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Abstract. The main purpose of this work is the numerical computation of dispersion of a contaminant specie over a region with 
obstacles, using a code based in Control Volume-Finite Element Method (CVFEM). Thus, the flow, temperature and concentration 
fields are resolved. The turbulence treatment have been done though large eddy simulation (LES) and the sub-grid scales stresses, 
heat and mass fluxes have been modeled through the Smagorinsky’s eddy viscosity model. The domain is discretized using nine-node 
finite elements and the equations are discretized into control volumes around the nodes of the finite elements. Some benchmark 
problems are solved to validate the numerical code and the preliminary results are presented and compared to available results 
from the literature. 
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1. Introdução  
 

Fluid flows are of interest in several engineering practical applications as: diffusers, airfoils with separation, 
buildings, combustors, turbines blades and many flow-relevant systems (Driver and Seegmiller, 1985). 

Most of the fluid flows are turbulent; they occur in complex domains and are governed by a non-linear partial 
differential equations set of the convection-diffusive type. So, practical solutions can be obtained through numerical 
techniques such as: The Finite Difference Method (FDM), the Finite-Volume Method (FVM) and/or the Finite Element 
Method (FEM). The finite volume method is the most popular method used to calculate fluid flows. However, last 
decades, the finite element method has been improved; enabling its usage in Computational Fluid Dynamics (CFD) and 
it becomes a powerful tool in the fluid flow simulations in complex geometries. 

In previous works, Campos Silva & Moura (1997, 2001), Campos Silva (1998) and Campos Silva et al. (1999) 
presented a development of a control volume finite element method using a quadratic, quadrilateral nine-noded element 
to simulate unsteady, incompressible and viscous fluid flows. In those works no turbulence model was considered, so 
the results were obtained for relatively low Reynolds numbers. 

The main goal of this work is twofold. Primarily, it is desired to evaluate the large eddy simulation methodology 
(LES) implemented in the cited code previously. A validation of the code has been done by the simulations of classical 
benchmark flows: lid-driven-cavity and the backward facing-step flows, (Lima, 2005). After, it is desired to simulate 
the dispersion of a passive pollutant by a flow of the wind, utilizing a two-dimensional geometry with blocks similar to 
buildings in urban areas. Some authors as: Neofytou et al (2006), Wong (2002), Savii (1998) investigated this kind of 
problem named pollutant dispersion in urban canyon. 

Turbulent flows are characterized by eddies with a wide range of length and time scales. The largest eddies are 
typically comparable in size to the characteristic length of the mean flow. The smallest scales are responsible for the 
dissipation of turbulence kinetic energy. It is possible, in theory, to directly resolve the whole spectrum of turbulent 
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scales either using an approach known as direct numerical simulation (DNS), or by the usage of turbulence models 
(algebraic, two-equations models, second order models) with the Reynolds Average Navier-Stokes equations (RANS), 
or filtering the Navier-Stokes equations by the large eddy simulation methodology. In LES, large eddies are resolved 
directly, while small eddies (or subgrid-scales stresses) are modeled. By the increase of the computational powerful, the 
use of LES to simulate fluid flows has gained many adepts. Walton et al. (2002) utilized the LES in a mean flow and 
turbulent problem in cubic street canyons, obtaining results with good agreement to experimental data. 

In next sections, it will be presented the mathematical model, the numerical method and the preliminary results of 
the simulation of pollutant dispersion around solids like urban street canyons. 
 
2. Mathematical model 
 

In this section the set of equations that describe the dispersion of a passive scalar by the action of a non-isothermal 
flow is presented. Also, some aspects of the large-eddy simulation are presented. The filtered set of partial differential 
equations are: 

 
Continuity Equation 
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Momentum Equation 
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Equation of a Scalar Variable (Concentration, temperature, etc.) 
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where the properties and some variables are  
ρ  density; 
µ  dynamic viscosity; 

T=ϕ  in temperature equation; 

C=ϕ  in concentration equation; 

p
* c/k ρ=Γϕ  thermal diffusivity in temperature equation; 

D* =Γϕ  mass diffusivity in concentration equation; 

iS  and  ϕS source terms accounting for the effects of buoyancy, heat generation (temperature equation)     or 
chemical reaction (concentration equation); 

* dimensional variables; 
- (overbar) filtered or large scale variables. 

 
In large-eddy simulation, the large-scale variables representing the velocity, pressure or other scalar fields are 

defined by a filter function in the form: 
 

∫ ∆= D 'xd),'x,'x(G)'x(f)x(f
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             (4) 
 
where G is a filter function, the most common filter functions are: Gaussian, Top-hat or Sharp Fourier cut-off filters, 
Chidambaram (1998); and  is the filter width, generally, ∆ ( ) 3/1

zyx ∆∆∆=∆  with 
ix∆  being the grid size in the  axis. ix

The sub-grid-scale (sgs) stress tensor  appearing in Eq. (2) and the sub-grid flux  in Eq. (3) come from the 
filtering process, they are defined as: 

ijτ ϕjq

 
)uuuu( jijiij −ρ=τ ;   )uu(q jjj ϕ−ϕρ−=ϕ            (5) 

 



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006, Paper CIT06-0688 
 
which must be modeled. In this work it has been used the Smagorinsky model and the sgs stress tensor and fluxes are 
modeled in the form: 
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where the eddy viscosity, , the turbulent kinetic energy, tµ k  and the deformation rate are defined by the following 
expressions: 
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The squared Smagorinsky’s constant after some tests with lid-driven cavity flow was choose to be , Lima 
(2005). The filter width was choose to be equal to the length of control volume face where the convective and diffusive 

fluxes are considered (

026,0C2
s =

( ) ( ) ξξξ
ξ

dyx∫ ∂∂+∂∂=∆ 22 //  or ( ) ( ) ηηη
η

dyx∫ ∂∂+∂∂=∆ 22 // ). See Fig. 2 for 

reference. 
After the substitution of Eq. (7) and Eq. (6) into Eq. (2) and Eq. (3) one obtains the following equations in 

dimensionless form: 
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where the term of kinetic energy was included in pressure term resulting the turbulent pressure, 
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dimensionless variables are defined as: 
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where L is a characteristics length and variables with a subscript zero are reference variables. 
 
3. Numerical method 
 

The CVFEM was firstly presented by Baliga and Patankar (1980, 1983) and later by Raw and Schneider (1986). 
They used triangular and linear quadrilateral elements, respectively. Several authors have enhanced the CVFEM since 
that time till nowadays. Banaszek (1989) compared both the Galerkin and CVFEM methods in diffusion problems using 
six-noded and nine-noded elements. Campos Silva (1998) and Campos Silva & Moura (2001) presented the procedure 
of application of a nine-noded CVFEM. 

The CVFEM formulation involves five basic steps: (1) discretization of the domain of interest into elements; (2) 
further discretization of the domain into control volumes that surround the nodes in the finite element mesh, as shown 
in Figure 1; (3) definition of element-based interpolation functions for variables and physical properties of the fluid; (4) 
derivation of algebraic equations by the usage of the sub-domain weighted residual method; and (5) assembling of the 
element equations forming the global matrix and choice of a procedure to solve the system of algebraic equations. In 
this method, each node of the finite element mesh is inside a control volume like in FVM. An element and its respective 
control volumes are showed in Figure 2, where are also showed the faces with convective and diffusive fluxes. 
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Figure 1 - Meshes of finite elements e control volumes. 
 

Now, the integration of the Equations (8) - (10) inside each control volumes yields: 
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where  and  denoting the surface area and the volume of a control volume around a node in the element, 
respectively,  is the outward normal vector to the area of a control volume where there are convective and diffusive 

fluxes. The effective viscosity and diffusivity are: 
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Figure 2 – Finite element divided in control volumes and integration points. 
 
In order to transform the integrals of Eqs. (12), (13) and (14) to algebraic equations, the variables and the 

coordinates are interpolated like in classical Galerkin finite element method, as it’s defined bellow: 
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where  are interpolation functions of the reference element in local coordinates (Dhatt & Touzot, 1984);  are the 
velocity components;  is the pressure;  is any scalar and  are components of the coordinate system at nodes 
α of a element; nnep and nnel are nodes numbers of quadratic (parabolic) and linear elements respectively. The velocity 
field and scalar variables are interpolated by quadratic functions. The pressure is interpolated by linear functions 
(Eq.°16). 

αN αiU

αP iΦ αiX

The coefficient matrices are computed element by element in local coordinates as it’s showed in Fig. 3a-b and a 
global system of equations is assembled like in the classical finite element method. The global system of equations is 
solved by the frontal method proposed by Taylor & Hughes (1981). An important characteristic of this method is that 
the system is assembled element by element; therefore the global system never is assembled totally in memory. So, 
personal computers may be used for solve the cases studied. 

 
 

Figure 3.(a) - Element in local coordinates ξ-η Figure 3.(b) - Element in global coordinates x-y 
 
4. Results 
 

The computational program was validated by Lima (2005) for classical benchmark problems: lid-driven cavity and 
backward-facing step flows. Dispersion of a pollutant in a cavity was also simulated by Lima with the same boundary 
conditions of a free convection problem with good agreement of the results with results form the literature. In that work 
some simulations of dispersion in urban canyons was initiated. The simulations here have been done for a flow inside a 
street canyon based in Savii (1998). In this case the interest is in the horizontal dispersion of pollutant specie around the 
obstacles. 

The discretized domain for this flow is shown in Figure 4 (top view). The original dimensions of the mesh are 
 and . The length of the buildings is 10.0; the width of upper and lower buildings is 6.0 and 2.0, 

respectively. The boundary conditions in the flow are  at the inflow section, upper and lower 
boundaries; , in the buildings boundaries, 

65X0 ≤≤ 46Y0 ≤≤
0Tand0V,1U ===

1T = 0P =  in the outlet section; C=1 between the buildings, in the center 
horizontal line of the domain. In this work: Re=100, Sc=0.2, Ra=0, Pr=0.7. 

A qualitative comparison of the simulated concentration of this work with results from Savii (1998) is shown in 
Figure 5. Savii considered only transient and diffusive terms in concentration equation, while in this work the 
convective terms were also included. Maybe, it was the cause of differences between the results, as shown in Figure 5. 
In the work of Savii it was not possible to get all information about the domain of calculation and numerical values of 
the velocity and concentration fields. 
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Figure 4. Discretized domain with five obstacles. 

 

Figure 5a. Simulated concentration field, Savii (1998) Figure 5b. Simulated concentration field, this work 
 
The Figures 6-13 show the X-velocity profiles before the first building, between buildings and after last buildings at 

several time steps. Qualitatively the behavior of the velocity has been simulated; however, the size of the computational 
domain has to be increased. As can be seen in Figure 13 the presence of obstacles still has much influence on the outlet 
velocity and the length of computational domain after the obstacles seems to have been short. If the computational 
dimensions are appropriated, most probably the outlet velocity profile will be parabolic or more uniform. The size of 
the domain could be insufficient for imposed boundary conditions. 
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Figure 6. X-Velocity before the first building, X = 5.4. Figure 7. X-Velocity in the half of first building, X = 15. 
 



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006, Paper CIT06-0688 
 

0

10

20

30

40

50

0,0 0,5 1,0 1,5 2,0
U

Y

X = 21
 t = 5
 t = 25
 t = 50
 t = 80

0

10

20

30

40

50

0,0 0,5 1,0 1,5 2,0
U

Y

X = 27
 t = 5
 t = 25
 t = 50
 t = 80

Figure 8. X-Velocity between the first and second building, 
X = 21. 

Figure 9. X-Velocity in the half of second building, X = 27. 
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Figure 10. X-Velocity between the second and third building, 
X = 33.5. 

Figure 11. X-Velocity in the half of third building, X = 40. 
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Figure 12. X-Velocity after the third building, X = 50. Figure 13. X-Velocity in the exit of flow, X = 65. 

 
The evolution with time of the pollutant concentration in the domain is shown in Figures 14 to 21. Qualitatively, 

the results seem to be simulated with the expected behavior. It was not possible to do comparisons with experimental 
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and other numerical results, because the authors didn’t find available such results. However, the model for this type of 
simulation needs more investigation, mainly, for high Reynolds number flows. The stream functions and temperature 
field are shown in Figure 22 and 23, respectively. They seem to present the waited behavior. 
 

Figure 14. Pollutant concentration field at t=3 Figure 15. Pollutant concentration field at t = 12 
 

Figure 16. Pollutant concentration field at t=20 Figure 17. Pollutant concentration field at t=30 
 

  
Figure 18. Pollutant concentration field at t =35 Figure 19. Pollutant concentration field at t = 40 
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Figure 20. Pollutant concentration field at t =45 Figure 21. Pollutant concentration field at t =50 

 

Figure 22. Stream functions 
 

Figure 23. Temperature field 
 
5. Conclusions 
 

A simulation of pollutant dispersion horizontally around obstacles has been done. Qualitatively, the waited 
behavior of phenomenon seems have to be simulated. Some anomalous behavior of the concentration at the outflow 
section may be due to an insufficient size of the computational domain and a not appropriated boundary condition for 
velocity in the domain size considered. This has to be investigated in future works. Other arranges of obstacles, more 



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006, Paper CIT06-0688 
 
high Reynolds number flows, effect of natural convection and different boundary conditions are subjects for the 
sequence of this work as well as more realistic 3D flows have to be simulated. 
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