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Abstract. Free convection inside cavities of annular geometry is a phenomenon present in many engineering devices, reason which 
is subject of investigation by many researchers. This work deals with free convection heat transfer inside annular vertical concentric 
cavity using the Generalized Integral Transform Technique – GITT, a hybrid numerical analytical method that has been applied 
with great success to convection-diffusion problems. This method allows obtaining solution of the governing equations without the 
necessity of the grid generation requirements. The mathematical formulation of the problem is described by the Navier-Stokes and 
energy equations in cylindrical coordinates and its representation in streamfunction formulation are adopted. In the present job, the 
integral transform is first employed in the axial direction and the resulting ordinary differential system to be solved are only a 
function of the radial coordinate, instead of the previous published paper, which performs the transformation in radial direction. 
Several values for aspect ratio, thickness between internal and external radii, and Raleigh number are calculated. Results are 
compared with data available in literature obtained by other numerical methods.  
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1. Introduction 
 

Free convection inside cavities has received an ever increasing interest of the thermal sciences researchers because 
of its wide applicability in industrial processes. The precise knowledge of the heat transfer between the cavity walls and 
the fluid is extremely important in the choice of adequate materials and in the optimum design of thermal equipment. In 
particular, the flow in the annular region comprehended by circular concentric ducts is of special interest in thermal 
engineering applications. This flow model occurs, for instance, in double pipe heat exchangers, in nuclear reactors 
cooling, thermal storage tanks, cylindrical thermal insulation, and various other applications.  

The present research intends to add some reference information to the literature by providing results for steady 
laminar buoyancy induced flow within annular concentric cavities, making use of the Generalized Integral Transform 
Technique (GITT) (Cotta, 1993; Cotta and Mikhailov, 1997 and Cotta, 1998). In this context, the aim of this work is to 
illustrate the use of the GITT as a tool in obtaining engineering results for problems of natural convection inside annular 
concentric vertical cavities, while offering some fully converged benchmark results for future reference.  

This class of problems was initially treated by De Vahl Davis and Thomas (1969) and Thomas and De Vahl Davis 
(1970), who considered natural convection for both vertical annular concentric and rectangular cavities. The problem 
was modeled by the coupled Navier-Stokes and energy equations, which were then solved using the finite difference 
method. They investigated the influence of Rayleigh number upon the most relevant heat transfer results. El-Shaarawi 
and Sarhan (1980), using a boundary layer approach, studied this problem employing the finite difference method. 
Prasad and Kulacki (1985) developed an experimental apparatus to analyze the natural convection phenomena in a 
liquid-filled vertical annular cavity, for different heights of the cavity. Kumar and Kalam (1991) also conducted an 
investigation on this problem, and their results are here recalled for critical comparisons. Aung et al. (1991) and Tsou 
and Gau (1992) treated the same class of problems but considering the temperature dependence of the fluid properties, 
and solved it using the finite differences method. Rogers and Yao (1993) undertook the more involved task of 
performing an instability analysis in vertical annular concentric cavities. 

The present analysis is a natural extension in the development of the considered hybrid numerical-analytical 
approach for heat and fluid flow problems, and some of the more representative previous contributions related to the 
present work, using the same methodology, can be found in Pereira et al. (1998), Pereira et al. (1999) and Pérez 
Guerrero at al. (2000). 
 
2. Problem Formulation 
 

The physical problem under consideration is related to an annular concentric vertical cavity closed by two insulated 
end caps, according to Fig. (1). The annular space is formed by two concentric cylinders with radii R1 for the internal 
cylinder wall and R2 for the external cylinder wall and height Zmax. A Newtonian fluid is confined within the cavity and 
the cylinders walls are maintained at constant and uniform temperatures, with T1 > T2. The fluid flow is assumed 
laminar and occurs only by density differences (buoyancy effects) caused by the different side walls  
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temperatures. Besides, the Boussinesq hypothesis is adopted. The mathematical representation for this problem is given 
by set of equations: the conservation of mass, momentum and energy, which in steady state and dimensionless form, are 
written as 
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Figure 1. Geometry and coordinates system for natural convection in annular vertical cavities. 
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and the following dimensionless boundary conditions: 
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The dimensionless groups used to write Eqs. (1-4) and the boundary conditions (Eqs. 5), are defined as: 
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where VR and VZ are the dimensional radial and axial velocity components, respectively; R and Z are the dimensional 
radial and axial coordinates, respectively; P is the dimensional absolute pressure; T is the dimensional absolute 
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temperature; T1 and T2 are related to the dimensional absolute temperatures of the internal and external cylinders walls; 
g is the gravity acceleration; α is the thermal diffusivity; ρ is the specific mass; β is the thermal expansion coefficient; µ 
is the absolute viscosity; cp is the specific heat at constant pressure; k is the fluid thermal conductivity; RaL is the 
Rayleigh number, based on the cavity width; and Pr is the Prandtl number. The following additional dimensionless 
parameters are then defined: 
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with r1 and r2 being the dimensionless positions of the internal and external cylinders walls, respectively;  ϖ  is the radii  
ratio; L is the cavity width and h is the ratio between the height and width of the cavity (aspect ratio). 

 
The momentum equations can be represented in the streamfunction-only formulation to eliminate the pressure 

terms and automatically satisfy the continuity equation. Therefore, using the same procedure adopted by Pereira et al. 
(1998), the following dimensionless coupled partial differential equations are generated: 
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with boundary conditions: 
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The fact that no flow occurs across the boundaries of the cavity, makes it possible to take 0=ψ  without loss of 
generality. Therefore, all the boundary conditions at radial and axial directions become homogeneous. 
 
2.1 Solution Methodology 
 

According to the integral transformation approach, the first step is to choose auxiliary eigenvalue problems for the 
momentum and energy equations.  Due the homogeneous nature of the axial boundary conditions, the forth order 
eigenvalue problem used by Pérez-Guerrero et al. (1999) was here employed as the auxiliary problem to solve the 
streamfunction equation, which is written as 
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where  and )(ziΧ iγ  are the eigenfunctions and eigenvalues, respectively. 

The solution is shown in details in Pérez-Guerrero (1999) and its general form is  
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Orthogonality property 
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The eigenvalues γi´s are the roots of the following transcendental equation 
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 In the case of the energy equation, the auxiliary problem for the energy equation is of the Sturm-Liouville 
type, written as: 
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where Γm(z) and λm are the eigenfunctions and the eigenvalues, respectively.  

The solution of this auxiliary problem are readily available in Ozisik (1993) and given by 
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note that 00 =λ  is a eigenvalue too. 
The eigenfunctions obey the following ortoghonality property 
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2.2 The Integral Transform Pairs 

 
The next step in the solution procedure is to determine the integral transform pairs.  Making use of the 

orthogonality properties of the eigenfunctions, the following integral transform pairs for the streamfunction and 
temperature equations are obtained, respectively: 
 



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006, Paper CIT06-1016 
 

 ∫ Χ=
h

ii dzzrzr
0

 ),( )(~)( ψψ ,      (transform) (11.a)  

 ∑
∞

=

Χ=
1

)()(~ ),( 
i

ii rzzr ψψ ,           (inversion) (11.b)  

 ∫ ΘΓ=Θ
h

mm  dzr,z z r
0

)()(~)( ,   (transform) (12.a)  

 ∑
∞

=

ΘΓ=Θ
1

)()(~ ),(
m

mm rzzr ,          (inversion) (12.b)  

 
where the symbol ‘~’ represents the normalized eigenfunctions which are written as  
 

 
m

m
m

i

i
i M

z
z

N
zX

zX
)(

)(~;
)(

)(~ Γ
=Γ=   (12.c,d) 

 
2.3 The Ordinary Differential Systems 
 

Using the transformation rules, given by Eqs. (11-12), the coupled partial differential equations with their 
respective boundary conditions are transformed resulting in the following ordinary differential systems: 
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with the following radial boundary conditions 
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The coefficients Aij, Aijk, Bijk, Cijk, Bim, Emnj and Fmnj appearing in Eqs. (13.a and 14.a), which result from the integral 

transformation procedure, are defined as (Pereira, 2000): 
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3. Results and Discussion 

 
The resulting fourth order and second order ordinary differential system for streamfunction and temperature, 

respectively, joint with the boundary conditions are solved through the subroutine BVPFD (IMSL Library, 1989) which 
is appropriate to solve this kind of problems under a user prescribed error target, here taking as 10-4 for the transformed 
streamfunction and temperature potentials.  
 
Table 1. Convergence of streamfunction and temperature for Pr=0.7, h=1, ϖ=2, RaL=105, and various r and z positions. 

 

ψ(r,z) Θ(r,z) 

NT r =1.1 1.5  1.9 r =1.1 1.5  1.9 

z = 0.1 z = 0.1 
20 -0.1794E+01 -0.1995E+01 -0.9060E+00 0.3330E+00 0.1370E+00 0.5235E-01 
24 -0.1794E+01 -0.1995E+01 -0.9059E+00 0.3338E+00 0.1370E+00 0.5232E-01 
26 -0.1795E+01 -0.1995E+01 -0.9059E+00 0.3338E+00 0.1370E+00 0.5231E-01 
28 -0.1795E+01 -0.1995E+01 -0.9060E+00 0.3337E+00 0.1370E+00 0.5230E-01 
30 -0.1796E+01 -0.1995E+01 -0.9061E+00 0.3336E+00 0.1370E+00 0.5229E-01 

z = 0.5 z = 0.5 
20 -0.6091E+01 -0.1189E+02 -0.5945E+01 0.5035E+00 0.3589E+00 0.2639E+00 
24 -0.6091E+01 -0.1189E+02 -0.5945E+01 0.5036E+00 0.3589E+00 0.2638E+00 
26 -0.6092E+01 -0.1189E+02 -0.5946E+01 0.5037E+00 0.3589E+00 0.2637E+00 
28 -0.6091E+01 -0.1189E+02 -0.5946E+01 0.5036E+00 0.3589E+00 0.2638E+00 

z = 0.9 z = 0.9 
20 -0.1793E+01 -0.2977E+01 -0.2028E+01 0.8410E+00 0.7057E+00 0.4463E+00 
24 -0.1793E+01 -0.2977E+01 -0.2028E+01 0.8409E+00 0.7057E+00 0.4458E+00 
26 -0.1793E+01 -0.2977E+01 -0.2029E+01 0.8409E+00 0.7057E+00 0.4458E+00 
28 -0.1794E+01 -0.2977E+01 -0.2030E+01 0.8409E+00 0.7057E+00 0.4458E+00 
30 -0.1794E+01 -0.2977E+01 -0.2030E+01 0.8409E+00 0.7057E+00 0.4459E+00 

 
In table (1) is showed the convergence behavior for both streamfunction and temperature profiles. It is considered 

several radial and axial positions within the annular space and the values RaL=105 and Pr=0.7 was applied.  It can be 
noticed that close to the edges of the cavity, corresponding to the region of greater gradient, the convergence was 
attained with higher truncation orders in the expansions, as expected. For all considered positions, a maximum number 
of terms, such as NT=30, in the streamfunction and temperature inversion formulae was required to achieve full 
convergence to four significant digits.  With the increase of the Rayleigh number, the convergence rates of the 
eigenfunction expansions, for both the streamfunction and the temperature, are also affected, due to the dominance of 
convective effects. This behavior is more noticeable in regions closer to the inner and outer walls of the cavity, due the 
gradients are more pronounced. On the other hand, at the vertical mid plane of the cavity (r = 1.5) only a few terms are 
necessary for the convergence.  
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Figure 2. Streamfunction for Pr=0.7, ϖ =2.0 h = 0.5 for: (a) RaL=103; (b) RaL=104; (c) RaL=105 and (d) RaL=106. 
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Figures (2.a-d) show the isolines of  streamfunction for ϖ = 2.0 and h=0.5 and various values of  the parameter 
RaL. It is worth recalling that in the case of RaL=103 and 104 (Figs. 2.(a) and (b)), only one vortex  is detected, with a 
elliptical shape and  located at the cavity center, which is deformed when RaL  increases. When RaL increases, a 
secondary vortex arise at left hand upper side of the cavity. This vortex is more pronounced in the case of RaL=106. In 
this case, the temperature isolines are almost parallel, showing  the dominance of the conductive heat transfer process 
inside the cavity for low Rayleigh number. 

According to Fig. (2.b) for RaL=105, h=1 and ϖ =2, a secondary vortex is observed above the axial primary vortex. 
It is also is observed in Fig. (2.b) that the isolines of the temperature field  collapse at the bottom of the hot and cold 
walls, turning the boundary layers much finer with the increase in RaL,, as can further observed in Fig. (2.c) for the case 
RaL=106 . 

The case of a cavity with h=5  and RaL=105 is illustrated in Fig. (3). It should be noted that with the increase of the 
aspect ratio, the structure of the vortices is modified.  The behavior of the isolines, Figs. (2-3), for both steamfunction 
and temperature, shows a reasonable graphical agreement with other results reported in the literature (De Vahl Davis 
and Thomas, 1969, Thomas and De Vahl Davis, 1970, Kumar and Kalam, 1991, and Kumar, 1997). 
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Figure 3. Isolines of streamfunction for Pr=0.7, ϖ =2.0 h = 5.0 for: (a) RaL=103; (b) RaL=104; and (c) RaL=105. 

 
The local Nusselt Number was obtained by the use of the following definition: 
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The average Nusselt number is calculated through the integration of the local Nusselt number along the cavity 

height, as: 
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Results for the average Nusselt number, evaluated at the internal wall ( 1uN ), are presented in Tab. (2) for aspect 

ratios h=1 and 5 and for radii ratios ϖ=2.0 and 5.0.  The Rayleigh number is varied from 102 to 106 so as to illustrate its 
influence on the Nusselt number convergence behavior.  It can be observed that for the majority of the selected cases 
(except for RaL=106, h=1 and ϖ=2.0) the convergence is achieved with four significant digits for NT<40 for the 
expansions truncation.  

Figure (4) shows the variation of Nusselt number along the inner (Nu1) and outer (Nu2) cavity walls, for Pr=0.7, 
h=1, RaL=105, ϖ =2 and 5, calculated with NT = 40 terms in both expansions. It is observed in Fig. (4.a) that the heat 
transfer rate is increased in the lower region of the hot wall (inner wall) for the proposed variation in ϖ. In Fig. (4.b) for 
the outer wall, the rate of heat transfer decreases with the increase in ϖ.  In Fig. (5) a comparison is made between the 
present results and those obtained by Kumar and Kalam (1991), for the average Nusselt number at the inner wall. There 
is a reasonable agreement between the two sets of result, while the small difference between them could still be due to 
differences in the local Nusselt number definition, which is not presented in Kumar and Kalam (1991).  
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Figure 4. Axial local Nusselt number behavior (Nuw) for Pr=0.7, h=1 and RaL=105 at: (a) inner wall; (b) outer wall. 
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Figure 5. Average Nusselt number at the inner wall against  RaL, for Pr = 0.7, ϖ = 2.0 and different values of h. 
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4. Concluding Remarks 

 
The Generalized Integral Transform Technique is successfully implemented for the hybrid solution of natural 

convection within vertical concentric annular cavities, under laminar and steady flow conditions. A set of reference 
results with global error control is provided, in both tabular and graphical formats, and previously reported results from 
discrete approaches are critically examined and covalidated. These encouraging results allow now for the extension of 
the present analysis towards more involved situations, including variable thermophysical fluid properties.  
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