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Abstract. This paper treats a two-dimensional model for the heat pipe rotating about its own axis.  The heat pipe is internally and 
externally cylindrical with constant diameter and porous wick.  The model is based upon the conservation equation of mass, 
momentum and energy.  The vapor and liquid regions are solved as a coupled problem by the finite volume control method and the 
SIMPLE algorithm.  Numerical simulations were performed varying the rotational speed and the heat transfer rate at the 
evaporator side.  The results were plotted in terms of dimensionless parameters related to the operational limits of the heat pipe, to 
help design and dimensioning of heat pipes. 
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1. Introduction 
 

Heat pipes are thermal equipments designed to transfer high heat fluxes over long distances with small temperature 
drop and without any external pumping work.  This is achieved by using the latent heat of phase change of a suitable 
working fluid. 

One type of heat pipe is called rotating heat pipe where the heat pipe rotates around its own axis, (Gray, 1969).  
Externally cylindrical rotating heat pipes are used in applications such as cooling of electric motors and generators, 
bearings and many other rotating machine elements.  Disc type rotating heat pipes are used for cooling turbines and 
breaking drums. 

Rotating heat pipes with conical internal geometry generate an axial component of the centrifugal force, which 
impels the fluid to return to the evaporator.  Details of such systems can be found in references as (Daniels and Al-
Jumaily, 1975; Daniels and Al-Baharnah, 1978; Daniels and Williams, 1978 and 1979; Li et al., 1993; Ponnappan and 
He, 1998). 

A rotating cylindrical heat pipe with a porous wick was studied by Miranda (1989) and Ismail and Miranda (1997).  
Their model is based upon the conservation equations of mass, momentum and energy for the liquid and vapor regions.  
These equations were solved by the finite difference technique and the finite volume method by using the SIMPLE 
algorithm.  It was found that the increase of rotational speed beyond a certain critical value led to reversing the flow in 
the vapor region.  This was found to occupy more and more of the vapor region with the increase of the rotational 
speed.  These findings were later confirmed by Faghri et al. (1993) where they solved only the vapor region and Harley 
and Faghri (1995) where they solved numerically the flow problem in the liquid and vapor regions. 

The present paper presents the results of a numerical simulation realized on a rotating heat pipe of internal and 
external constant diameter cylindrical geometry with a porous wick.  The simulation of the rotating heat pipe is based 
upon the numerical solution of the conservation equations of mass, momentum and energy in the liquid and vapor 
regions.  The results are presented in terms of dimensionless parameters in order to generalize the results and turn them 
useful for sizing and design of rotating heat pipe. Additional results can be found in Saraiva (2004). 
 
2. Formulation of the problem 
 

Figure (1) shows the physical model of the rotating heat pipe under study, where the heat flux  is applied to the 
evaporator and a similar heat flux -  is removed at the condenser.  The vapor and liquid mass fluxes are  and , 
respectively. 

q&
q& vm& lm&
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Figure 1  Scheme of the rotating heat pipe. 
 
 Adopting the coordinate system shown in Fig. (1), assuming two dimensional, axially symmetrical permanent 
incompressible flow in the liquid region and compressible in the vapor region, it is possible to write the conservation 
equations as 
 
2.1. Vapor region 
 
2.1.1. Conservation of mass 
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2.1.2. Conservation of the momentum in the r ,θ  and z directions, respectively 
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where Ω  is the rotational speed. 
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2.1.3. Conservation of energy 
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where the viscous dissipation termΦ is written as 
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2.2. Liquid region 
 
2.2.1. Conservation of mass 
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2.2.2. Conservation of the momentum in the r ,θ  and z directions, respectively 
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where ε  is the porosity of the porous region and K  is its permeability. 
 
2.2.3. Conservation of energy 
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where  is the effective thermal conductivity of the porous medium and Φ  is the viscous dissipation term. effk
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The coupling between the momentum and energy equations is realized by using the state equation. 

 
2.3. Boundary conditions 
 

The pipe extremities are assumed adiabatic in relation to the energy equation and are ruled by the no-slip boundary 
condition for the momentum equation.  Hence, at Lz ,0= : 
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Along the pipe axis of symmetry, , the radial and tangential velocity components are zero and the radial 

gradient of axial velocity and temperature are also assumed zero, due to the symmetry condition: 
0=r
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To couple the vapor and the liquid regions one assumes that phase change occurs on the porous surface, at the 
liquid-vapor interface.  Hence, the liquid radial velocity at the liquid-vapor interface, vRr = , is 
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where  is the density of the local heat flux at the interface. "(z)q&
 

From the mass conservation at the interface, vRr = , one can write 
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Along the liquid-vapor interface, , the tangential and axial velocities components are zero: vRr =

 
0== v,lv,l wu        (20) 

 
Because of the assumption of phase change at the interface, vRr = , the vapor and liquid temperatures are equal: 

 
vl TT =        (21) 

 
On the external surface of the pipe, , boundary conditions of the second type are assumed along the 

evaporator and condenser regions, respectively, with the non-slip condition, 
0Rr =
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The equations of mass conservation, momentum and energy are solved simultaneously for the vapor and liquid 

regions using the finite control volume method and the algorithm SIMPLE (Patankar, 1980). 
Numerical tests were realized to turn the numerical calculations independent of the grid size.  For the present work, 

60 control volumes along the axial direction and 17 control volumes along the radial direction in the vapor region, 
together with a grid of 60×5 control volumes along the axial and radial directions in the porous region are found to be 
adequate. 

The present numerical model, the procedures and results are compared with the results due to Faghri et al. (1993) 
and the agreement is found to be good (Saraiva and Ismail, 2006).  Similar comparative results were omitted for the 
sake of brevity. 
 
3. Results and discussion 
 

The rotating heat pipe used for the present study is of total length of 1.0 m where the evaporator and condenser are 
0.5 m each with no adiabatic section.  The porous wick thickness is 0.0073 m of sintered bronze particles of 0.000683 
m mean radius.  The internal radius of the tube is 0.0127 m and the porosity of the wick is 0.44. 

Extensive numerical simulations were realized to permit the local analysis of the heat pipe under different operation 
conditions such as rotational speed and heat flux at the evaporator side.  The results are presented in terms of the 
angular Reynolds number, related to the rotational velocity, and in terms of injection Reynolds number, related to the 
heat flux, defined successively as 
 
Angular Reynolds number: 
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Injection Reynolds number: 
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where the injection velocity is given by 
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A tentative analysis to relate the operational limits of heat pipes to the non-dimensional parameters mentioned is 

tried.  The analysis is done in terms of the capillary, the sonic, the entrainment and the boiling limits of a heat pipe as in 
Chi (1976) for conventional heat pipes. 

The exceeding capillary pressure is defined as the difference between the maximum capillary pressure developed 
and the minimum local difference between the liquid and vapor pressures at the interface and can be written as 
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or in dimensionless form as 
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Using the dimensionless variables and numbers presented above, sets of graphs for both, water and methanol, as 

working fluids are presented and discussed.  Figure (2) shows the variation of the dimensionless exceeding capillary 
pressure in terms of the rotational Reynolds number.  As can be seen, the limit ( ) is reached for very high 
rotational speeds ( ) and is weakly dependent upon the heat transfer rate ( ). 

0' =exp
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(a) 
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(b) 

 
Figure 2  Dimensionless exceeding capillary pressure on the liquid-vapor interface, as a function of the angular 

Reynolds number, for some injection Reynolds numbers, for (a) water and (b) methanol. 
 

In the present analysis the Mach number is defined in relation to the maximum axial velocity as 
 

c
w

Ma v
ax

max=        (30) 

 
and also in relation to the maximum tangential velocity as 
 

c
u

Ma v
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where the local sound velocity is given by 
 

TRkc gs=        (32) 

 
Figures (3) and (4) indicate that the Mach numbers for axial and tangential flows are much lower than the sonic 

limit ( ) and that the Mach numbers are proportional to the heat transfer rate and the rotational speeds. 1=Ma
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(a) 

 

 
(b) 

 
Figure 3.  Mach number obtained in terms of maximum axial velocity of the vapor, at the evaporator, as a function of 

the angular Reynolds number, for some injection Reynolds numbers, for (a) water and (b) methanol. 
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(a) 

 

 
(b) 

 
Figure 4.  Mach number obtained in terms of maximum tangential velocity of the vapor, at the evaporator, as a function 

of the angular Reynolds number, for some injection Reynolds numbers, for (a) water and (b) methanol. 
 

The entrainment limit is relate to the Weber number which is defined in relation to the maximum axial velocity 
component in the vapor, as 
 

σ
rwWe cvv
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and in terms of the maximum tangential velocity in the vapor, as 
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Figures (5) and (6) show the increase of Weber number with the increase of heat transfer rate and also with the 

increase of the rotational speed.  Also one can observe that the Weber number is more sensitive to rotational speed 
when the heat transfer is high.  It is worth mentioning here that the entrainment limit ( 1=We ) is too far to be reached. 
 

 
(a) 

 

 
(b) 

 
Figure 5.  Weber number obtained in terms of maximum axial velocity of the vapor, at the evaporator, as a function of 

the angular Reynolds number, for some injection Reynolds numbers, for (a) water and (b) methanol. 
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(a) 

 

 
(b) 

 
Figure 6.  Weber number obtained in terms of maximum tangential velocity of the vapor, at the evaporator, as a 

function of the angular Reynolds number, for some injection Reynolds numbers, for (a) water and (b) 
methanol. 

 
The maximum admissible heat transfer rate without vapor bubble formation in the porous wick is given by: 
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Accordingly, dimensionless number related to the above taken as a limiting value for bubble formation in the 

porous medium is defined as 
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where the initial radius of a vapor bubble in formation ( ) adopted is equal to 2,5×10nr

-7 m. 
Figure (7) shows the variation of the boiling dimensionless number in terms of the injection Reynolds number.  A 

value of unity means that the boiling limit of the heat pipe has been achieved while a value between zero and unity 
results in safe operational conditions in relation to the impossibility of forming vapor bubbles. 

 
(a) 

 

 
(b) 

 
Figure 7.  Boiling number, at the evaporator, as a function of the injection Reynold number, for (a) water and (b) 

methanol. 
 

To demonstrate the utilization of these graphs to analyze the operational limits of rotating heat pipes, consider that 
it is required to transfer 10,000 W/m² at 3,600 rpm and it is required to investigate which of the two fluids, water or 
methanol, is most suitable for the application.  From Figures (2) to (7) and by using Eqs. (25) to (27), it is possible to 
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construct Tab. 1.  One can observe from Tab. 1 that water is the only suitable fluid to attend the established conditions.  
Methanol is shown to fail to attend the capillary and the boiling limits. 
 

Table 1.  Values of dimensionless numbers, calculated for a rotating heat pipe required to transport 10,000 W/m² at 
3,600 rpm. 

 
 p’ex Maax Matg Weax Wetg Bo 

Water 
Reinj = 8.8 
Reang = 17,756 

0.94 0.0003 0.00025 0.001 0.001 0.72 

Methanol 
Reinj = 21.3 
Reang = 116,230 

Out of limit 0.0001 0.00007 0.005 0.003 Out of limit 

 
 
4. Conclusions 
 

This paper presents a two-dimensional model based upon the conservation equations of mass, momentum and 
energy, developed and solved numerically by using the finite volume control method and the SIMPLE algorithm.  
Simulations were performed and the results were plotted in terms of dimensionless numbers related to the operational 
limits of a rotating heat pipe, as an extension of the theory developed by Chi (1976).  The graphs obtained were used to 
calculate a simple test case.  These curves set up for different working fluids, boundary conditions and geometrical 
constraints should be useful for heat pipe analysis. 

As shown, in order to obtain the operational limits of a particular heat pipe, a solution for the conservation 
equations must be achieved. In fact, due to the strong connection between operational limits and the very solution of the 
conservation equations, mainly in terms of velocities, it can be concluded that the quality of the results depends on the 
attachment between the mathematical model adopted and the physics of the problem. So, unfortunately, a simple 
methodology as proposed by Chi (1976) for conventional heat pipes, based upon an one-dimensional formulation, is 
likely inadequate to the complex behavior of a rotating heat pipe. 
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