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Abstract. The thermoeconomic optimization and improvement of energy systems is an engineering area of intense recent research. 
Many different methodologies have been developed, however the need for more efficient techniques remains. Genetic algorithms are 
relatively easy to code and robust, i.e., will less likely stop at local optima, but they tend to be computationally expensive. Gradient 
methods are effective optimization strategies, however they require the calculation of derivatives, which is not always possible. 
Hybrid methods, on the other hand, attempt to combine the efficiency of gradient methods with the robustness of genetic algorithms. 
In this paper we present the implementation of three different approaches for the mathematical optimization of a reference 
cogeneration system. The first strategy is based on genetic operators. The second strategy is the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) gradient method. The third method is hybrid, and is a combination of the previous two strategies. The coded algorithms are 
applied to the benchmark CGAM cogeneration problem. A comparative analysis of the generated results reveals the advantages and 
disadvantages of each method, and sheds light on the issue of the selection of algorithms to be used in the optimization and 
improvement of energy systems. 
 
Keywords. genetic operators,  gradient methods, hybrid methods, optimization, energy systems. 

 
1. Introduction 
 

Modern design of energy systems must consider efficient utilization of natural energy resources, reduced harms to 
the environment, and sustainable development (Rosen and Dincer, 2001). A large number of techniques for energy 
systems design optimization have been developed worldwide in the past two decades (Tsatsaronis, 1993; Donatelli, 
2002; Vieira, 2003; Frangopoulos, 2003). The field of exergoeconomics (Lozano and Valero, 1993; Bejan et al., 1996) 
can address environmental issues, reveal the cost formation process of system products, and aid system optimization. In 
Brazil, research in exergoeconomics has been done on the evaluation and interpretation of different cost partition 
methodologies (e.g., Antunes and Silveira, 1999; Balestieri et al., 1999; Cerqueira and Nebra, 1999; Donatelli et al., 
2000; Gallo and Gomes, 2003; Júnior and Arriola, 2003), and on exergoeconomic optimization techniques (e.g., 
Donatelli, 2002; Vieira, 2003; Ferreira and Balestieri, 2003; Colombo et al., 2004; Vieira et al., 2004, 2005, 2006). To 
evaluate and compare different exergoeconomic methodologies, C. Frangopoulos, G. Tsatsaronis, A. Valero, and M. von 
Spakovsky have proposed the optimization of the CGAM five-component cogeneration system as a benchmark problem 
(Tsatsaronis, 1994), which gained wide acceptance thereafter. 

On the one hand, it is a fact that exergoeconomics provides insights to system optimization (Bejan et al., 1996). On 
the other hand, to actually perform exact system optimization, the application of a mathematical optimization technique 
is ultimately required. An optimization procedure can be carried out by formulating the optimization problem for the 
thermal system with the thermodynamic balance equations and the component model equations as constraints (Jaluria, 
1998; Arora, 2004). Furthermore, these equations must be explicit, and the involved variables must be treated together 
with the decision variables, thus significantly increasing the dimension of the problem. Recently, Vieira et al. (2004, 
2005, 2006) developed techniques which integrate optimization algorithms with a process simulator, such that the 
thermodynamic constraints are dealt with by the program. In any case, a carefully selected optimization algorithm 
should be employed, such that the whole optimization task is accomplished efficiently. In fact, even for dealing with the 
relatively simple CGAM cogeneration system, tens of variables are required; note that the number of variables rapidly 
increases as the system becomes more complex, as in real energy production systems. 

To aid the selection of an efficient optimization method applicable to an energy system, in this paper we effect a 
comparative study with three different approaches: genetic, gradient, and hybrid (Padilha, 2006). Genetic algorithms are 
relatively easy to code and robust, i.e., will less likely stop at local optima, but they tend to be computationally 
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expensive. Gradient methods are effective optimization techniques, however they require the calculation of derivatives, 
which is not always possible, and they are strongly dependent on the initial guess, mainly when the problem has many 
local optima, as energy systems. Hybrid methods, on the other hand, attempt to combine the efficiency of gradient 
methods with the robustness of genetic algorithms. Here, specifically, we present the implementation of three different 
approaches for the mathematical optimization of a reference cogeneration system. The first approach is based on 
genetic operators. The second approach is the BFGS (Broyden-Fletcher-Goldfarb-Shanno) gradient method. The third 
approach is hybrid, and is a combination of the previous two methods. The coded algorithms are applied to the 
benchmark CGAM cogeneration problem. A comparative analysis of the generated results reveals the advantages and 
disadvantages of each method, and sheds light on the issue of the selection of algorithms to be used in the optimization 
and improvement of energy systems (Vieira, 2003; Vieira et al., 2004, 2005, 2006). 
 
2. The CGAM Problem 
 

As noted in the Introduction, in this paper we apply three different optimization methods to solve the benchmark 
CGAM problem (Tsatsaronis, 1994). The problem consists in the optimization of a reference cogeneration system, for 
which the thermodynamic, physical, and economic models are given. The equations of the thermodynamic and physical 
models are well-known, and are given in detail by Tsatsaronis (1994) and Vieira (2003); therefore, they will not be 
repeated here. Such equations, together with the system physical limits, represent the equality and inequality restrictions 
of the optimization problem. The CGAM problem, though small-scale, is typical of energy systems optimization, in that 
it is nonlinear, and has an objective function which does not behave smoothly over all the design domain. 

The CGAM system, shown in Figure 1, is a cogeneration system that produces fixed amounts of electrical power 
and saturated steam. The electricity production is 30 MW, and the saturated steam mass flow rate at 20 bar is 14 kg/s. 
The CGAM system consists of the following 5 components: air compressor, air preheater, combustor, gas turbine, and 
heat recovery steam generator (HRSG). The combustor fuel is natural gas with a lower heating value of 50000 kJ/kg. 
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Figure 1. The CGAM cogeneration system (HRSG is the heat recovery steam generator). 
 

The selected decision variables for the optimization problem are the air compressor pressure ratio, Rc, the 
compressor and turbine isentropic efficiencies, respectively ACη  and GTη , the temperature of the air at the inlet to the 
combustion chamber, T3, and the temperature of the combustion gases at the inlet to the gas turbine, T4. The restrictions 
on (i.e., the ranges which establish the limiting values for) the decision variables are: 7 § Rc § 27; 0.7 § ACη  § 0.9; 0.7 
§ GTη  § 0.9; 700 K § T3 § 1100 K; 1100 K § T4 § 1500 K. 

To evaluate costs of an energy system, one should consider the capital investment cost, the operation and 
maintenance costs, and the fuel cost. For the CGAM problem, because it serves as a reference for comparison of 
different optimization methodologies, a simplified economic model is assumed, based on the capital recovery factor, 
CRF (Tsatsaronis, 1994; Bejan et al., 1996). In this model, the total capital investment, TCI ($), of a system is given by 
the sum of all the purchased-equipment costs, PEC ($), of the components of the system multiplied by a factor β, as 
given by 
 

 k k k
k k k

TCI TCI PEC PEC PECβ β β= = = =∑ ∑ ∑  ,          (1) 



Proceedings of ENCIT 2006 - ABCM, Curitiba, Brazil, Dec. 5-8, 2006 - Paper CIT06-0263 
 

Kwhere  denotes the k1,...,k N= th component, and NK is the total number of system components. The purchased-
equipment cost of each component of the CGAM system is shown in Table (1). The symbols  
represent, respectively, the air, combustion products, and steam mass flow rates, U (kW/(m

,   and  (kg/s)a g sm m m
2ÿK)) is the overall heat 

transfer coefficient, LMTD (K) is the log mean temperature difference, and Q  (kW) is the heat transfer rate. 
 

Table 1. Equations for the purchased-equipment costs of the components of the CGAM system. 
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The capital recovery factor, CRF, is given by 
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where i and l are the interest rate and the useful system life, respectively. The fuel cost rate ($/h) is given by 
 

F F FC c m LHV= ,              (3) 
 
where  ($/kJ),  (kg/h) and LHV (kJ/kg) represent, respectively, the specific cost, the mass flow rate and the lower 
heating value of the fuel. 

Fc Fm

The total cost rate is the sum, on a rate basis, of the capital investment cost, the operation and maintenance costs, 
and the fuel cost; in fact, the total cost rate is the objective function, OF ($/h), to be minimized when solving the 
CGAM problem, and is written as (Tsatsaronis, 1994; Bejan et al., 1996) 
 

( )
1

F
1

1
NK

kNK
k

k
k

CRF TCI

OF Z C c m LHV

γ

τ
=

=

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠= + = +
∑

∑ F F ,         (4) 

 
where τ  is the amount of hours that the system operates in one year, and γ  is the maintenance factor. The values 
prescribed for the parameters of the economic model are: 1β = , i = 12.7%, l = 10 years, 8000τ = hours and 0.06γ = . 

In Table (2), the optimal values for the decision variables and objective function of the CGAM problem, taken 
from Tsatsaronis (1994), are shown. 
 

Table 2. Optimal values for the decision variables and objective function of the CGAM problem (Tsatsaronis, 1994). 
 

 Rc ACη  ( )3 KT  GTη  ( )4 KT  ( ) $/hOF  
Optimal value 8.5234 0.8468 914.28 0.8786 1492.63 1303.23 
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3. The Genetic Algorithm 
 

The mathematical optimization methods that are based on the ideas of populational genetic evolution are derived 
from the seminal work by John Holland, who published the book “Adaptation in Natural and Artificial Systems” in 
1975 (Holland, 1975). Since then, many variants of the original idea have been studied and applied successfully to 
different areas of knowledge. Generally, methods which attempt to mimic biological mechanisms are termed 
evolutionary methods. 

In the genetic algorithm – GA – that we implement (Padilha, 2006), each iteration (generation) works with a set of 
possible solutions to the problem at hand, here the CGAM problem. Each of these solutions (individuals) have been 
real-coded in a vector (chromosome) composed by the five decision variables (genes) of the problem: Rc, T3, T4, ηGT, 
and ηAC. Each individual is associated with a fitness (aptitude) value, which for the CGAM problem corresponds to the 
value of the objective function (total cost rate, $/h). In this manner, the individuals who are best fit in a population are 
the ones, who possess the lower values of the total cost rate; thus, after the evolution of some generations, at the end of 
the optimization process, the fittest individual constitutes the problem optimal solution. 

The basic idea of the current algorithm is represented in Figure 2. Initially, a population is generated randomically. 
Next, the selection operator chooses, arbitrarily and not considering their fitness, two individuals of the population, who 
are designated as potential parents, i.e., who will possibly mate. 

A real number in the interval [0,1) is then drawn from a uniform probability density function, so as to verify 
whether or not the mating of the potential parents will occur. If the number falls outside the range for crossover, defined 
through an input probability of occurrence of a crossover, the parents will pass directly on to the new population 
without any alteration. In the opposite case, the crossover operator is applied to generate two descendants or children. 
The crossover operator consists in a combination of genes (decision variables) of the parents passing on to the 
descendants. The main objective of the occurrence of crossover is to promote the evolution of the population, leading to 
individuals who are more fit, and to munition the optimization procedure with a certain degree of convergence. 

After the action of the crossover operator, another real number in the interval [0,1) is drawn from a uniform 
probability density function, this time to verify whether or not an arbitrary alteration in the genetic material of the new 
individuals of the population will take place. If the number falls inside the range for mutation, defined through an input 
probability of occurrence of a mutation, the mutation operator is applied. The mutation operator consists in the 
alteration of some of the genes of the generated descendants, resulting in new individuals different from the original. 
Mutation introduces diversity in the population, and permits the GA to escape from stagnation pressures. The mutation 
operator equips the GA with a solution search potential in all of the design domain, thus enabling the algorithm to 
escape from local minima. 

The two fittest individuals among the generated descendants and their parents are then selected as members of the 
population of the new generation. The algorithm proceeds with the selection-crossover-mutation sequence, promoting 
the evolution of the population along the generations, until a prescribed stopping criterion is satisfied. The criterion 
establishes when an individual is found, whose fitness is sufficiently close to the optimum of the objective function. 
 

 
Figure 2. Schematic of the genetic algorithm. 
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4. The BFGS Gradient Method 
 

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) Method is classified as a quasi-Newton method. These kinds of 
methods try to calculate the Hessian appearing in the Newton-Raphson method in a manner that does not involve 
second order derivatives. Usually they employ approximation for the Hessian based only on first order derivatives. 
Thus, they have a slower convergence rate than the Newton-Raphson method, but they are computationally faster. 

As in Colaço et al. (2005, 2006), let us define a new matrix H, which is an approximation to the inverse of the 
Hessian as 
 

12 ( )
−

⎡≅ ⎣
k kUH D x               (5) 

 
where D2U(x) is the Hessian (matrix of 2nd order derivatives). 

Thus, the quasi-Newton methods follow the general iterative procedure given by (Colaço et al., 2006) 
 

1k k k kα+ = +x x d               (6) 
 
where the direction of descent is given by 
 

( )1k k U+ = − ∇d H x               (7) 

 
The matrix H for the BFGS method is iteratively calculated as (Fox, 1971) 

 
1 1k k k k− −= + +H H M N   for k = 1,2,… 

k =H   for k = 0              (8) 
 
where I is the identity matrix. Note that, for the first iteration, the quasi-Newton method starts as the Steepest Descent 
method. 

Note that, since the matrix H is iteratively calculated, some errors can be propagated and, in general, the method 
needs to be restarted after certain number of iterations (Fox, 1971). Also, for this method, the matrices M and N are 
calculated as 
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Figure 3 shows schematically the iterative procedure for the BFGS optimization method (Colaço et al., 2006). 

 
5. The Hybrid Genetic-BFGS Method 
 

The purpose of the hybrid algorithm of this work (Padilha, 2006) is to couple the robustness of the genetic 
algorithm, which visits all of the search domain of the problem at hand, with the optimization efficiency of the BFGS 
gradient method, which has a fast speed of convergence (i.e., a relatively small number of required iterations), and is 
easy to implement and adjust. The coupling also permits, that the hybrid algorithm looks for optimal solutions (through 
the BFGS) without getting stuck in local minima (through the GA). Similar works are available in the literature 
(http://www.ads.tuwien.ac.at/research/HybridOptimization/; see also the discussion and references in Colaço et al., 
2005, 2006), however they utilize different hybrid schemes, involving the coupling of various types of evolutionary 
algorithms with the BFGS and other methods. 

The present hybrid strategy consists, first, in the generation of a population, and, next, in the evolution of the 
population through the GA, as described in section 3 and shown in Figure 2. However, at the end of each generation 
(iteration), only the standard deviation of the aptitudes (objective function values) of the newly generated population 
individuals is evaluated. If the standard deviation reaches a prescribed minimum value, the fittest individual (i.e., the 
one with the best aptitude, or the lowest value for the objective function) of this population is passed on (as an initial 
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guess) to the BFGS method. This condition on the standard deviation indicates that (members of) the population should 
already be in the vicinity of an optimal value for the objective function, and it is expected that the BFGS engine will 
reach it with less effort than the GA. 

In this way, the fittest individual now serves as an initial point, x0, for the BFGS method, and the optimization then 
proceeds as described in section 4 and shown in the diagram of Figure 3. After convergence is reached in the BFGS 
step, the improved individual returns to the population. Once again, optimization through the GA is (re)initialized, to 
search for a new region which might contain an individual with a better aptitude than previously encountered. The 
hybrid algorithm evolves in this manner, commuting back and forth between the GA and the BFGS, until a prescribed 
stopping criterion is satisfied. 

The parameters originally adjusted for the GA and the BFGS schemes are kept for the hybrid method. The new 
parameters introduced with the hybrid algorithm are the minimum standard deviation of the population aptitude at the 
end of each generation of the GA, and the maximum number of commutations between the GA and the BFGS. Of 
course, it is expected that working values for these parameters should vary from problem to problem. For the CGAM 
problem tackled in this work, the values adopted for the minimum standard deviation and the maximum number of 
commutations are, respectively, 10-3 and 1 (see discussion in Padilha, 2006). 

Separate tests conducted to adjust the various parameters indicate that the minimum standard deviation is directly 
related to the stopping criterion of the search through the GA (Padilha, 2006). Values for the standard deviation of the 
population aptitude that are too low, induce a large number of generations in the GA before the hybrid method 
commutes to the BFGS engine. In these cases, it is verified that the BFGS, in general, can only find better values for the 
aptitude in the first few iterations. By the same token, subsequently, the GA cannot evolve, because the standard 
deviation of the aptitude is already less than the minimum prescribed. In this case, the commutations between the GA 
and the BFGS do not have any beneficial effect, they only increase the number of evaluations of the objective function. 
On the other hand, values for the standard deviation of the population aptitude that are too high, may induce failure of 
the BFGS engine, because the initial point may lie in a non-smooth region of the search domain. The use of varying 
values for the standard deviation in the course of the evolution of the hybrid algorithm might be a way to circumvent 
this problem, i.e., to perform the commutations in an optimal way. 
 
 

 
 
 

Figure 3. Schematic of the iterative procedure for the BFGS method (Colaço et al.,  2006). 
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6. Results and Analysis 
 

In this section we present, for each of the three different optimization approaches described earlier, the results 
obtained for the decision variables, objective function, number of iterations, NIT, and number of evaluations of the 
objective function, NOF, when we solve the CGAM problem. The methods that we employ, genetic, BFGS, and hybrid, 
are designated as GA, BFGS, and HM, respectively. Our results are presented in Table (3) together with the 
corresponding reference values, denoted CGAM (Tsatsaronis, 1994), taken from Table (2). For each method, we also 
present in the table the relative difference dOF, defined as 
 

CGAM
OF

CGAM
100%

OF OF
OF

δ
−

= × .          (11) 

 
In Table (3) we observe that the values obtained for the objective function using the GA and HM approaches 

essentially coincide with the reference value, being off by no more than a relative difference of 0.037%, which is 
negligible for engineering purposes. However, the HM is a bit more efficient in terms of number of function evaluations 
required. Also, the values obtained for the decision variables are generally satisfactory (see discussion in Vieira (2003) 
and Vieira et al. (2006) regarding deviations in the optimal values of decision variables); the better values are obtained, 
again, with the GA and HM approaches. The BFGS presents the worst value for the objective funtion, however it is the 
fastest approach. As expected, the main disadvantage of the GA is the computational time (proportional to NOF), the 
largest of the three. 

In general, it is fair to conclude that the HM and GA approaches lead to satisfactory results, the former having 
presented itself as the most promising of the three. Because of the high frequency of discontinuities in the domain of the 
nonlinear CGAM problem, and the likely large number of local minima, the BFGS does not perform well. Thus, the 
performance of the HM is somewhat contaminated by that of the BFGS. The latter fact, together with the non-optimal 
commuting scheme, explain the modest improvement of the HM with respect to the GA: 8% less computational effort. 
Overall, of the three methods, the HM has turned out to be the best, albeit requiring some effort to adjust the control 
parameters of the two coupled methods (GA and BFGS). It is also expected that the HM can be further improved, by 
considering different coupling schemes. 

 
Table 3. Results for the CGAM optimization problem using genetic, BFGS, and hybrid methods. 

 
Results \ Methods GA BFGS HM CGAM 

Rc 8.9073 11.9898 8.9073 8.5234 

ACη  0.8454 0.8513 0.8434 0.8468 

T3 (K) 908.46 877.64 908.46 914.28 
GTη  0.8795 0.8856 0.8802 0.8786 

 
 
Decision 
variable 

T4 (K) 1487.94 1493.02 1487.94 1492.63 
OF ($/h) 1303.67 1322.48 1303.71 1303.23 
dOF (%) 0.034 1.48 0.037 0 
Number of OF 
evaluations, NOF

3891 1591 3580 - 

Number of 
iterations, NIT

9 7 9 - 
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