit pressure and inlet frequency measured in these cases. 

Figures 4 and 5 present a comparison between the experimental and the algebraic model values. Figure 4 displays a 
comparison between slug and bubble dimensionless lengths. Near the pipe inlet, the model results for bubble and slug 
lengths present a good agreement with the experimental ones. This reflects the boundary condition at the inlet given by 
the frequency. As the cells are propagated through the pipe, it is expected an increase in the bubble length due to gas 
expansion and/or bubble coalescence. In this case, the slug length may decrease (if no coalescence is observed) or 
increase (when coalescence occurs). The experimental results present a great number of coalescences increasing the 
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bubble and slug lengths. However, the algebraic model only takes into account the lengths variations due to gas 
expansion. For this reason, the comparison of the results downstream of the pipe is not so good. 

 
 

Table 2. Fluid properties and pipe characteristics. 
 

Fluids Air and water 
Pipe length, L (m) 5.8 
Pipe diameter, D (m) 0.026 
Liquid density, ρL (kg/m3) 999 
Gas density, ρG (kg/m3) 1.21 
Liquid viscosity,  μL (cP) 0.855 
Gas viscosity, μG (cP) 0.0181 
Surface tension, σ (N/m) 0.0727 

 
Table 3. Experiment data. 

 
Experiment 1 2 3 4 
Liquid superficial velocity, JL (m/s) 0.330 0.300 0.610 0.880 
Gas superficial velocity, JGS (m/s) 0.603 1.691 1.083 0.828 
Exit pressure, Patm (Pa) 97883 98271 102202 105114 
Inlet frequency (Hz) 1.930 1.909 3.192 4.424 
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Figure 4. Bubble and slug dimensionless lengths. 
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Figure 5. Intermittence factor and local pressure. 



Figure 5 presents the comparison between the model and experimental results for the intermittence factor (LB/LU) 
and for the local pressure. Despite the errors obtained for the bubble and slug lengths presented in Fig. 4, the 
intermittence factor presents good agreement between the model and the experiments. This result shows that the 
intermittence factor is (at a first analysis) unaffected by the coalescences occurring along the pipe. In the local pressure 
results, the agreement is excellent. In the same manner as the intermittence factor, the pressure drop is not a strong 
function of the bubble and slug lengths, but depends on the combination of these variables. Furthermore, this result 
shows that the pressure drop calculations are consistent to the physical model. 
 
5. CONCLUSIONS 
 

The algebraic model embodies a bubble tracking model capable to represent the gas compressibility effects as the 
gas-liquid mixture travels along the pipe. The model extends the capabilities of a unit-cell model allowing the 
determination of the flow properties along the pipeline extent at once. 

The advantage of this model is its simplicity, easiness of application and low computational cost, making it a useful 
tool of reference data generation in order to check the consistency of numerical slug tracking models. Its main 
disadvantage is similar to the unit-cell models: the periodicity of the gas-liquid structures. The model’s output compares 
favorably to the experimental data. There are though some differences between the predicted and the measured slug and 
bubble lengths. These differences arise due bubble coalescence which is not modeled due the lack of bubble interaction 
on the model. 

Future works should perform tests with different fluid properties and analyze the model’s sensitivity to the variation 
of parameters such as the constants belonging to constitutive equations. 
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