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Abstract. Thermally developing laminar flow in eccentric annular ducts involving non-Newtonian power-law fluids is analyzed by 
using the Generalized Integral Transform Technique (GITT) to solve the associated energy equation. The mathematical formulation 
is constructed based on the cylindrical coordinates system in such a way that the solid surfaces are described in terms of internal 
and external radii as functions of the angular coordinate, thus avoiding discontinuities in the boundary conditions. This thermal 
problem is here analyzed under the boundary condition of prescribed wall temperature. Numerical results for the temperature field 
and Nusselt numbers were produced for different values of the governing parameters, i.e., eccentricity and aspect ratio along the 
thermal entry region, which were critically compared with previously reported ones, in order to illustrate the usefulness of the 
employed integral transform approach with automatic error control. 
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1. Introduction 
 

The study of thermally developing flow in eccentric annular ducts is important mainly due to its frequent 
appearance in several industrial applications, such as in heat exchange devices including the most common double-pipe 
configuration. In this type of equipment, due to imperfections and tolerances in the manufacturing steps, the eccentricity 
eventually caused, may or not be important. However, there are few typical applications where this effect is more 
pronounced and produced on purpose. Oil and gas drilling wells, polymer and plastic extrusion processes and nuclear 
reactors are some of the situations that reflect the importance of eccentricity in annular passages. In addition, when 
dealing with purely viscous non-Newtonian fluids, the essential heat and fluid flow analysis is much less available in 
the open literature, while commonly required in different industries, namely, chemical, food processing and 
pharmaceutical. There, the power-law model can adequately describe the rheology of a wide variety of fluids. 

The literature survey brings up several works that dealt with thermally developing or fully developed flow in this 
geometric configuration, such as the pioneering works of Piercy et al. (1933), Stevenson (1949), Snyder and Goldstein 
(1965) and Jonsson and Sparrow (1965), which concentrated their analyses in the fluid flow, while Cheng and Hwang 
(1968), Trombetta (1971) and Suzuki et al. (1991) analyzed the heat transfer problem under different sets of boundary 
conditions. Details of such earlier works can be found in the compilation of Shah and London (1978). These studies 
have regained interest in the more recent works of Manglik and Fang (1995), Fang et al. (1999), Manglik and Fang 
(2002) and Escudier et al. (2002) in which the effects of eccentricity and duct rotation were investigated for the flow 
and heat transfer of non-Newtonian fluids. Escudier et al. (2002), in addition, recently offered an excellent literature 
review for flow and heat transfer in eccentric annular ducts involving Newtonian and non-Newtonian fluids. 

With the advance of a structured hybrid analytical-numerical approach for convection-diffusion problems along the 
last two decades, named the Generalized Integral Transform Technique (GITT), Cotta (1993) & Cotta (1994), including 
the solution of elliptic diffusion-type problems defined within irregular domains (Aparecido et al., 1989), it was 
possible to apply this analysis to fully developed laminar flow within ducts of various shapes, such as trapezoidal, 
triangular, and hexagonal ducts (Aparecido and Cotta, 1987; Aparecido et al., 1989; Aparecido and Cotta, 1990; 
Barbuto and Cotta, 1997). Fully developed laminar flow and heat transfer of non-Newtonian fluids inside irregular 
ducts of different geometric configurations was also treated (Chaves et al., 2001a; 2001b; 2004, Monteiro et al., 2004), 
again through extension of the GITT approach, yielding accurate numerical results for quantities of practical interest 
such as the Fanning friction factor and Nusselt numbers, within a wide range of the governing parameters. 

The present study is aimed at applying the so-called Generalized Integral Transform Technique (GITT) to solve the 
energy equation for thermally developing laminar flow of power-law fluids inside eccentric annular ducts subjected to 
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constant temperatures either at the inner or outer duct walls. The cylindrical coordinates system is used in the 
mathematical formulation, so that the solid surfaces are described in the form of internal and external radii as functions 
of the angular coordinate, and thus avoiding more involved formulation in other coordinates systems and cumbersome 
domain transformation approaches. An analysis of convergence of the eigenfunction expansion is performed and a set 
of benchmark results is established for quantities of practical interest, such as dimensionless average temperature and 
local Nusselt numbers, within a wide range of the dimensionless axial coordinate, different power-law indices, aspect 
ratios and dimensionless eccentricities. Comparisons are then critically performed with previously reported results from 
direct numerical approaches along both, fully developed and thermally developing regions. 
 
 
2. Analysis 
 

Thermally developing flow of a non-Newtonian fluid inside eccentric annular ducts is considered according to Fig. 
(1). The non-Newtonian viscosity expression η = Kγn-1 is described according to the Ostwald-de Waele model or power 
law model (Bird et al., 1987), where K is the fluid consistency index (given in N.sn/m2), n is the power-law index 
(dimensionless) and γ is the rate-of-deformation tensor. The power-law fluid classification is (according to the n value): 
pseudoplastic (n < 1), Newtonian (n = 1 and K = µ) and dilatant fluids (n > 1). This rheological model was employed to 
obtain the fully developed velocity profile in eccentric annular ducts in a previous work by Monteiro et al. (2004), 
which is used as input for the present thermal problem formulation. In addition, the duct walls are subjected to different 
situations of prescribed temperature. Therefore, the dimensionless energy equation for constant properties flow, 
neglecting axial conduction and viscous dissipation, is written as: 
 

 
2

1 22 2

T 1 T 1 TW(R,θ) R ,   in   Z 0,  R (θ) R R (θ), 0 θ π 
Z R R R R θ

∂ ∂ ∂ ∂⎛ ⎞= + > < <⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
< <

≤

 (1a) 

 
with inlet and boundary conditions given, respectively, as follows: 
 
  (1b) 1 2T(R,θ,0) 0,       R (θ) R R (θ),      0 θ π= ≤ ≤ ≤

 

2
1

1
2

T(R (θ),θ,Z)
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T(R (θ),θ,Z)
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∂ ⎫= = > ⎪⎪∂
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n
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 (1c-f) 

 T(R,0,Z) T(R,π,Z)0,   0,    Z 0
θ θ

∂ ∂
= = >

∂ ∂
 (1g,h) 

 
where ∂/∂n represents the normal derivative to the channel wall surface, in the sense leaving the medium. 
 

         
(a)           (b) 
 

Figure 1 - Geometry and coordinates system for thermally developing flow in eccentric annular ducts: (a) prescribed 
temperature at the inner wall; (b) prescribed temperature at the outer wall. 
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The following dimensionless groups were employed in Eqs. (1) above: 
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The main dimensionless groups in Eqs. (2) above are: R2(θ) (dimensionless function that describes the outer 

surface), γ (aspect ratio), ε (dimensionless eccentricity), Pe (Péclet number), Re (Reynolds number) and Pr (Prandtl 
number). Dh is the hydraulic diameter defined as Dh = 2ro(1 – γ). 

In order to homogenize Eqs. (1c) and (1f), and thus improve the computational performance, a filter is defined as: 
 
 T(R,θ,Z) 1 Φ(R,θ,Z)= +  (3) 
 

After introducing Eq. (3) into Eqs. (1), the following problem for the potential Φ(R,θ,Z) results: 
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The dimensionless velocity profile is given from the solution of the flow equations by the application of the GITT 

approach itself, for a non-Newtonian power-law fluid flowing within eccentric annular ducts, as an infinite series in the 
form (Monteiro et al., 2004): 
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In Eqs. (5), the quantities Z,iV (θ)  represent the transformed potentials for the velocity field, which were 

numerically obtained through appropriate subroutines such as DBVPFD from the IMSL Library (1991), with local error 
control. 

Due to the non-separable nature of the velocity profile given in Eq. (4a) and consequently, of the related eigenvalue 
problem needed to solve the energy equation through well-known analytical methods such as the classical integral 
transform technique (Mikhailov and Ösizik, 1984), an exact solution of problem (4) is not possible. On the other hand, 
with the advances on the so-called GITT approach for the hybrid analytical-numerical solution of this class of non-
transformable problem, it is possible to avoid these difficulties as now demonstrated (Aparecido and Cotta, 1992; Cotta, 
1993, Chaves et al., 2002). For this purpose, in order to alleviate the difficulties related to the eigenvalue problem and 
to progress with the application of the generalized integral transform technique, the following auxiliary eigenvalue 
problems are chosen: 
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θ-direction: 
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which are readily solved to yield eigenfunctions and eigenvalues, as follows:  
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Also, the eigenfunctions above enjoy the following orthogonality properties: 
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Eigenvalue problems (6) and (7) allow the development of the following integral transform pair: 
 

 
2

1

R (θ)π
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∞ ∞
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The next step in the GITT approach is the integral transformation process itself, when all independent variables are 
eliminated from the partial differential formulation but one, in this case the dimensionless axial coordinate. To obtain 
the resulting system of ordinary differential equations for the transformed potentials i (Z)Φ , the partial differential 
equation (4a) is multiplied by Γi(R,θ)ϕ (θ)/R, integrated over the domains [R1(θ),R2(θ)] in the R-direction and [0,π] in 
the θ-direction, and the inverse formula, Eq. (10b), is employed in place of the filtered temperature distribution 
Φ(R,θ,Z), resulting in the following transformed ordinary differential system: 
 

 jm
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where, 
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In Eq. (11a) each summation is associated with the eigenfunction expansion in a corresponding spatial coordinate, 
for computational purposes, the series solution given by Eq. (10b) is, in general, truncated to a finite number of terms in 
the summation, in order to compute the potential Φ(R,θ,Z). The solution convergence is verified by comparing the 
values for the potential obtained with the truncated series for different numbers of retained terms. The coupled system 
of ordinary differential equations (11a) is solved by efficient numerical algorithms for initial value problems, such as in 
subroutine DIVPAG from the IMSL package (1991), with high accuracy and automatic control along the solution 
procedure. Then, after the transformed potentials are numerically obtained, quantities of practical interest are 
determined from the analytical inverse formula (10b), such as the dimensionless average temperature 
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where At(γ) is the cross-section area of the annular passage and, 
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The local Nusselt number can be calculated by making use of the temperature gradients at the walls integrated over 
the perimeter, or utilizing the axial gradient of the average temperature, 
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3. Results and discussion 
 

Numerical results for thermally developing laminar flow of power-law fluids inside eccentric annular ducts were 
obtained by codes developed in the FORTRAN 90 programming language. The system given by Eqs. (11) was handled 
through the subroutine DIVPAG from the IMSL Library (1991) with a user-prescribed subroutine relative error target 
of 10-8. These codes were implemented on a PENTIUM – IV 1.3 GHz microcomputer and the complete solution was 
computed with NT ≤ 400 in the expansions. The results are presented in terms of dimensionless average temperatures 
and local Nusselt numbers along the dimensionless axial coordinate, within the range Z = 10-3 to 1, for different values 
of power-law indices, dimensionless eccentricity and aspect ratios. 

Table (1) illustrates the convergence behavior of the present approach in terms of the local Nusselt number in the 
thermal entry region (i. e., Z = 10-3, 10-1 and 1) for different power-law indices and dimensionless eccentricity, ε = 0. It 
is observed an excellent convergence behavior, with practically three converged digits for all positions considered. 
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Table 1. Convergence of the local Nusselt number for an eccentric annular duct with dimensionless eccentricity ε = 0. 

Nu(Z)
Case 1A Case 1B γ NT n = 0.5 n = 1.0 n = 1.5 n = 0.5 n = 1.0 n = 1.5

Z = 0.001
25 36.190 33.814 32.954 10.201 9.9638 9.8819
100 43.855 34.798 32.183 17.433 17.077 16.946
255 40.141 33.676 31.832 23.077 22.450 22.2120.2 

400 40.371 33.715 31.792 26.489 25.416 25.009
25 23.043 22.344 22.035 13.365 13.073 12.969
100 34.203 31.453 30.180 22.846 22.215 21.958
255 32.835 29.008 27.519 28.115 26.762 26.1960.5 

400 31.464 28.436 27.239 29.091 27.010 26.171
25 18.830 18.346 18.149 15.794 15.429 15.291
100 30.150 28.544 27.825 26.404 25.417 24.995
255 31.800 27.837 27.460 30.357 28.206 27.3050.8 

400 29.931 27.051 25.973 29.532 26.854 25.825
Z = 0.1

25 10.714 10.022 9.8155 5.7154 5.5408 5.4891
100 10.610 9.9157 9.7023 5.7034 5.4887 5.4225
255 10.625 9.9290 9.7149 5.6843 5.4736 5.40880.2 

400 10.619 9.9244 9.7107 5.6798 5.4702 5.4058
25 7.5796 7.2741 7.1247 6.0831 5.8550 5.7676
100 7.5289 7.2443 7.1025 5.9938 5.7682 5.6832
255 7.5334 7.2479 7.1055 5.9876 5.7638 5.67940.5 

400 7.5311 7.2462 7.1041 5.9856 5.7623 5.6781
25 6.8205 6.5377 6.4088 6.3728 6.1141 6.0043
100 6.7671 6.5101 6.3928 6.3005 6.0623 5.9627
255 6.7678 6.5105 6.3935 4.7106 6.0607 5.96150.8 

400 6.7661 6.5097 6.3924 6.2964 6.0596 5.9605
Z = 1

25 8.3698 8.1313 8.0802 4.2288 4.1945 4.2089
100 8.3681 8.1297 8.0788 4.2287 4.1944 4.2087
255 8.3681 8.1296 8.0787 4.2287 4.1944 4.20870.2 

400 8.3681 8.1296 8.0783 4.2287 4.1944 4.2087
25 5.7702 5.7385 5.7101 4.4536 4.4296 4.4292
100 5.7696 5.7381 5.7099 4.2562 4.4293 4.4293
255 5.7696 5.7381 5.7106 4.4535 4.4293 4.42930.5 

400 5.7696 5.7381 5.7100 4.4534 4.4293 4.4293
25 5.1098 5.0822 5.0641 4.7098 4.6850 4.6760
100 5.1095 5.0821 5.0640 4.7097 4.6848 4.6760
255 5.1095 5.0820 5.0640 4.7090 4.6850 4.67600.8 

400 5.1095 5.0820 5.0640 4.7097 4.6850 4.6760
 

Table (2) shows a comparison of the asymptotic Nusselt numbers for the case 1A against those of Manglik and 
Fang (2002). It can be noticed an excellent agreement among the results furnishing a direct validation of the 
computational code developed in the present work. 
 

Table 2. Comparison of the asymptotic Nusselt number for an eccentric annular duct for the case 1A. 
Nu 

n = 0.5 n = 1 n = 1.5 
γ ε Present Manglik and 

Fang (2002) Present Manglik and 
Fang (2002) Present Manglik and 

Fang (2002) 
0 8.3681 8.1093 8.1296 8.0651 8.0783 8.0151

0.2 6.5178 6.5244 6.4796 6.4861 6.4509 6.45740.2 
0.6 3.9721 3.9761 3.9875 3.9915 3.9812 4.0012
0 5.7696 5.7621 5.7385 5.7316 5.7100 5.7040

0.2 3.5630 3.5666 3.7349 3.7386 3.8073 3.82640.5 
0.6 2.0318 2.0338 2.1018 2.1039 2.1396 2.1504
0 5.1095 5.1051 5.0820 5.0785 5.0640 5.0604

0.2 2.5675 2.5701 2.8312 2.8369 2.9296 2.94430.8 
0.6 1.2897 1.2923 1.4173 1.4216 1.4725 1.4874
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Figure (2) presents the evolution of the dimensionless average temperature along the thermal entry region for a 
Newtonian fluid with a dimensionless eccentricity ε = 0 and different aspect ratios. One can see that the aspect ratio 
causes an opposite behavior on this evolution; while for the case 1A the fully developed region is reached more rapidly 
for higher aspect ratios, for the case 1B this region is reached faster for lower values of this parameter. This can be 
explained by the effect of the adopted thermal boundary conditions and to a decrease in the annular gap; for the case 1A 
the insulated wall is the outer surface, so that the inner surface is subjected to higher heat fluxes but at lower aspect 
ratios, the average velocity is also lower, this way the heat exchange is less intensified and it is increased as the aspect 
ratio increases; while the opposite is observed for the case 1B. 
 

 
Figure 2. Evolution of the dimensionless average temperature along the thermal entry region. 

 
Figure (3) presents the effect of the power-law index on the temperature field as a function of the normalized radial 

coordinate, for the two cases of thermal boundary conditions analyzed at the angular positions θ = 0o and 180o, and 
considering fixed values of axial position, aspect ratio and dimensionless eccentricity (Z = 1, γ = 0.2 and ε = 0.6). It is 
verified that for the case 1A the power-law index does not affect the temperature field for both angular positions. This 
can be explained by the fact of satisfying the energy equation leading to a compensation evidenced by flatten 
temperature distributions, once the heat transfer process is limited by the nearest adiabatic wall. For the second case 
(case 1B), the power-law index slightly affects the temperature profile, for lower values of the normalized axial 
coordinate at θ = 180o, due to an increase of the surface area near the adiabatic wall. 
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Figure 3. Effect of the power-law index on the temperature field for an eccentric annular duct. 
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Similarly, Fig. (4) brings the effect of the dimensionless eccentricity on the temperature field as a function of the 
normalized radial coordinate. It is noted that an increase of this parameter results in an increase of the stagnation zone; 
as a result it higher temperature gradients are experienced in this region. For the case where the adiabatic wall is far 
from this zone, the temperature gradient is lower, this way resulting in higher peaks of temperature for lower 
dimensionless eccentricities. 
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Figure 4. Effect of the dimensionless eccentricity on the temperature field for an eccentric annular duct. 

 
Finally, Fig. (5) now considers the effect of the aspect ratio. It is evidenced that an increase of the aspect ratio 

results in higher peaks of temperature, as a direct consequence of a decrease on the annular gap width, so that higher 
temperature gradients are experienced mainly at the stagnation zones. 
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Figure 5. Effect of the aspect ratio on the temperature field for an eccentric annular duct. 

 
 
4. Conclusions 
 

The present study was intended to further demonstrate the usefulness of the Generalized Integral Transform 
Technique (GITT) as a benchmarking and covalidation tool in the simulation of convection-diffusion problems, while 
the codes created with this approach were found to be relatively cost-effective, within the range of truncations orders 
considered. Numerical results for convection heat transfer in eccentric annular ducts were tabulated and graphically 
presented providing a reliable source of benchmark for the local Nusselt numbers and dimensionless average 
temperature. 
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