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Abstract. The Generalized Integral Transform Technique (GITT) is employed in the hybrid solution of the energy equation to 
describe the behavior of a rectangular fin undergoing non-Fourier heat conduction. The employment of the GITT approach in the 
hyperbolic heat conduction equation leads to a coupled system of second order ordinary differential equations in time. The resulting 
system is then numerically solved by Gear`s method for stiff problems, available in the subroutine DIVPAG from the IMSL Library. 
Numerical results for the temperature field are computed for different values of the governing parameters and dimensionless 
thermal relaxation times, which are then compared with results previously reported in the literature for special cases. 
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1. Introduction 
 

Non-Fourier hyperbolic models have been proposed to investigate conduction heat transfer phenomenon in a few 
special applications, such as in some situations related to combustion engines, pulsating laser heating, rapidly 
contacting surfaces in electronic devices and heat transfer in nanosystems. For these situations, the classical model 
based on the Fourier law is not adequate to describe the physical mechanism of heat conduction, in which the speed of 
propagation of thermal waves is infinite, this way leading to a non-realistic notion of energy diffusion. The 
technological advances in the micro- and nano-fabrication fields, including the construction of micro heat exchange 
devices, has contributed to the appearance of investigations towards the evaluation of performance and efficiency of 
fins, when heat propagates in extremely short time intervals with a finite speed of propagation. In order to take into 
account the effect of finite speed thermal transfers, Cattaneo (1958) and Vernotte (1958) independently modified the 
Fourier model to include a relaxation time that reflects the temporary delay of the thermal wave. In their models, the 
Fourier law is a particular case when the relaxation time is zero, and thus an infinite speed of thermal wave propagation 
is achieved, as foreseen by this classical theory. 

Many researchers have devoted attention to heat transfer in fast processes along the years. More recently, Tsai et al. 
(2005) analyzed the non-Fourier effect on the thermal behavior of spherical media (hollow and bi-layered composite 
spheres) subjected to suddenly changes of the surface temperature. These authors focused their analysis in using the 
Laplace transform in conjunction with the Riemann-sum approximation method to solve the related energy equation 
and to investigate the influence of parameters such as relaxation time, temperature and diffusivities ratio. Quaresma et 
al. (2001), Cruz et al. (2001) and Macêdo et al. (2005) solved the hyperbolic heat conduction problem for a slab 
subjected to various prescribed heat flux forms at one of the boundaries. Different methodologies were employed to 
solve the hyperbolic heat conduction equation, respectively, Laplace Transforms with numerical inversion (Quaresma et 
al., 2001), Finite Volume Method with Gear Approach (Cruz et al., 2001) and the Generalized Integral Transform 
Technique (Macêdo et al., 2005). Numerical results for the temperature field were presented in order to analyze the 
influence of the governing parameters (relaxation times and Biot numbers) on this physical problem. In dealing with 
heat flow in fins, Lin (1998) studied the effect of the relaxation time on the performance of a convective fin of constant 
cross-sectional area subjected to periodic thermal conditions, by employing a hybrid scheme involving the Laplace 
transform and the finite volume method. 

In this context, the main objective of the present work is to develop a hybrid numerical-analytical solution based on 
the Generalized Integral Transform Technique (GITT) (Cotta, 1993; Cotta, 1994; Cotta& Mikhailov, 1997; Cotta & 
Mikhailov, 2006) to analyze the non-Fourier thermal response of a fin of constant cross-sectional area, such as the one 
studied by Lin (1998). The employment of the GITT approach to solve the related hyperbolic partial differential 
equation produces a fast and efficient solution, with a considerable analytical involvement, but presenting some 
advantages when compared to purely numerical schemes. The characteristic of automatic global error control inherent 
to this technique allows for the computation of benchmark results as well. In this case, the integral transformation of the 
hyperbolic partial differential equation yields an infinite system of coupled ordinary differential equations of second 
order, which is then solved through well-established routines appropriate for handling initial value problems with stiff 
characteristics, such as the DIVPAG routine from the IMSL Library (1991). Numerical results are then produced for the 
temperature field within representative ranges of the governing parameters, and critically compared with those 
previously presented in the literature. 
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2. Analysis 
 

One-dimensional hyperbolic heat conduction in a fin of constant cross-sectional area is considered, initially at the 
uniform temperature Ti, assuming constant thermophysical properties k and α, and no internal heat generation. The fin 
tip is maintained insulated, while its larger surfaces are exchanging heat by convection with a fluid kept at a constant 
temperature, T∞ and uniform heat transfer coefficient, h. The fin base is subjected to a periodic temperature variation in 
the form: 
 

 b b b i ˆT (t) T (T T )Acos( t)= + − ω , t > 0 (1) 
 

where bT  is the average fin base temperature, A is the dimensionless amplitude of base temperature difference 
oscillation and  is the frequency of base temperature oscillation. The heat transfer by radiation is neglected and the 
heat transfer coefficient, h, is varying with the spatial coordinate as: 

ω̂

 

 0h(x) h H(x / L)=  (2) 
 

where h0 is a reference heat transfer coefficient, which is taken as h0 = bk/(2L2) and H is a function only of the spatial 
coordinate. 
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Figure 1. Schematic representation of the fin geometry. 
 

The one-dimensional energy equation for the fin shown in Fig. (1) is written in the following form: 
 

 
"

p
T(x, t) q (x, t) h(x)c 2 [T

t x b
(x, t) T ]∞

∂ ∂
ρ = − − −

∂ ∂
 (3) 

 

For the phenomenon involving finite speed of propagation of the thermal waves, the classical Fourier model must 
be modified. Therefore, Cattaneo (1958) and Vernotte (1958) independently derived a model of heat flow in the form: 
 

 
"

"
r

q (x, t) T(x, t)q (x, t) k
t x

∂ ∂
τ + = −

∂ ∂
 (4) 

 

where τr is the relaxation time of the material in which the heat conduction process is occurring. Combining Eq. (3) 
with Eq. (4), it then results the partial differential equation that governs the hyperbolic heat conduction in a convective 
fin, as: 
 

 
2 2

p r p r2 2
[T(x, t) T ]T(x, t) T(x, t) h(x) T(x, t) h(x)c c 2 k 2 [T(x, t

t b t bt x
∞

∞
∂ −∂ ∂ ∂

ρ τ + ρ + τ = − −
∂ ∂∂ ∂

) T ]  (5) 
 

Equation (5) describes the heat propagation in a convective fin with speed ν = (α/τr)1/2. Equation (5) is then written 
in dimensionless form as: 
 

 
2 2

e2 2
( , ) ( , ) ( , )[1 H( )] H( ) ( , ) H( )∂ θ η ξ ∂θ η ξ ∂ θ η ξ

β + + β η = − η θ η ξ + η
∂ξ∂ξ ∂η

θ  (6a) 

 

subjected to the following initial and boundary conditions: 
 

 ( ,0) 0θ η = ;   ( ,0) 0,    0 1∂θ η
= ≤ η ≤

∂ξ
 (6b,c) 

 (0, ) 1 A cos( )θ ξ = + ωξ ;   (1, ) 0,    0∂θ ξ
= ξ >

∂η
 (6d,e) 
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The following dimensionless groups were employed in obtaining Eqs. (6): 
 

 2 2 2
r i b i eˆx / L;    t/L ;   /L ;    L / ;   ( , ) [T(x, t) T ] /[T T ];    [T T ] /[T T ]∞η = ξ = α β = ατ ω = ω α θ η ξ = − − θ = − −i b i  (7) 

 

Equations (6) constitute a non-homogeneous problem, which have to be filtered in order to obtain a better 
computational performance in the integral transform method. For this purpose, the dimensionless temperature θ(η,ξ) is 
written in a separated form as follows: 
 

 f h( , ) ( ; ) ( , )θ η ξ = θ η ξ + θ η ξ  (8) 
 

Introducing Eq. (8) into Eqs. (6), one obtains the following equations for calculating the filtered potential θf(η,ξ): 
 

 
2

f
e2

( ; )
H( ) 0

∂ θ η ξ
+ η θ =

∂η
 (9a) 

 f (0; ) 1 A cos( ),    0θ ξ = + ωξ ξ >  (9b) 

 f (1; )
0,    0

∂θ ξ
= ξ >

∂η
 (9c) 

 

Equation (9a) is readily integrated to yield 
 

 
1

f e
0 '

( ; ) 1 A cos( ) H( ")d "d '
η

η

θ η ξ = + ωξ + θ η η η∫ ∫  (9d) 

 

For the particular case where H(η) = eη (the functional form adopted in the illustration of results), Eq. (9d) becomes 
 

 f e( ; ) 1 A cos( ) (1 e e )ηθ η ξ = + ωξ + θ + η −  (9e) 
 

Then, the partial differential equation for the filtered potential θh(η,ξ) is obtained as 
 

 
2 2 2

h h h f f
h f2 2 2

( , ) ( , ) ( , ) ( ; ) ( ; )
[1 H( )] H( ) ( , ) [1 H( )] H( ) ( ; )

⎡ ⎤∂ θ η ξ ∂θ η ξ ∂ θ η ξ ∂ θ η ξ ∂θ η ξ
β + + β η = − η θ η ξ − β + + β η + η θ η ξ⎢ ⎥

∂ξ ∂ξ∂ξ ∂η ∂ξ⎢ ⎥⎣ ⎦
 

  (10a) 
 h f e( ,0) ( ;0) [1 A (1 e e )],    0 1ηθ η = −θ η = − + + θ + η − ≤ η ≤  (10b) 

 h f( ,0) ( ;0)
0,    0 1

∂θ η ∂θ η
= − = ≤ η

∂ξ ∂ξ
≤  (10c) 

 h (0, ) 0,    0θ ξ = ξ >  (10d) 

 h (1, )
0,    0

∂θ ξ
= ξ >

∂η
 (10e) 

 
2.1. Solution methodology 
 

The next step is to find a solution for the potential θh(η,ξ), and for this purpose we follow the ideas in the GITT 
(Cotta, 1993; Cotta, 1994; Cotta & Mikhailov, 1997; Cotta & Mikhailov, 2006), first by selecting an appropriate 
auxiliary eigenvalue problem, which shall provide the basis for the eigenfunction expansion. Therefore, the following 
simple eigenvalue problem is here proposed: 
 

 
2

2i
i i2

d ( ) ( ) 0
d
ψ η + µ ψ η =
η

,   in   0 1< η <  (11a) 

 i(0) 0ψ = ;   id (1) 0
d
ψ =

η
 (11b,c) 

 
 

Equations (11) can be analytically solved to yield, respectively, the eigenfunctions and eigenvalues as 
 

 i i( ) sin( )ψ η = µ η ;   i (2i 1) / 2µ = − π ,   i = 1,2,3,... (12a,b) 
 

It can be shown that the eigenfunctions ψi(η) present the following orthogonality property: 
 

 
1

i j
i0

0,       i j
( ) ( )d

N ,     i j
≠⎧

ψ η ψ η η = ⎨ =⎩∫  (12c,d) 
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where Ni is the normalization integral. Also, we define i( )ψ η  as being the normalized eigenfunctions. Ni and i( )ψ η  are 
computed respectively as 
 

 ;   
1

2
i i

0

N ( )d 1/= ψ η η =∫ 2 i i i( ) ( ) / N= ψ ηψ η  (12e,f) 

 
Equations (11) and (12) together with the above properties allow the definition of the integral transform pair for the 

potential θh(η,ξ) as: 
 

 
1

h,i i h
0

( ) ( ) ( , )dθ ξ = ψ η θ η ξ η∫ ,         transform (13a) 

 h i
i 1

( , ) ( ) ( )
∞

=

θ h,iη ξ = ψ η θ ξ∑ ,         inverse (13b) 

 
To obtain the resulting system of differential equations for the transformed potentials h,i( )θ ξ , the partial differential 

equation (10a) is multiplied by i( )ψ η , integrated over the domain [0,1] in the η-direction, and the inverse formula, Eq. 
(13b), is employed in place of the potential θh(η,ξ), resulting in the following transformed ordinary differential system: 
 

 
2

h, jh,i
ij ij h, j i2

j 1 j 1

d ( )d ( )
A B ( )

dd

∞ ∞

= =

θ ξθ ξ
+ + θ g ( )ξ = ξ

ξξ ∑ ∑ ,   i = 1,2,3,... (14a) 

 
The same operation can be performed over the initial conditions given by Eqs. (10b,c), to furnish 

 

 h,i i(0) fθ = ;   h,id (0)
0

d
θ

=
ξ

 (14b,c) 
 

where the coefficients in Eqs. (14) are defined as follows: 
 

1

ij ij i j
0

1A H( ) ( ) ( )d= δ + η ψ η ψ η η
β ∫ ; 

1
2

ij ij i i j
0

1B H( ) ( ) ( )d
⎡ ⎤
⎢ ⎥= δ µ + η ψ η ψ η η

β ⎢ ⎥⎣ ⎦
∫ ; i i,1 i,2g ( ) g cos( ) g sin( ) gi,3ξ = ωξ + ωξ +   (15a-c) 

1
2

i,1 i

0

g A ( )[ H( ) / ]d= ψ η ω − η β η∫ ; 
1

i,2 i

0

g A ( )[1/ H( )]d= ω ψ η β + η η∫ ; 
1

i,3 i e

0

g (1/ ) H( ) ( )[1 (1 e e )]dη= − β η ψ η + θ + η − η∫  (15d-f) 

 
1

i i e

0

f ( )[1 A (1 e e )]dη= − ψ η + + θ + η − η∫ ;   ij
0,    i j
1,     i j

≠⎧
δ = ⎨ =⎩

 (15g,h) 

 
The coefficients may be analytically obtained through symbolic manipulation platforms such as the Mathematica 

system (Wolfram, 1999). Equations (14) form an infinite linear initial value problem, which has to be truncated in a 
sufficiently high order N, in order to compute the transformed potentials, h,i( )θ ξ , to within an user prescribed accuracy 
target. For the solution of such a system, due to its expected stiff characteristics, specialized subroutines have to be 
employed, such as the subroutine DIVPAG from the IMSL Library (1991). This subroutine provides the important 
feature of automatic controlling the relative error over the solution of the ordinary differential equations system, 
allowing the user to establish error targets for the transformed potentials. Once this system is solved for the transformed 
potentials, the inverse formula, Eq. (13b), is recalled to provide the potential θh(η,ξ), which is added to the filtering 
potential θf(η;ξ), given by Eq. (9e), to furnish the complete temperature field. 

In the realm of applications, one might be interested in approximate analytical solutions of the problem here 
proposed. In order to obtain a fully analytical solution for the system (14), we might recall the so-called lowest order 
solution of Eqs. (14) (Cotta, 1993), which accounts only for the diagonal terms in the coupling coefficients matrices 
above. In this way the system becomes decoupled and is rewritten as: 
 

 
2

hl,i hl,i
ii ii hl,i i2

d ( ) d ( )
A B ( )

dd
θ ξ θ ξ

+ + θ g ( )ξ = ξ
ξξ

,   i = 1,2,3,... (16a) 

 hl,i i(0) fθ = ;   hl,id (0)
0

d
θ

=
ξ

 (16b,c) 
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In order to express the analytical solution of system (16), one considers three different situations, namely: 
 

- Case 1: : 2
ii iiA 4B>

 

 
iiA

2hl,i 1 2 3 4 5( ) e [C cosh(arg ) C sinh(arg )] C cos( ) C sin( ) C
− ξ

θ ξ = ξ + ξ + ωξ + ωξ +  (17a) 

 1 i 3 5C f (C C )= − +  (17b) 

 
ii

i 3 5
2

A [f (C C )] C
2C

arg

− + − ω
=

4
 (17c) 

- Case 2: : 2
ii iiA 4B<

 

 
iiA

2hl,i 1 2 3 4 5( ) e [C cos(arg ) C sin(arg )] C cos( ) C sin( ) C
− ξ

θ ξ = ξ + ξ + ωξ + ωξ +  (18a) 

 1 i 3 5C f (C C )= − +  (18b) 

 
ii

i 3 5
2

A [f (C C )] C
2C

arg

− + − ω
=

4
 (18c) 

- Case 3: : 2
ii iiA 4B=

 

 
iiA

2hl,i 1 2 3 4 5( ) e [C C ] C cos( ) C sin( ) C
− ξ

θ ξ = + ξ + ωξ + ωξ +  (19a) 

 1 i 3 5C f (C C )= − +  (19b) 

 ii
2 i 3 5

AC [f (C C )]
2 4C= − + − ω  (19c) 

 
where, 
 

 2
ii ii

1arg A 4B
2

= −  (20a) 

 
2

ii i,1 ii i,2
3 2 2 2 2

ii ii

(B )g A g
C

(B ) A
− ω − ω

=
− ω + ω

 (20b) 

 
2

ii i,1 ii i,2
4 2 2 2 2

ii ii

A g (B )g
C

(B ) A
ω + − ω

=
− ω + ω

 (20c) 

 i,3
5

ii

g
C

B
=  (20d) 

 
The solutions for each case given by Eqs. (17) to (20) are introduced into the inverse formula (13b), so that the 

solution for the potential θh(η,ξ) is then completed. The potential θf(η;ξ), given by Eq. (9e), is then added to the three 
respective cases above to furnish the approximate analytical temperature field. 
 
3. Results and discussion 
 

Numerical results for the temperature field were obtained from a code developed in the FORTRAN 90/95 
programming language. The complete solution was computed using up to five hundred terms (N ≤ 500) in the 
eigenfunction expansion, and all the results were obtained with A = 0.5, θe = 0.1 and taking H(η) = eη, as well as 
different values of the governing parameters β and ω. 

Tables (1) to (4) show the convergence behavior of the temperature distribution along the fin length with different 
dimensionless relaxation times, and fixed values of dimensionless frequency of base temperature oscillation and 
dimensionless time. The columns represent the lowest-order solution for the temperature field, with different truncation 
orders, N, which demonstrate an excellent convergence rate even for N = 50 terms for dimensionless relaxation times β 
= 0 and β = 0.1, as seen in Tables (1) and (2). For higher values of the dimensionless relaxation time, as shown in 
Tables (3) and (4), the solution yields slower convergence rates evidenced by numerical oscillations, and as a 
consequence, the complete convergence is reached only with higher truncation orders. 
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Table 1. Convergence behavior of the temperature field along the fin length for a fixed dimensionless time and β = 0. 
η/Ν 50 100 200 300 400 500

0.45 0.90153 0.90153 0.90153 0.90153 0.90153 0.90153
0.50 0.85589 0.85589 0.85589 0.85589 0.85589 0.85589
0.55 0.81340 0.81340 0.81340 0.81340 0.81340 0.81340
0.60 0.77423 0.77423 0.77423 0.77423 0.77423 0.77423
0.65 0.73858 0.73858 0.73858 0.73858 0.73858 0.73858
0.70 0.70667 0.70667 0.70667 0.70667 0.70667 0.70667
0.75 0.67875 0.67875 0.67875 0.67875 0.67875 0.67875
0.80 0.65511 0.65511 0.65511 0.65511 0.65511 0.65511
0.85 0.63605 0.63605 0.63605 0.63605 0.63605 0.63605
0.90 0.62194 0.62194 0.62194 0.62194 0.62194 0.62194

β = 0, ω = 1, ξ = 0.5

 
 
Table 2. Convergence behavior of the temperature field along the fin length for a fixed dimensionless time and β = 0.1. 

η/N 50 100 200 300 400 500

0.45 0.91154 0.91401 0.91032 0.91186 0.91128 0.91129
0.50 0.86540 0.86656 0.86720 0.86745 0.86759 0.86768
0.55 0.82715 0.82777 0.82677 0.82718 0.82703 0.82702
0.60 0.79093 0.78923 0.78956 0.78969 0.78976 0.78981
0.65 0.75591 0.75642 0.75578 0.75604 0.75594 0.75594
0.70 0.72491 0.72536 0.72560 0.72569 0.72574 0.72578
0.75 0.69941 0.69974 0.69923 0.69944 0.69936 0.69936
0.80 0.67777 0.67671 0.67692 0.67700 0.67704 0.67707
0.85 0.65906 0.65940 0.65894 0.65913 0.65906 0.65906
0.90 0.64509 0.64544 0.64562 0.64570 0.64574 0.64576

β = 0.1, ω = 1, ξ = 0.5

 
 

Table 3. Convergence behavior of the temperature field along the fin length for a fixed dimensionless time and β = 1. 
η/N 50 100 200 300 400 500

0.45 0.85316 0.87114 0.84997 0.86179 0.85351 0.85990
0.50 0.42152 0.41924 0.41810 0.41772 0.41753 0.41741
0.55 0.03323 0.01332 0.03815 0.02430 0.03400 0.02652
0.60 0.00451 0.03127 0.02680 0.02531 0.02457 0.02412
0.65 0.01418 0.00811 0.01775 0.01239 0.01614 0.01325
0.70 0.01710 0.01192 0.00933 0.00847 0.00803 0.00777
0.75 0 0 0 0 0 0
0.80 0 0 0 0 0 0
0.85 0 0 0 0 0 0
0.90 0 0 0 0 0 0

β = 1, ω = 1, ξ = 0.5

 
 

Table4. Convergence behavior of the temperature field along the fin length for a fixed dimensionless time and β = 5. 
η/N 50 100 200 300 400 500

0.15 1.09470 1.11360 1.11190 1.10550 1.10930 1.11040
0.20 1.06010 0.97408 1.00490 1.00630 0.99611 0.98812
0.25 -0.03309 -0.00131 -0.00178 0.02307 0.00957 0.00476
0.30 0.03372 0.01623 0.00584 0.00589 0.00989 0.01286
0.35 0.01637 0.00600 0.00686 0.01290 0.00947 0.00835
0.40 -0.00292 0.01214 0.00681 0.00681 0.00880 0.01029
0.45 0.00536 0.00572 0.00633 0.01015 0.00797 0.00726
0.50 0.01590 0.00940 0.00556 0.00555 0.00698 0.00805
0.55 0.00766 0.00410 0.00458 0.00753 0.00585 0.00530
0.60 -0.00235 0.00654 0.00341 0.00340 0.00456 0.00543

β = 5.0, ω = 1, ξ = 0.5
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Figure (2) analyzes the influence of the dimensionless relaxation time on the temperature field along the fin length. 
Also in this figure is offered a comparison with the results of Lin (1998). The governing parameters utilized were  
ω = 1.0, ξ = 0.5 and β = 0, 0.1, 1 and 5. As can be seen from this figure, for lower values of dimensionless relaxation 
time, the thermal wave propagates very fast, as a result of the speed of propagation approaching infinity, on the other 
hand, for higher values of β, the thermal wave does not reach the fin tip, and extinguishes at approximately η = 0.55 for 
β = 1.0, and at η = 0.24 for β = 5.0. This figure also illustrates the good agreement between the present results with 
those of Lin (1998). 
 
 

 
Figure 2. Temperature distribution along the fin length for different dimensionless relaxation times: ω = 1.0 and ξ = 0.5. 
 

Figure (3) shows the temperature distribution along the fin length with different dimensionless frequencies of base 
temperature oscillation, ω. Once again, it is offered a comparison of the present results with those of Lin (1998), which 
shows a good agreement. This figure makes it evident that even increasing the parameter ω, the thermal wave remains 
extinguished at η = 0.55 for β = 1.0, i.e., the dimensionless frequency of base temperature oscillation does not affect the 
extent of the non-Fourier effect along the fin length. The good agreement between the present results with those of Lin 
(1998) demonstrates that the lowest-order solution can give reasonable estimates of the hyperbolic conduction effects 
caused by the non-Fourier model, offering a straightforward analytical solution representation of this complex 
formulation. 

Figure (4) investigates the effect of the dimensionless relaxation time on the temperature field at the fin tip while 
varying the dimensionless time. This figure demonstrates that for lower values of β, the fin tip temperature rapidly 
increases, as expected, because these values of β agree with the classical Fourier model, in which the thermal waves are 
propagated with a infinite speed. For higher values of dimensionless relaxation time, the fin tip is not immediately 
excited by the application of the thermal pulse. It is observed that the temperature gradually increases after a short time 
period, and the phase shift that appears among the curves is influenced by the dimensionless relaxation time, once the 
heat flow does not begin right afterwards, there is an interval of time between the application of the temperature 
gradient and the heat flow, which is exactly the period of storage of energy. Also, the comparison with the results of Lin 
(1998) again reconfirms the good agreement, although one may observe deviations, especially for higher values of β. 
However, for most practical purposes, the lowest-order solution can be employed as a good approximation of the 
hyperbolic heat conduction behavior. 
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Figure 3. Temperature distribution along the fin length for different dimensionless frequencies of base temperature 

oscillation: β = 1.0 and ξ = 0.5. 
 

 
Figure 4. Temperature evolution at the fin tip for different dimensionless relaxation times (ω = 1.0). 



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006, Paper CIT06-0654 
 
4. Conclusions 
 

Hyperbolic heat conduction for a convective fin of constant cross-section area, submitted to periodic thermal 
conditions, has been analyzed using the Generalized Integral Transform Technique (GITT). A lowest-order solution 
was obtained in analytic form, offering approximate results for the fin temperature distribution for the investigated 
ranges of the governing parameters. It could be verified that the non-Fourier effect is significant for short times in the 
rectangular fin analysis, during the initial transient, when the thermal wave fronts are observed. 
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