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Abstract. The present work can be conceived as a first step in the direction of constructing an aeroacoustic solver. Such 

development in Computational Aeroacoustics (CAA) is not achieved before a complete understanding of the physics involved in 

acoustic problems. Thus a brief technical background in CAA is presented in order to introduce the numerical activities performed 

herein. The one-dimensional wave equation has been discretized with optimized high order finite difference schemes taking into 

consideration usual conditions of consistency, stability and convergence. These schemes are known as DRP (Dispersion-Relation-

Preserving). To advance the solution in time, high order Runge-Kutta schemes are applied. In order to validate the numerical 

scheme, initial disturbance functions are used, which are propagated in a 1D mesh. The advantages and limitations for the 

numerical schemes are deeply discussed shedding light to the relevant parameters which are necessary to achieve a good 

aeroacoustic simulation. The numerical results generated in this work are compared with the exact analytical solutions showing a 

good agreement. 
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1. Introduction 
 

Computational aeroacoustics (CAA) has made impressive progress along the last decades. Most of this advance has 

been driven by car aerodynamics and essentially aircraft designs for low noise. From the dawn of Sir James Lighthill 

work in 1952 up to recent days, aeroacoustic has evolved in terms of acquired knowledge about physical phenomena 

and development of tools for academic and industrial applications. Indeed, it cannot be neglected that many classes of 

acoustic problems were completely understood and solved by analytical and numerical approaches so far. Also, it is 

important to emphasize that these acoustic problems are essentially canonical cases involving wave propagation in very 

simple domains. With the need for industrial application of CAA in the last decade, numerical efforts have been 

specially concentrated in the creation of tools aimed to predict the generation and propagation of aerodynamic sound. 

The following discussion has been addressed by some authors in the literature and consists of an important key 

about separating classical computational fluid dynamics (CFD) of the recent CAA. In essence, it is important to keep in 

mind that classical CFD simulations cannot handle acoustic phenomena.  

Differently from a classic computational fluid dynamics (CFD) analysis, there are other important physical and 

numerical issues related to computational aeroacoustics. From the physical standpoint, it is largely known that sound is 

most generated by transitional and turbulent flow phenomena like separation and shearing, vortex shedding, 

impingement and shocks. In all these cases there are a wide range of length and time scales associated. In the flow field 

these length and time scales are quite different from those ones existing in the acoustic field. Figure 1 illustrates the 

length and time scales difference between fluid mechanic and acoustic. Kolmogorov’s scales (δ) of turbulence are much 

smaller than the wavelength (λ) of the generated sound waves which by it’s turn is smaller than the characteristic fluid 

dynamic length or the largest eddy in the flow field (L). 

 
 

Figure 1. Disparity between the flow field and acoustic scales. 
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It’s important to remember that for aerodynamics or fluid mechanic problems, flow disturbances, generally, tend to 

decay very fast away from a body or their source of generation. That is, any flow disturbance suffers the effects of 

dispersion and dissipation along the flow field. On the other hand, acoustic waves are non-dispersive and non-

dissipative and consequently decay very slowly in the acoustic field, traveling for long distances until reaching any 

observer. From the numerical standpoint, such physical implications listed above drive numerical requirements like 

dealing with different length scales in different parts of the computational domain. Yet, numerical schemes used to 

evaluate time and space-derivatives should be of low dispersion and dissipation error in order to guarantee long wave 

propagations. Another limiter is the computation domain that is inevitably finite in size. Thus, acoustic waves being 

propagated decay very slowly and actually reach the boundaries of the computation domain. To avoid the reflection of 

outgoing sound waves back into the computation domain and contamination of the solution, radiation and outflow 

boundary conditions must be imposed at the artificial exterior boundaries to assist the waves to exit smoothly. And 

finally, still considering a finite domain, the wave propagation needs to be performed outside of the computational 

domain to reach an observed that is often far away from the sound source generation. The discretization of such big 

domain is completely out of question and so, numerical propagation methodologies should deal with this problem. 

According to Tam (2005), the need for highly accurate numerical methods was recognized from the earliest stages 

in the development of Computational Aeroacoustics (CAA) since the classical computational fluid dynamics could not 

deal with long-time integration with minimal dissipation and dispersion in order to guarantee the propagation of sound 

waves in the far-field. 

As a summary presented by Tam (2004) to simulate an aeroacoustic phenomenon or problem computationally, the 

numerical algorithm must consist of several basic elements which are listed below: 

 

(1) A time marching computation scheme; 

 

(2) A suitably designed computation grid; 

 

(3) An artificial selective damping algorithm or filtering procedure if the marching scheme has no built-in 

artificial selective damping; 

 

(4) A set of radiation/outflow numerical treatments for use at the boundaries of the computation domain. 

 

Along the years, different methodologies have been created and applied to build aeroacoustic numerical codes. It 

started with the use of higher order schemes by believing that they were more suitable than lower-order schemes in 

terms of stability. For acoustic calculations, however, the stability consideration alone is not sufficient, since Runge-

Kutta schemes retail both dissipation and dispersion errors. The numerical solutions need to be also time accurate to 

resolve the wave propagations. Time integration has then been optimized with the same aim in view, especially using 

Runge–Kutta (RK) algorithms – Berland (2005).  

By reviewing the literature and seeking for low-dissipative, low-dispersive and large spectral bandwidth numerical 

algorithms it can be found relevant works in aeroacoustics. For instance, Tam & Webb (1993b) exploited the DRP 

(Dispersion-Relation-Preserving) schemes, Lele (1992) developed compact finite differences, and recently 

Bogey & Bailly (2004) built up explicit finite differences and selective filters accurate for waves down to four points 

per wavelength.  

Other numerical works as of Roeck et al (2004), Tam (2004), have presented high-order finite difference schemes 

for computational aeroacoustics. However, when dealing with space and time derivatives discretization, special 

attention should be given to DRP schemes which in essence possess the same dispersion relations as the original partial 

differential equations. As presented by Tam & Webb (1993a) the central idea of this approach is that a time marching 

high order finite difference scheme can faithfully reproduce the three types of waves, namely the acoustic, vorticity, and 

entropy waves, of the linearized Euler equations. Nevertheless, this is only true if the dispersion relations of the finite 

difference scheme are the same as those of the partial differential equations. In terms of numerical results, the DRP 

schemes tend to be more suitable for wave solutions. The complete description of these schemes can be found in the 

work of Tam & Webb (1993b). However, it is important to emphasize that the main focus of the work presented herein 

is given to the exploration of DRP (Dispersion-Relation-Preserving) spatial schemes. 

In general, the present work can be divided in two objectives. The first one is to provide a general overview about 

computational aeroacoustic requirements through the discussion of some relevant associated issues and by presenting 

recommended references to those ones that are initiating researches in this area. The second objective is to present the 

validation of time and spatial discretization of the wave equation by using different schemes and focusing on the use of 

DRP schemes. To accomplish this task, numerical simulations for the propagation of a pulse or disturbance are 

conducted. The solution is compared with analytical results showing a good agreement. Finally, the advantages and 

limitations for the numerical schemes are deeply discussed shedding light to the relevant parameters which are 

necessary to achieve a good aeroacoustic simulation. 
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2. Numerical Schemes 
 

This section is aimed to provide a general guidance about numerical schemes that can be used for aeroacoustic 

simulations. The focus will be given to DRP schemes for spatial discretization and Runge-Kutta time integration 

methods which will be summarized and presented hereafter. 

Standard central differences schemes are presented in Roeck et al (2004), in which a spatial derivative of a function 

in a grid point is approximated by a weighted summation of the function values in the neighboring grid points. For a 7-

point (ST7) and 9-point (ST9) stencil, a 6th and an 8th order accurate scheme, respectively, is obtained.  

With the same approach of improving the dissipation and dispersion characteristics, other works were proposed 

(e.g. Bogey et al. (2002), Hu et al. (1996) and Lele (1992)). The importance of dispersion relations of the finite 

difference schemes have been emphasized in these works with good results in terms of wave propagation and 

robustness of the computation. 

In this context, the low-dispersion and low-dissipation numerical schemes also known as DRP (Dispersion-relation-

preserving) presented by Tam & Webb (1993b) seems to be one of the most suitable for aeroacoustic problems. 

Tam (1993b, 2004) has discussed the numerical issues related to these schemes.  

Regarding temporal discretization the most common methods are the Runge-Kutta schemes. These methods have 

been evolved following the same idea of DRP schemes, where dispersion and dissipation of the scheme are minimized 

in the Fourier space over a large range of frequencies for linear operators, as presented by Hu et al. (1996) and 

Bogey and Bailly (2003). 

In the following section, a brief description of these schemes is presented and discussed. The numerical 

implementation was concentrated in the DRP 7-point, DRP 15-point schemes of Tam & Webb (1993b) and 

Tam (2004), respectively, and the 9-point optimized central difference scheme of Bogey et al. (2002). For time 

integration two Runge-Kutta schemes were selected based on independent criteria of low-storage (Williamson (1980)) 

and low-dispersion/dissipation (Hu et al (1996)). 

In summary, the understanding and numerical implementation of these schemes could be considered an initial step 

in order to build an aeroacoustic solver which is the main goal for work future. 

 

2.1. Spatial Discretization 
 

The description of optimized spatial discretization for the Dispersion-Relation-Preserving (DRP) schemes is given 

in the work of Tam & Webb (1993b) as follows: 

Consider the approximation of the first derivative xf ∂∂ / - Equation (1) at the lth node of a uniform grid. Suppose 

M values of f to the right and N values of f to the left of this point are used to form the finite difference approximation – 

Figure 2. 

 

 
Figure 2. Uniform grid representation. 
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The usual procedure is to expand the right-hand side of (1) in Taylor series of x∆  and then determine the 

coefficients ja  by equating coefficients of the same powers of x∆ . Finite difference schemes constructed in this way 

will be referred to as the standard schemes. In the DRP schemes the coefficients ja  are found in a different way. It is 

proposed that they be determined by requiring the Fourier transform of the finite difference scheme on the right of (1) to 

be a close approximation of that of the partial derivative on the left. 

The finite difference equation (1) is a special case of the following equation in which x is a continuous variable: 
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(1) can be recovered from (2) by setting xlx ∆= . The Fourier transform and its inverse of a function are related 

by 
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The Fourier transform of the left and right sides of (2) are: 
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by comparing the two sides of (5) it is clear that the quantity 
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is effectively the wave number of the Fourier transform of the finite difference scheme (2) or (1); x∆α  is a 

periodic function of x∆α  with period π2 . To assure that the Fourier transform of the finite difference scheme is a 

good approximation of that of the partial derivative over the range of wave numbers of interest (waves with wave length 

longer than four x∆  or 2/πα <∆x  it is required that ja  be chosen to minimize the integrated error E defined: 
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The conditions that E is a minimum are 

 

0=
∂

∂

ja

E
, j=-N to M; (9) 

 

(9) provides a system of linear algebraic equations by which the coefficients ja can be easily determined. 

More details about DRP schemes can be found in Tam & Webb (1993b). 

The coefficients of the 7-point and 15-point DRP schemes used in this work are: 

 

7-point scheme:     15-point scheme: 
 

a0 = 0      a0 = 0  

 

a1 = -a1 =    0.77088238051822552   a1 = -a1 = 0.91942501110343045059277722885 

 

a2 = -a2 = -0.166705904414580469   a2 = -a2 = -0.35582959926835268755667642401 

 

a3 = -a3 =    0.02084314277031176   a3 = -a3 = 0.15251501608406492469104928679 

 

     a4 = -a4 = -0.059463040829715772666828596899 

 

     a5 = -a5 = 0.019010752709508298659849167988 

 

     a6 = -a6 = -0.0043808649297336481851137000907 

 

     a7 = -a7 = 0.00053896121868623384659692955878 
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Artificial Selective Damping: 

 
To obtain a high-quality numerical solution, it is necessary to eliminate the short wavelength spurious numerical 

waves. The origin of these spurious waves is related to grid-to-grid oscillations and a way to eliminate or reduce such 

instabilities is introducing artificial selective damping terms in the finite difference equations. Tam & Webb (1993b) 

used tailored damping terms specifically for eliminating only the short waves without affecting the physical long waves.  

Additional information about this approach can also be found in Roeck et al (2004) and Bogey and Bailly (2004). 

The present work considers both the effect of the artificial selective damping as described in Tam & Webb (1993b) and 

no use of selective damping. The artificial selective damping has been applied only for the DRP scheme. The 

coefficients for the damping function are given as follows: 

 

c0 = 0.3276986608  

 

c1 = -c1 = -0.235718815 

 

c2 = -c2 = 0.0861506696 

 

c3 = -c3 = -0.0142811847 

 

2.2. Time Integration 
 

Runge-Kutta algorithms are largely used in fluid dynamics applications because stability over a wide range of 

frequencies. Many of these algorithms were optimized for low-storage requirements in order to make easier the 

numerical computation on systems that are very large. A good reference in this area is the work of Williamson (1980) 

where low-storage schemes up to fourth order were evaluated without losing stability and accuracy. 

According to Hu et al. (1996) for computing acoustic waves, only the stability consideration is not sufficient, since 

the Runge-Kutta schemes also entail both dissipation and dispersion errors. Many works go to the direction of 

optimizing Runge-Kutta schemes for low dispersion and dissipation properties. This is the case of works from 

Hu et al. (1996) and Bogey and Bailly (2004). 

In order to present a summary of the approach done herein, let the time evolution equation be written as follows: 
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in which U represents the vector containing the solution values at the spatial mesh points and the operator F contains 

the discretization of the spatial derivatives. For simplicity, it’s assumed that F does not depend on t explicitly. An 

explicit low storage p-stage Runge-Kutta scheme advances the solution from time level nt  to ttn ∆+  as: 
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The standard p-stage Runge-Kutta schemes of pth-order (for a linear operator F) can be obtained with Taylor Series 

expansion of )( ttu n ∆+ . The coefficients jα  should be chosen to obey several conditions as maximum order of 

accuracy. Like the spatial integration, presented in section 2.1, the coefficients jα  can also be chosen to minimize the 

dispersion and dissipation errors.  

More details about the determination of these coefficients can be found in Hu et al. (1996), Roeck (2004) and 

Berland et al. (2005). In this paper, the low-storage and low-dispersion/dissipation properties are evaluated through the 

implementation of the following Runge-Kutta schemes: 

 

• 3
rd

 order low-storage Runge-Kutta scheme – Williamson (1980) – RK3W 

 

• 5 stages low-dissipation and low-dispersion 2
nd

 order Runge-Kutta scheme – Hu et al (1996) – LLDRK5 

 

• 5 stages 2
nd

 order optimized Runge-Kutta scheme – Bogey and Bailly (2002) – RKO5 

 



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006 – Paper CIT06-0481 
 

The coefficients jα for the schemes of Hu et al (1996) and Bogey and Bailly (2002) are written in Table 1. 

 

Table 1 - αj for RK5 and RK6 

 

 α1 α2 α3 α4 α5 α6 

LLDRK5 0.197707993 0.237179241 0.333116 0.5 1 - 

RKO5 0.181575486 0.238260222 0.330500707 0.5 1 - 

 

3. Validation problem 
 

To validate the scheme properties, two initial value problem of a one-dimensional convective wave equation are 

considered.  

The mathematical problem consists in finding the solution for the wave equation: 
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with an initial disturbance )(xfu =  at time 0=t . The solution consists of the initial disturbance propagating to 

the right in an one-dimensional mesh. The propagation of this disturbance posses a dimensionless speed equal to 1 

( )( txfu −= ). 

The initial disturbance functions )(xf  used in this work are described below: 

 

(1) Box-car function:  
 

0=t , )]50()50([5.0)( −−+= xHxHxf  (13) 

 

The factor 0.5 defines the amplitude of the step function and 50 is the haft width of the box-car. The fourier 

transformation of this function contains high frequency components and these must be damped in order to avoid 

spurious high-frequency waves. For this reason, this function is a good way to evaluate the effect of artificial damping. 

 

(2) Gaussian function: 
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According to Roeck (2004) the Gaussian function is used to evaluate the general dispersion and dissipation 

properties and the stability ranges of the scheme. The Fourier transformation of a Gaussian pulse is also a Gaussian 

pulse with a maximum at 0=∆xk . The initial disturbance will therefore be mainly situated in the long wave range and 

artificial damping is not necessary and will not be added to the numerical scheme. 

The variables of equation (12) are made dimensionless with x∆  as length scale and 0/ cx∆  as the time scale. The 

computational domains have a dimensionless length of 700 x∆  for the Gaussian and Box-car functions. 

Figure 3 presents the analytical solution for the functions (1) and (2) at the initial time ( 0=t ).  

 
Figure 3. Analytical solution for the functions (1) and (2) at the initial time ( 0=t ). 
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All the calculations were done with a grid spacing x∆  equal to unity and a time step t∆  equal to 0.1. The stability 

requirements were satisfied with a CFL ( t∆ / x∆ ) of 0.1. 

In this work it’s not applied any kind of boundary conditions. The simulations were evaluated for a dimensionless 

time of 400. At this time, the initial disturbance reaches the dimensionless position of 400. Taking this into account, no 

specific boundary conditions have been added since spurious reflections of the initial disturbance at the boundaries are 

negligible if the disturbance has not reached the boundary yet. 

 

4. Results 
 

4.1 Initial Disturbance Function - Box-car Function 
 

Figure 4 shows the computed results of the seven-point DRP scheme with different Runge-Kutta time integration 

methods. For these results damping was not used. For comparison purposes, the analytical solution is plotted against the 

numerical results. 

The presence of spurious waves is evident in the computed solution. These spurious waves are generated by the 

discontinuities of the initial condition and due to grid-to-grid oscillations. The Runge-Kutta schemes were quite stable 

for all simulations and it’s possible to say that all the numerical error was introduced by the spatial discretization. 

 

 

 
Figure 4. Comparison between the computed and the analytical solutions of the one-dimensional wave equation for the 

Box-car initial disturbance 

 

The effect of the artificial selective damping terms in the wave equation can be clearly seen in Figure 5. Almost all 

the spurious oscillations were damped out. To obtain these results a damping constant of 0.3 was used. This value was 

selected based on the work of Roeck (2004). A larger value of this constant adds more damping into the scheme making 

the spurious waves smaller.  

Even with the artificial selective damping it can be seen some overshoot in the left corner of the discontinuity. This 

overshoot is completely removed by increasing the value of the damping constant to 0.9 – Figure 6. However, the 

corners of the step have been smeared.  
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Figure 5. Effect of the damping function in the propagation of the Box-car function (damping constant of 0.3) 

 

 
Figure 6. Effect of the damping function in the propagation of the Box-car function (damping constant of 0.9) 

 

Contrary to the work of Roeck (2004), the increase of the damping constant over 0.7 did not bring any instability to 

the numerical scheme and the solution shown in Figure 6 could be obtained. 

Figure 7 and 8 shows the numerical results for the propagation of the box-car function with the 15-point DRP 

scheme and the 9-point optimized central difference scheme of Bogey et al. (2002) associated with different Runge-

Kutta schemes. For both schemes no artificial selective damping was applied. Even without damping, it’s possible to 

see that the spatial discretization with more points perform better than the DRP 7-point scheme for the waves behind the 

pulse. However, at the discontinuity there is more overshoot. 
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Figure 7. Propagation of Box-car function with 15-point DRP scheme – no artificial selective damping. 

 

 

 
Figure 8. Propagation of Box-car function with 9-point optimized central-difference scheme – no artificial selective 

damping. 
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4.2 Initial Disturbance Function - Gaussian 
 

Figure 9 shows the computed results of the seven-point DRP scheme with different Runge-Kutta time integration 

methods for the propagation of the Gaussian disturbance. In spite of the good agreement with the analytical solution 

some dispersed waves can be seen behind the pulse. These waves are originated by high-frequency components that are 

propagating at a lower wavespeed. It was expected that the low dispersion of the DRP scheme could diminish the 

amplitude of these trailing waves. However they are still present for the 7-point DRP scheme. It is important to 

emphasize again that the time integration schemes are almost not contributing to the numerical error since the stability 

range was satisfied with the Courant number. The main error is then introduced by the spatial difference scheme. 

 

 

 

 
Figure 9. Propagation of Gaussian function with 7-point DRP scheme – no artificial selective damping. 

 

 

The same calculations were done by increasing the stencil of the spatial discretization for 15 points using DRP 

schemes and for 9 points using an optimized central difference scheme - Figure 10 and 11 respectively. The increase in 

the number of points for the spatial discretization and the better dispersion properties of these schemes led to very good 

agreement for the pulse propagation when compared to the analytical solution. Practically, all the trailing waves were 

removed and the pulse was propagated correctly with the constant wave speed. 

Both 15-point (DRP) and 9-point (STO9) schemes had a better performance when compared to the 7-point (DRP) 

scheme. However, these schemes are computationally more expensive due to a stencil with more points.  
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Figure 10. Propagation of Gaussian function with 15-point DRP scheme – no artificial selective damping. 

 

 

 
Figure 11. Propagation of Gaussian function with 9-point optimized central-difference scheme – no artificial selective 

damping. 
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5. Conclusions 
 

The present work provided an overview of different spatial and temporal schemes that can be used for aeroacoustics 

calculation. Since, spatial and temporal discretization schemes with low-dispersion and low-dissipation properties have 

shown good performance in wave propagation problems it was investigated the DRP schemes and Runge-Kutta time 

integration methods which such properties. The DRP schemes with 7-point, 15-point and an optimized 9-point central 

difference scheme were evaluated for spatial discretization in the solution of a one-dimensional wave equation 

considering different initial disturbance propagation. To advance the solution in time, three different Runge-Kutta 

schemes were evaluated. 

In general, the DRP schemes showed a good performance for wave propagation mainly due to the low dissipation 

and low dispersion properties. The 15-point DRP scheme was much more efficient than the 7-point, however the 

computational time increased. Also, the optimized 9-point central difference scheme presented good performance and it 

was better than the 7-point DRP scheme. The use of artificial selective damping was important to propagate the Box-car 

function correctly and to eliminate the spurious waves present in the solution. By increasing the damping constant, it 

was possible to reach a reasonable solution, but still with some smearing of the discontinuity.  

Regarding the Runge-Kutta schemes, it’s possible to say that over the range of stability, all the three schemes 

performed very well no bringing dispersion and dissipation to the solution. However, it’s important to keep in mind that 

the schemes LDDRK5 and RKO5 are computationally more time consuming since at each stage evaluations of the 

spatial derivative need to be performed. 

As a final recommendation of this work, the combination of the 9-point central difference (STO9) and the 15-point 

(DRP) scheme with the Runge-Kutta RKO5 is a good approach to initiate aeroacoustic computations.  
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