TRANSFERÊNCIA DE CALOR E PERDA DE CARGA EM EVAPORADORES NO-FROST

Cláudio Melo Luiz Gustavo Pereira Joel Beng Universidade Federal de Santa Catarina Departamento de Engenharia Mecânica 88040-900 – Florianópolis – SC Fone: 48 234 5691 - Fax: 48 234 5166 melo@polo.ufsc.br

Resumo. Neste trabalho desenvolveu-se um aparato e um procedimento experimental para avaliar o desempenho termo-hidráulico de evaporadores para refrigeradores no-frost. O aparato desenvolvido é composto por um tunel de vento para medir a taxa de transferência de calor do lado do ar e por um sistema de circulação de água para medir a taxa de transferência de calor do lado do refrigerante. Testes foram realizados com trêss evaporadores de geometrias distintas sendo os resultados expressos através dos fatores f de atrito e j de Colburn, ambos em função do numero de Reynolds do escoamento. Analises comparativas com outros trabalhos disponíveis na literatura são também apresentas e discutidas.

Palavras chave: evaporador, trocador de calor, no-frost, túnel de vento.

1. Introdução

O resfriamento do ar em refrigeradores que utilizam degelo automático se dá predominantemente por convecção forçada em evaporadores do tipo tubo-aleta. Apesar da relativa abundância de artigos na literatura abordando diferentes aspectos de transferência de calor e de perda de carga em trocadores de calor tubo-aleta, existe uma falta de informações para a classe específica de evaporadores utilizados em refrigeradores 'no-frost'.

Existem vários aspectos que diferenciam os evaporadores 'no-frost' dos evaporadores tubo-aleta convencionais. Primeiramente nestes evaporadores o escoamento do ar se dá no sentido da altura e não no sentido da profundidade do trocador de calor. Dessa forma a área frontal é muito menor e o número de tubos no sentido do escoamento muito maior do que nos evaporadores convencionais. Além disso, para evitar problemas de formação de gelo o espaçamento de aletas não é uniforme ao longo do trocador e é muito mais largo do que nos trocadores de calor convencionais. A vazão de ar em circulação nesses evaporadores também é menor do que a dos evaporadores convencionais (tipicamente na faixa de 50 m³/h).

Em face do exposto torna-se evidente a necessidade de estudos visando a avaliação do comportamento termohidráulico desse tipo de trocador de calor. Lee *et al.* (2002), por exemplo, compararam o desempenho de evaporadores para refrigeradores no-frost, utilizando uma bancada experimental baseada num túnel de vento e num circuito de circulação de água. Janssen *et al.* (2000), realizaram um trabalho semelhante, também com um túnel de vento, mas utilizando um circuito de refrigeração para controlar as condições de operação do evaporador. Karatas *et al.* (2000) substituíram o sistema de distribuição de ar de um refrigerador por dois túneis de vento, mantendo o evaporador, o plenum e o ventilador do sistema original. As condições de operação do evaporador foram variadas através de um sistema de circulação de água. Com base em resultados obtidos com quatro evaporadores, Karatas *et al.* (2000) propuseram uma correlação para os fatores de atrito e de Colburn, usando uma relação entre a área total do trocador e a área dos tubos (fator de aletamento). Wang e Chi (1999) construíram um aparato experimental baseado num túnel de vento aberto, utilizando também um circuito de água. Eles propuseram uma correlação para os fatores de atrito e de Colburn para os trocadores de calor testados.

No presente trabalho optou-se pela utilização de um túnel de vento aberto para o lado externo do trocador e por um sistema de circulação água para o lado interno. Tal aparato permite a caracterização de trocadores de calor tubo-aleta para refrigeradores no-frost, tanto em relação à taxa de transferência de calor quanto à perda de carga.

2. Aparato Experimental

O aparato experimental pode ser dividido em duas partes: um túnel de vento aberto e um sistema de circulação de água. O túnel de vento foi construído com base nas especificações das normas ANSI/ASHRAE 37 (1988), ANSI/ASHRAE 41.2 (1987) e ANSI/ASHRAE 51 (1999).

Um ventilador de rotação variável, colocado na entrada do túnel de vento, fornece a vazão de ar necessária. A temperatura do ar na entrada do túnel de vento é controlada por uma resistência elétrica colocada na sucção do ventilador, a qual é controlada por um PID. O ar sai do ventilador através de canais direcionadores de fluxo, passando

em seguida por uma tela para homogeneização da velocidade. A temperatura do ar na entrada e na saída da seção de testes (evaporador) é medida por três termopares tipo T, brazados dentro de massas térmicas de cobre. A diferença de pressão do ar na entrada e na saída do evaporador é medida por um transdutor diferencial de pressão. As tomadas de pressão foram feitas com uma mangueira de plástico com micro furos, estrategicamente colocadas na entrada e na saída do trocador. No final do túnel o ar passa por mais um homogeneizador de velocidade, antes de passar por uma placa de bocais, que mede a vazão de ar em circulação a partir da indicação de um diferencial de pressão. A Figura 1 mostra uma vista superior do aparato experimental, juntamente com seus respectivos componentes.

Figura 1. Esquema do aparato experimental

O sistema de circulação de água funciona de acordo com o esquema mostrado na Figura 1. A temperatura da água é controlada por um banho termostático, o qual é controlado por um PID. A vazão de água em circulação é regulada por uma bomba de palhetas de vazão variável e medida por um medidor de vazão do tipo turbina. Após passar pelo evaporador a água retorna ao banho termostático. Um by-pass permite a substituição do evaporador sem a desativação do sistema de circulação de água. Filtros foram também instalados para proteger o medidor de vazão. As indicações de todos os transdutores foram lidas e convertidas por um sistema de aquisição de sinais. Maiores informações sobre o aparato experimental são fornecidas por Melo *et al.* (2004). A Figura 2 mostra uma foto da bancada e da secção de testes.

Figura 2. Foto da bancada (a) e da secção de testes (b)

3. Procedimento experimental

O aparato experimental é inicialmente ligado. Em seguida regula-se a vazão de ar em circulação e a temperatura do ar na entrada do túnel. Na seqüência o sistema de circulação de água precisa ser ajustado através de uma combinação da vazão e da temperatura da água na entrada do trocador. Esse ajuste depende da vazão e da temperatura do ar na entrada do túnel e do diferencial de temperatura requerido para o lado da água. O sistema de circulação de água entra em regime permanente, em média, após 10 minutos. A temperatura do ar na entrada do túnel exige um tempo de estabilização entre 50 a 80 minutos.

Para determinar se um teste está ou não em regime permanente utiliza-se o seguinte critério. Adquirem-se os dados ao longo de um período de 30 minutos. Ajusta-se uma reta por estes pontos, determinando os seus coeficientes linear e angular. A partir desses coeficientes determinam-se os valores da variável no início e no final do período de aquisição.

A diferença entre tais valores deve ser inferior a 3 desvios padrões para que o teste possa ser considerado em regime permanente. Atingido o regime permanente são efetuados processo de médias dos valores lidos, gerando assim as variáveis independentes da presente análise. A partir de tais variáveis torna-se possível o cálculo das taxas de transferência de calor pelo lado do ar e da água (ver secção 4). Um teste só é considerado válido se esses valores se mantiveram dentro de uma faixa de \pm 5%, em relação ao valor médio, como exigido pela normalização pertinente.

4. Processamento dos dados

A taxa de transferência de calor no evaporador, \dot{Q}_m , foi avaliada através de uma média envolvendo os valores medidos pelo lado da água, \dot{Q}_w , e do ar, \dot{Q}_{ar} , como indicado a seguir:

$$\dot{Q}_{w} = \dot{m}_{w} \cdot C_{p,w} \cdot (T_{w,i} - T_{w,o})$$
(1)

$$\dot{Q}_{ar} = \dot{m}_{ar} \cdot C_{p,ar} \cdot (T_{ar,o} - T_{ar,i}) \tag{2}$$

$$\dot{Q}_m = \frac{\dot{Q}_{ar} + \dot{Q}_w}{2} \tag{3}$$

Onde os símbolos \dot{m} , $T \in C_p$ representam respectivamente fluxo de massa, temperatura e calor específico. Os subíndices *w*, *ar*, *i*, *o* representam respectivamente água, ar, entrada e saída.

A condutância global do trocador, UA, pode então ser determinada da seguinte forma:

$$UA = \frac{\dot{Q}_m}{\Delta T_{ML} \cdot F} \tag{4}$$

Onde ΔT_{ML} simboliza a diferença média logarítmica de temperatura para um trocador de calor em contra corrente e F é um valor de correção empregado para outras configurações.

Considerando que os testes foram realizados com uma diferença de temperatura entre a entrada a saída da água do trocador de aproximadamente 0,5°C e que o numero de passes de tubo na direção do escoamento é 10, adotou-se um valor unitário para F (Karatas *et al.*, 2000)

O coeficiente de transferência de calor no lado externo do trocador pode ser determinado através de uma associação de resistências térmicas, na forma indicada a seguir:

$$\frac{1}{UA} = \frac{1}{\eta_o h_o A_o} + \frac{1}{2} \ln \left(\frac{D_o}{D_i} \right) \frac{D_o}{k_t A_t} + \frac{1}{h_i A_i}$$
(5)

A primeira parcela do lado direito da Eq. (5) representa a resistência térmica por convecção do lado externo do evaporador, a segunda representa a resistência térmica por condução nos tubos e a terceira a resistência térmica por convecção no lado interno dos tubos. Os sub-índices *o, i, t* representam respectivamente lado externo, lado interno e parede do tubo. Os índices *h, D, A* e *k* representam respectivamente coeficiente de transferência de calor por convecção, diâmetro do tubo, área e condutividade térmica.

A eficiência da superfície, η_o , pode ser expressa como:

$$\eta_o = 1 - \frac{A_f}{A_o} (1 - \eta) \tag{6}$$

Onde η , A_f e A_o , representam respectivamente eficiência de aleta, área total de aletas e área total da superfície externa.

A eficiência de aleta é calculada a partir da geometria, ϕ , da espessura, δ_f , e da condutividade térmica das aletas k_f , da seguinte forma:

$$\eta = \frac{\tanh(mr_i\phi)}{mr_i\phi} \tag{7}$$

Onde r_i representa o raio interno dos tubos e

$$m = \sqrt{\frac{2h_o}{k_f \delta_f}} \tag{8}$$

Todos os trocadores testados neste trabalho possuem aletas continuas, ou seja, englobam uma ou mais fileiras de tubos na direção vertical. Neste caso é impossível se obter uma expressão analítica para a eficiência da aleta e, portanto, métodos aproximados se tornam necessários. Schmidt (1949) propôs um método baseado em aletas imaginárias, com limites definidos por linhas equipotenciais onde o gradiente de temperatura é nulo. A idéia é selecionar uma aleta circular de raio equivalente, R_{eq} , de eficiência igual a das aletas formadas pelas linhas equipotenciais (ver Figura 3).

$$\phi = \left(\frac{R_{eq}}{r_i} - 1\right) \cdot \left(1 + 0.35 \ln\left(\frac{R_{eq}}{r_i}\right)\right)$$
(9)

Para a aleta hexagonal, indicada na Figura 2, tem-se:

$$\frac{R_{eq}}{r_i} = 1.27 \cdot \frac{X_M}{r_i} \left(\frac{X_L}{X_M} - 0.3 \right)^{1/2}$$
(10)

Onde as relações geométricas indicadas na equação anterior podem ser obtidas através das distâncias transversais P_t e longitudinais P_l , na forma indicada a seguir (ver Figura 3):

$$X_L = \sqrt{\left(\frac{P_l}{2}\right)^2 + \left(\frac{P_l}{2}\right)^2} \tag{11}$$

$$X_M = \left(\frac{P_t}{2}\right) \tag{12}$$

O coeficiente interno de transferência de calor, h_i , foi avaliado através da correlação semi-empírica, proposta por Gnielinski (1976),

$$h_i = \left(\frac{k}{D}\right) \cdot \frac{(\text{Re}_{Di} - 1000) \operatorname{Pr}(f_i/2)}{1 + 12.7\sqrt{f_i/2} (\operatorname{Pr}^{2/3} - 1)}$$
(13)

Onde f_i representa o fator de atrito, expresso por:

$$f_i = (1,58\ln(\operatorname{Re}_{Di}) - 3,28)^{-2}$$
(14)

$$\operatorname{Re}_{Di} = \rho V D_i / \mu \tag{15}$$

Onde os símbolos V, Re e Pr representam respectivamente velocidade do escoamento, numero de Reynolds e número de Prandtl. A densidade ρ , viscosidade μ e condutividade térmica k foram obtidas na temperatura média da água.

Figura 3. Aleta formada por linhas equipotenciais (Schmidt, 1949)

Uma vez obtido o coeficiente de troca de calor por convecção do lado externo, h_o , (ver Eq. 5) pode-se derivar o fator *j* de Colburn, da seguinte forma:

$$j = \frac{h_o}{\frac{\dot{m}_{ar}}{A_{\min}} \cdot Cp_{ar}} \cdot \Pr_{ar}^{2/3}$$
(16)

A perda de carga através do trocador foi expressa através do fator de atrito f, dado pela equação a seguir (Kays e London (1984):

$$f = \frac{A_{\min}}{A_o} \cdot \frac{\rho_{ar,m}}{\rho_{ar,i}} \left[\frac{2 \cdot \Delta P_{evap} \cdot \rho_{ar,i}}{\left(\frac{\dot{m}_{ar}}{A_{\min}} \right)^2} - \left(\frac{\rho_{ar,i}}{\rho_{ar,o}} - 1 \right) \cdot \left(1 + \sigma^2 \right) \right]$$
(17)

Onde que os símbolos ΔP_{evap} e σ representam respectivamente a perda de carga no trocador e a relação entre a área mínima de passagem do ar A_{\min} e a área de face. O sub-índice m representa um valor médio entre a entrada e a saída do trocador.

Os fatores f de atrito e j de Colburn serão posteriormente correlacionados com o número de Reynolds do lado do ar, expresso por:

$$Re = \dot{m}_{ar} D_o / \mu_{ar} A_{\min}$$
⁽¹⁸⁾

5. Resultados experimentais

A Tabela 1 mostra a geometria dos trocadores utilizados no presente trabalho. Deve-se mencionar que os tubos de todos os trocadores são alinhados horizontalmente e desalinhados verticalmente.

Lee *et al.* (2002) investigaram o desempenho de três tipos de trocadores de calor geralmente empregados em refrigeradores domésticos, quais sejam: tubos alinhados com aletas do tipo 'spine', tubos desalinhados com aletas planas e contínuas e tubos alinhados com aletas planas discretas. O evaporador formado com tubos desalinhados e com aletas planas e contínuas, semelhante ao evaporador 3 deste trabalho, possuía as seguintes características geométricas: dimensões de 50x190x320mm, 10 filas de tubos na vertical, 2 tubos na horizontal, área de tubo de $0,159 \text{ m}^2$, área de aletas de $0,892 \text{ m}^2$ e área total de $1,05 \text{ m}^2$. Para esse evaporador Lee *et al.* (2002) obtiveram a seguinte correlação entre o fator *j* de Colburn e o numero de Reynolds:

$$j = 0,162 \,\mathrm{Re}^{-0,390} \tag{19}$$

	1	2	3
Evaporador No.			
N° de fileiras de			
tubos vertical	10	10	10
(altura)			
Nº de tubos na			
horizontal	2	2	2
(profundidade)			
Diâmetro externo do	7,95	7,95	7,95
tubo [mm]			
Largura [mm]	501,7	310,8	305,0
Profundidade [mm]	59,5	59,5	59,5
Altura [mm]	20,4	222,5	221,0
Área externa de tubo	0 2503	0 1562	0 1524
[m ²]	3,2000	0,1002	•,102 ·
Área de aletas	1,149	0,5501	0,7310
[m ²]			
Área externa total	1,399	0,7063	0,8833
[m ²]			

Tabela1. Características geométricas dos evaporadores

Os resultados obtidos com o evaporador 3 são comparados com a correlação proposta por Lee et al. (2002) na Figura 4.

Figura 4. Comparação entre os resultados do evaporador 3 com a correlação de Lee *et al.* (2002) Pode-se verificar que a correlação de Lee *et al.* (2002) superestima os dados experimentais em toda a faixa de número de Reynolds, com uma diferença máxima de 20%. Deve-se mencionar que embora as geometrias dos dois trocadores sejam bastante idênticas, o trocador de calor testado por Lee *et al.* (2002) possui uma área de aletas superior a do evaporador 3, fato esse não contemplado pela correlação proposta.

Os resultados obtidos neste trabalho, em termos dos parâmetros j e f, são comparados com os valores obtidos por Karatas *et al.* (2000), respectivamente nas Figuras 5 e 6. Eles testaram 4 evaporadores com as seguintes características geométricas: dimensões de 50x248x535mm, 13 filas de tubos na vertical, 2 tubos na horizontal e área de tubo de 0,3472 m². Cada evaporador foi montado com um espaçamento de aletas diferente o que conseqüentemente gerou trocadores com diferentes áreas totais. Os trocadores de calor foram testados dentro da seguinte faixa de numero de Reynolds: $300 \le \text{Re} \le 1000$. Os dados experimentais, expressos através dos fatores f de atrito e j de Colburn, foram

correlacionados com o número de Reynolds e com o fator de aletamento, ε , definido com a razão entre a área total do trocador e a área externa dos tubos, na forma mostrada a seguir:

$$j = 0,138 \operatorname{Re}^{-0,281} \varepsilon^{-0,407}$$
(20)

$$f = 0,152 \,\mathrm{Re}^{-0,164} \,\varepsilon^{-0,331} \tag{21}$$

Figura 5. Comparação entre a correlação proposta por Karatas et al. (2000) e os dados experimentais

A Figura 5 mostra que a correlação proposta por Karatas *et al.* (2000) para o fator *j* de Colburn, reproduz os dados experimentais obtidos com os evaporadores 2 e 3, com diferenças máximas de respectivamente 27% e 11%. Para o evaporador 1 tal diferença alcança o valor de 55%. Isso indica que a introdução do fator de aletamento não foi capaz de expandir completamente a aplicabilidade da correlação proposta para outras geometrias. Os evaporadores 1 e 3, por exemplo, possuem o mesmo fator de aletamento, mas características geométricas e comportamentos bastante distintos. A introdução de outros parâmetros geométricos na correlação torna-se, portanto, necessária como forma de tornar a sua aplicação mais geral.

A Figura 6 mostra que a correlação proposta por Karatas *et al.* (2000) para o fator f de atrito não reproduz os dados experimentais obtidos nesse trabalho, especialmente para os evaporadores 2 e 3. Para o evaporador 1, que possui área de face similar aos evaporadores testados por Karatas *et al.* (2000), foram observadas diferenças menores. Deve-se mencionar ainda que além de possuírem uma geometria diferente, os evaporadores utilizados nesse trabalho foram testados com a resistência de degelo montada, o que gerava uma perda de carga adicional.

Figura 6. Comparação entre a correlação proposta por Karatas et al. (2000) e os dados experimentais

6. Conclusões

Um aparato experimental para avaliar o desempenho termo-hidráulico de evaporadores do tipo tubo-aleta, para refrigeradores no-frost, foi projetado, construído, calibrado e utilizado no presente trabalho. Um procedimento específico para tratamento dos dados experimentais foi também desenvolvido.

Três evaporadores distintos foram testados em diferentes condições de funcionamento, obtendo-se dados para expressar o desempenho de cada evaporador, em termos dos fatores f de atrito e j de Colburn, como funções do número de Reynolds.

Comparações foram realizadas com a correlação proposta por Lee *et al.* (2002) obtendo-se diferenças máximas de 20% para o fator *j* de Colburn. Comparações foram também realizadas com a correlação proposta por Karatas *et al.* (2000), tanto em termos do fator *f* de atrito como do fator *j* de Colburn. Percebeu-se que mesmo com a inclusão de um termo adicional para levar em conta a variação da área de aleta, a correlação proposta por Karatas *et al.* (2000) não foi capaz de reproduzir adequadamente os dados experimentais gerados neste trabalho, particularmente o fator de atrito, em função das diferenças de geometria existentes.

As equações disponíveis na literatura para evaporadores no-frost são, portanto, específicas para um determinado grupo de experimentos, não podendo ser aplicadas a trocadores de calor com geometrias diversas. Experimentos são então necessários para gerar correlações que contemplem além do número de Reynolds outros parâmetros geométricos.

7. Agradecimentos

Os autores expressam os seus agradecimentos a Whirlpool S.A. pelo apoio a este projeto de pesquisa, em particular ao senhor C. L. Hermes. Agradecimentos também devem ser prestados aos Srs. R. Piucco, A. Berwanger e P. J. Waltrich pelo auxílio prestado durante o desenvolvimento do aparato experimental.

8. Referências

ANSI/ASHRAE 37, 1988, Methods of Testing for Rating Unitary Air-Conditioning and Heat Pump Equipment.

- ANSI/ASHRAE 41.2, 1987 (RA 92), Standard Methods for Laboratory Airflow Measurement.
- ANSI/ASHRAE 51, 1999, Laboratory Methods of Testing Fans for Aerodynamic Performance Rating.
- Gnielinski, V., 1976, "New equations for heat and mass transfer in turbulent pipe channel flow", *International Chemical Enginnering*, vol. 16, pp. 359-368.
- Janssen, M. Wijnstekers, J., Becks, P., Kuijpers, L., "In-situ evaporator heat transfer experiments for domestic refrigerators", *Eighth International Refrigeration and Air Conditioning Conference at Purdue*, West Lafayette, Indiana – USA, July 25-28.
- Karatas, H., Dirik, E., Derbentli, T., 2000, "An experimental study of air-side heat transfer and friction factor correlations on domestic refrigerator finned-tube evaporator coils", *Eighth International Refrigeration and Air Conditioning Conference at Purdue*, West Lafayette, Indiana – USA, July 25-28.
- Kays, W. M., London, A. L., 1984, Compact Heat Exchangers, 3^a edição, McGraw-Hill, New York.
- Lee, T-H., Lee, J-S, Oh, S-Y, Lee, M-Y, 2002, "Comparison of air side heat transfer coefficients of several types of evaporators of household freezer/refrigerators", *Ninth International Refrigeration and Air Conditioning Conference at Purdue*, West Lafayette, Indiana – USA, July 16-19.
- Melo, C., Boeng, J., Piucco, R. O., 2004, *No-Frost Evaporators Thermal & Hydraulic Performance*, POLO/Multibrás, Relatório interno, UFSC, Florianópolis, SC, Brazil.
- Schmidt, Th. E., 1949, "Heat transfer calculations for extended surfaces", Refrigerating Engineering, pp. 351-357.
- Wang, C-C., Chi, K-Y., 1999, "Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part I: new experimental data", Int. J. of Heat and Mass Transfer, 2681-2691.

HEAT TRANSFER AND PRESSURE DROP IN NO-FROST EVAPORATORS

Cláudio Melo Luiz Gustavo Pereira Joel Boeng

Universidade Federal de Santa Catarina Departamento de Engenharia Mecânica 88040-900 – Florianópolis – SC Fone: 48 234 5691 - Fax: 48 234 5166 *melo@polo.ufsc.br*

Abstract

An experimental apparatus and test procedure for evaluating the thermal-hydraulic behavior of no-frost evaporators were developed. The apparatus is composed by a wind tunnel for measuring the air side heat transfer rate and by a water circulating system for measuring the refrigerant side heat transfer rate. Tests were performed with three evaporators and the results were expressed in terms of the friction f and Colburn j factors both as functions of the Reynolds number. Comparative analysis with other works available in the literature are also performed and discussed.

Keywords: evaporator, heat exchanger, no-frost, wind tunnel.