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Abstract. This work presents derivations of mass transport for turbulent buoyancy flows in permeable  structures. Equations are 
developed following two distinct procedures. The first method considers time averaging of the local instantaneous mass transport 
equation before the volume average operator is applied. The second methodology employs both averaging operators but in a 
reverse order. This work is intended to demonstrate that both approaches lead to equivalent equations when one takes into account 
both time fluctuations and spatial deviations of velocity and mass concentration. A modeled form for the final transport equation is 
presented where turbulent mass transfer with buoyancy is based on a macroscopic version of the ε−k  model.  
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1. Introduction  

 
The study of double-diffusive natural convection and buoyancy mass transport in porous media has many 

environmental and industrial applications, including grain storage and drying, petrochemical processes, oil and gas 
extraction, contaminant dispersion in underground water reservoirs, electrochemical processes, etc (Mamou et al., 1995, 
Mohamad & Bennacer, 2002, Goyeau et al., 1996, Nithiarasu et al., 1997, Mamou et al., 1998, Bennacet et al., 2001, 
Bennacet et al., 2003). In some specific applications, the fluid mixture may become turbulent and difficulties arise in 
the proper mathematical modeling of the transport processes under both temperature and concentration gradients. 

Modeling of macroscopic transport for incompressible flows in rigid porous media has been based on the volume-
average methodology for either heat Hsu & Cheng 1990 or mass transfer (Bear  1972, Bear & Bachmat, 1967, Whitaker 
, 1966, Whitaker , 1967). If time fluctuations of the flow properties are considered, in addition to spatial deviations, 
there are two possible methodologies to follow in order to obtain macroscopic equations: a) application of time-average 
operator followed by volume-averaging (Masuoka & Takatsu, 1996, Kuwahara et al., 1996, Kuwahara & Nakayama, 
1998, Nakayama & Kuwahara, 1999), or b) use of volume-averaging before time-averaging is applied (Lee & Howell, 
1987, Wang & Takle, 1995, Antohe & Lage, 1997, Getachewa et al., 2000). This work intends to present a set of 
macroscopic mass transport equations derived under the recently established double decomposition concept Pedras & 
de Lemos, 2000, 2001a, b and c, through which the connection between the two paths a) and b) above is unveiled. That 
methodology, initially developed for the flow variables, has been extended to heat transfer in porous media where both 
time fluctuations and spatial deviations were considered for velocity and temperature Rocamora & de Lemos, 2000. 
Buoyancy flows de Lemos & Braga, 2003 and mass transfer de Lemos & Mesquita, 2003 have also been investigated. 
Recently, a general classification of all proposed models for turbulent flow and heat transfer in porous media has been 
published de Lemos & Pedras, 2001. Here ,buoyancy mass transport flow in porous media is considered. 

 
2.  LOCAL INSTANTANEOUS TRANSPORT EQUATION 
 

The steady-state microscopic instantaneous transport equations for an incompressible binary fluid mixture with 
constant properties are given by: 

 
 0=⋅∇ u            (1) 

 guuu ρµρ +∇+−∇=⋅∇ 2)( p          (2) 
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 lll Rm ρρ  = ) ( Ju +⋅∇           (3) 

where u  is the mass-averaged velocity of the mixture, ∑=
l

lluu m , lu  is the velocity of species l , lm  is the mass 

fraction of component l , defined as ρρll =m , lρ  is the mass density of species l  (mass of l  over total mixture 
volume), ρ  is the bulk density of the mixture ( ∑=

l
lρρ ), p  is the pressure, µ  is the fluid mixture viscosity, g  is the 

gravity acceleration vector. The generation rate of species l  per unit of mixture mass is given in (3) by lR . 
An alternative way of writing the mass transport equation is using the volumetric molar concentration lC  (mol of 

l  over total mixture volume), the molar weight lM (g/mol of l ) and the molar generation/destruction rate ∗
lR  (mol of 

l  /total mixture volume), giving: 
 

 ∗+⋅∇ lllll RMCM  = ) ( Ju          (4) 

Further, the mass diffusion flux lJ  (mass of l  per unit area per unit time) in (3) or (4) is due to the velocity slip of 
species l , 
 

 llllllll CDMmD ∇−=∇−=−= ρρ )( uuJ         (5) 

where lD  is the diffusion coefficient of species l  into the mixture. The second equality in equation (5) is known as 
Fick’s Law, which is a constitutive equation strictly valid for binary mixtures under the absence of any additional 
driving mechanisms for mass transfer Hsu & Cheng 1990. Therefore, no Soret or Dufour effects are here considered. 

Rearranging (4) for an inert species, dividing it by lM  and dropping the index l  for a simple binary mixture, one 
has, 
 )( = ) ( CDC ∇⋅∇⋅∇ u           (6) 

If one considers that the density in the last term of (2) varies with concentration only, for buoyancy driven flows, 
the Boussinesq hypothesis reads, after renaming this density Cρ , 

 
 )](1[ refCC CC −−≅ βρρ           (7) 

where the subscript ref indicates a reference value and Cβ  is the solute expansion coefficient, defined by, 
 

 
Tp

C C ,

1
∂
∂

−=
ρ

ρ
β           (8) 

Equation (7) is an approximation of (8) and shows how density vary with concentration in the body force term of 
the momentum equation. 

Further, substituting (7) into (2), one has, 
 

 )](1[)( 2
refCCp −−+∇+∇−=⋅∇ βρµρ guuu        (9) 

Thus, the momentum equation becomes, 
 

 ])([)()( 2*
refC CCp −−∇+∇−=⋅∇ βρµρ guuu        (10) 

where gρ−∇=∇ pp *)(  is a modified pressure gradient. 
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 As mentioned, there are, in principle, two ways that one can follow in order to treat turbulent flow in porous 
media. The first method applies a time average operator to the governing equation (3) before the volume average 
procedure is conducted. In the second approach, the order of application of the two average operators is reversed. Both 
techniques aim at derivation of a suitable macroscopic turbulent mass transport equation. 
 Volume averaging in a porous medium, described in detail in references (Slattery 1967, Whitaker , 1969, Gray & 
Lee, 1977), makes use of the concept of a Representative Elementary Volume (REV), over which local equations are 
integrated. After integration, detailed information within the volume is lost and, instead, overall properties referring to a 
REV are considered. In a similar manner, statistical analysis of turbulent flow leads to time mean properties. Transport 
equations for statistical values are considered in lieu of instantaneous information on the flow. 
 

MACROSCOPIC TIME AVERAGED EQUATIONS FOR BUOYANCY FREE FLOWS 
 
For non-buoyancy flows, macroscopic equations considering turbulence have been already derived in detail for 

momentum Pedras & de Lemos, 2001a, heat de Lemos & Braga, 2003, mass de Lemos & Mesquita, 2003 transfer and 
for this reason their derivation need not to be repeated here. They read: 

  
Momentum transport 
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Mass transport 
 
 )(  = )( i

eff
i

D CC 〉〈∇⋅⋅∇〉〈⋅∇ φDu          (16) 
 
 tdisptdiffdispeff ,DDDDD +++=          (17) 
 

 IID
Sc

D i
diff

φµ
ρ
1

=〉〈=           (18) 

 

 IDD
t

t
tdispt Sc

φ
µ

ρ
1

, =+           (19) 

 
Coefficients  dispD , tD  and tdisp,D  in (17) appear due to the nonlinearity of the convection term.  
 
MACROSCOPIC MASS DIFFUSION EFFECTS 
 
If buoyancy effects due to mass concentration variation is included in the macroscopic equations, and additional 

flow drive is obtained. All mathematical details on including such effects in the turbulence model of Pedras & de 
Lemos, 2001a, are already available in de Lemos & Tofaneli, 2004, For that, only final equations are here presented, 
noting that the case herein investigated is a particular case of the general problem treated in de Lemos & Tofaneli, 2004. 

 
Mean Flow 
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Turbulent field 
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where 1c , 2c , 3c  and kc  are constants and the production terms have the following physical significance: 

 

1. D

i
iP uuu ∇−= :''ρ  is the production rate of ik  due to gradients of Du ; 

2. 
K

k
cG

D
i

k
i

uφ
ρ=  is the generation rate of the intrinsic average of k  due to the action of the porous matrix; 
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φβ  is the generation of ik  due to concentration gradients. 

 
3. Results and Discussion 
 

All results obtained during the development of this work are presented and discussed upon. Here, results are 
divided in two main sessions, involving each a certain domain configurations. First, in clear medium session, the 
cavities are assumed to be unobstructed so that no extra drag, either of viscous or form nature, are included in the 
momentum equations. In this session, both laminar flow and turbulent flow regimes are analyzed. Further, in the porous 
medium session, the cavities are completely filled with porous material and runs are made also for laminar and 
turbulent flow.  

The problem considered is showed schematically in Fig.1 and refers to the two-dimensional flow in a clear (or a 
cavity filled with porous material) rectangular cavity of height H and width L , The Schmidt number is assumed to be a 
unity. The cavity is assumed to be of infinite depth the z-axis and a uniform mass concentration gradient is putting on 
the left side to opposing side (see Fig. 1a). Numerical computations were performed for square cavity used a stretched 
grid with 80 x 80 (CV). 

The Figure 3  shows the constant-concentration lines and streamlines of a clear square cavity with the mass 
concentration gradient from the left to right side for solutal Rayleigh numbers ranging from 310  to 610 . At 310sRa = , 
the streamlines in Fig.3 indicate the existence of a single vortex with centre in the middle of the cavity. Corresponding 
constant-concentration lines (or isolines for mass concentration) Fig. 3a are almost parallel to the left side wall (position 
where are imposed the mass concentration value) indicating that most of the mass transfer is transferred by diffusion. 
The vortex is generated due the horizontal mass concentration gradient across the section. This gradient, C

t
∂

∂  , is 

negative everywhere, inducing a clockwise oriented vorticity. 

When the solutal Rayleigh number is increased to 410sRa = (
3

c
s

g L C
Ra Sc

β
ν
∆

= ⋅ ) , Fig. 3d, the central vortex is 

distorted into an elliptic shape and the effect of convection is more pronounced in the isoconcentrates, Fig. 3c. Mass 
concentration gradients are stronger near the vertical walls, but decrease in the center region. For 510sRa = , Fig. 3f, the 
behavior continues. The central vortex is elongated and two secondary vortex appear inside it. The mass transfer by 
convection in the viscous boundary layer alters the mass concentration distribution to such an extent that the mass 
concentration gradients in the center of domain are close to zero. The Fig. 3e shows that, with this change in the sign of 
the source term, negative vorticity is induced within the domain. The also cause the development of secondary vortices 
in the core. 

Increasing sRa to 610 , Fig. 3h , causes the secondary vortices to move closer towards the walls and are convected 
further downstream.  A third vortex  appears in the domain rotating clockwise instead, reducing the shear stress between 
the order two vortice. In Fig. 3g , the mass transfer is now mostly by convection in the fast moving fluid near the walls. 
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Table 1 – Average Nusselt and Sherwood number for a clear square cavity for ranging from 310  to 610 . 

  Nu / Sh 
 310  410  510  610  
Barakos et al. (1994) 1.114 2.245 4.510 8.806 
Markatos & Pericleous (1984) 1.108 2.201 4.430 8.754 
Fusegi et al (1991) 1.105 2.302 4.646 9.012 
De Vahl Davis (1983)  1.117 2.238 4.509 8.817 
Braga  and de Lemos (2002a) 1.127 2.249 4.575 8.918 
Presents Results 1.128 2.512 4.578 8.921 

 
 Table 1 show the average Nusselt and Sherwood numbers for TRa and sRa ranging from 310  to 610 .  Its 
important notice that the values of average Nusselt numbers in the heat transfer are similarly that corresponds values to 
average Sherwood number. In this were used the analogy between heat and mass transfer to validate the results of the 
present work. The agreement of the literature results with the values obtained here are relatively good.  From the 
engineering viewpoint, the most important parameter of the flow is the rate of heat (and mass concentration) transfer 
across the cavity. The Nusselt (Sherwood) number based on the hot wall (or more concentrate wall) at x = 0 is given by  
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k x T T=

∂⎛ ⎞= ∴ = ⎜ ⎟∂ −⎝ ⎠
,

0

m

x H c
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, and its average value calculates 

as,
0
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Nu Nu dy
H

= ⋅∫ and 
0

1 H

Sh Sh dy
H

= ⋅∫  and 
2H

KDa = . 

 Figure 4 shows the turbulent isoconcentrate and streamlines of a clear square cavity for sRa ranging from  
810 to 1010 . The flow field at low solutal Ra values, not shown here, is similar to that obtained from laminar flow 

computations. However, the results are not exactly the same due to the inclusion of a turbulent viscosity. The similarity 
continues up to 610Ra = . For higher values of sRa , the model gives only turbulent solution. For 810sRa = , Fig. (4b), 
the central vortex disappears and the secondary vortices generated in the central core are convected further upstream 
and closer to the concentrates mass walls. The boundary layers on the concentrates mass walls are, at this moment, very 
thin. Increasing  solutal Ra to 1010 , Fig. (4f) the central core is totally stratified. As  solutal Ra further increases, the 
vortex system becomes progressively weaker and eventually, for  solutal Rayleigh numbers greater than 1010 , it 
disappears completely. The velocities are high within the boundary layer and the flow in the central core is stratified. 

The isotherms for  solutal Ra = 810 and 1010sRa = , Fig. (4a) and Fig. (4e), respectively, indicate an stratification of 
the flow outside the boundary layers and the  mass concentration-profiles are almost horizontal for high values of sRa  . 

 Figure 5 presents the turbulent isoconcentrate and streamlines of a square cavity filled with porous material,    
calculations were performed with 80x80 control volumes (CV) using a stretched grid. This part of the work tries to find 
for flow in porous media, a critical solutal Rayleigh, scrRa , for which simulations with the turbulence model departs 
from those considering laminar flow. Thus, the turbulence model is first switched off and the laminar branch of the 
solution is found. After that, the turbulence model is included so that the solution diverges from the laminar branch for 
Ra> scrRa . This separation of values as solutal Ra increases occurs at the so-called bifurcation point of the solution.  As 
in the case of laminar flow in a square cavity filled with porous material, the parameters (Darcy number, Schmidt 
number, inertia parameter, mass diffusivity ) are fixed. Figure (5b) shows the streamlines for 610sRa = . For  solutal Ra 
up to 410  , not shown here, the solution with the turbulence model gives nearly the same values as those obtained with 
laminar flow computations. Even for  solutal Ra up to 610  the flow pattern resembles the one for laminar solution, not 
shown here, but the mass transfer (like with heat transport) along the more mass concentrate  wall is significantly 
increased. This point will be explained below. Figure (5a) shows the isoconcentrates for solutal  Ra 610=  . It is clearly 
seen from the Fig. (5a) the stratification of the flow with the increasing of the  solutal Ra. Here also, as in the cases of 
streamlines mentioned above, the isoconcentrate shown in Figure (5a) also are similar to those calculated with the 
laminar flow model.  
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Figure 1 – Representative Elementary Volume, V∆ . 

 
 

 

(a)  (b)  
Figure 2 – Square cavity (a) and the grid (b) for laminar and turbulent flow simulation. 

 
 
 

(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  (h)  
Figure 3 – Laminar Constant-concentration lines and 

Streamlines for clear square cavity with mass 
concentration gradients  from left side to right side for 

Ra ranging from 310  to 610 . 
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(a)  (b)  

(c)  (d)  

(e)  (f)  
Figure 4 – Turbulent Constant-concentration lines and 

streamlines for clear square cavity with mass 
concentrations gradients from left side to right side for 

Ra ranging from 810 to 1010 . 
 
 
 

(a)  (b)  
Figure 5 – Constant-concentration lines and streamlines 
for turbulent flow in a square cavity filled with porous 
material for 610=Ra  with mmDp 1= and 80.0=φ  .
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