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Abstract. This paper presents a model for a two-dimensional axially symmetric rotating heat pipe of cylindrical geometry (non-
tapered) and having a porous wick.  The model is based upon the conservation of mass, momentum end energy equations.  The 
coupled equations are solved simultaneously by using the finite control volume approach and the SIMPLE algorithm.  The model 
and results are validated by comparison with available results.  Simulations were realized to investigate the effects of variation of 
the rotational speed and the heat flux imposed at the evaporator section on the axial, radial and tangential velocity fields, the 
pressure and the shear stress distributions.  The results indicated the presence of reverse flow as a result of high rotational speeds 
and heat transfer rates and a reduction of the pumping pressure which ultimately can lead to the dry out of the heat pipe. 
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1. Introduction 
 

Heat pipes are heat transfer elements usually designed to transport high heat transfer rates for long distances with 
small temperature drop and no external pumping work.  Rotating heat pipes, (Gray, 1969), are different from the 
conventional static heat pipes by their rotation around their own axis or an external axis and are mostly used for cooling 
electric motors, generators, bearings and many other rotating elements such as turbines and truck breaking systems. 

A great deal of the reported work is related to conical rotating heat pipes where the axial component of the 
centrifugal force helps to return the condensate to the evaporator.  The pioneer work of Daniels and Al-Jumaily, (1975) 
on rotating heat pipes, based on Nusselt model of condensation, was followed by a large number of experimental and 
analytical investigations based upon their work (Daniels and Williams, 1978 and 1979; Daniels and Al-Baharnah, 1978; 
Marto, 1976 and Li et al., 1993).  Later, Ponnappan (1998) showed that the use of Nusselt model of condensation is 
inadequate for high rotational velocities of the order of 30,000 rpm. 

Ismail and Miranda (1997) and Miranda (1989) studied a rotating cylindrical heat pipe with a porous wick and also 
the case of a rotating wickless heat pipe with conical condenser.  They adopted for both cases a two-dimensional model 
based upon the momentum, energy and mass conservation equations.  The authors presented their results of the 
pressure, velocity and temperature fields in terms of heat transfer rates and the rotational speed.  The numerical solution 
indicated the presence of a region of reverse vapor flow which increased with the increase of the rotational speed.  
These results were confirmed by Faghri et al. (1993) where they solved the vapor region only, and by Harley and Faghri 
(1995), where they solved the liquid and vapor regions but for a conical heat pipe. 

Rotating heat pipes with other geometries were also investigated as the case of a rotating heat pipe with cylindrical 
stepped wall (Lin, 1991; Lin and Faghri, 1997), constant diameter wickless heat pipe (Lin and Faghri, 1997; Lin and 
Groll, 1996), finned heat pipes (Marto and Wanniarachchi, 1987; Salinas and Marto, 1991) and miniature heat pipes  
(Lin and Faghri, 1997). 

This paper presents a two dimensional model for the flow and heat transfer in a non tapered rotating heat pipe of 
plain cylindrical geometry and with a porous wick.  The model is based upon the two dimensional equations of 
conservation of mass, momentum and energy.  The equations were solved simultaneously by the finite control volume 
and the SIMPLE algorithm.  The results of the velocity and pressure fields are presented in terms of the rotational speed 
and heat transfer rates.  Extended results can be found in Saraiva (2004). 
 
2. Formulation of the problem 
 

The general geometry of the rotating heat pipe under consideration is shown in Fig. (1).  As can be seen, the heat 
pipe is composed of a plain cylinder fitted with a porous wick, rotating about its own axis, with heat added at one end 

 and removed at the opposite end -  while  and  denote the liquid and vapor mass flow rates, respectively. q& q& lm& vm&
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Assuming that the flow is two-dimensional with axial symmetry, steady and compressible in the vapor region and 
incompressible in the liquid region, with viscous dissipation and constant physical properties, the conservation 
equations, written for an inertial coordinate system, are shown below.  The equations for the porous region were based 
on the work of Vafai and Tien (1981). 
 

 
 

Figure 1.  Rotating heat pipe with a porous wick. 
 
2.1. The vapor region 
 
2.1.1. Mass conservation 
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2.1.2. Momentum along the radial direction 
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where Ω  is the rotational speed. 
 
2.1.3. Momentum along the tangential direction 
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2.1.4. Momentum along the axial direction 
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2.1.5. Energy conservation 
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where 
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2.2. The liquid region 
 
2.2.1. Mass conservation 
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2.2.2. Momentum along the radial direction 
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where ε  is the porosity of the porous region and K  is its permeability. 
 
2.2.3. Momentum along the tangential direction 
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2.2.4. Momentum along the axial direction 
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2.2.5. Energy conservation 
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where  is the effective thermal conductivity of the porous medium and Φ  is the viscous dissipation term. effk
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The coupling between the momentum and energy equations is realized by using the state equation. 

 
2.3. The boundary conditions 
 

At the extremities of the heat pipe, ( ), the no-slip condition is used for the conservation of momentum and 
mass while the adiabatic condition is used for the energy equation, and the conditions can be written as 

Lz ,0=
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On the symmetry axis, 0=r , the radial and tangential velocities are zero and also the radial gradients of the vapor 

axial velocity and the temperature 
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To couple the vapor region to the porous region, an energy balance is realized along the liquid-vapor interface, 

. vRr =
 

λρ

Rrr
T

k"(z)q
(z)v

l

v

v
v

l

=∂
∂

+
=

&

       (18) 

 
Where  is the local heat flux density at the interface. "(z)q&

 
The mass conservation at the interface is realized by a mass balance at vRr =  
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The no-slip condition along the liquid-vapor interface ( vRr = ) is written in terms of the tangential and axial 

components of velocity 
 

0== v,lv,l wu        (20) 

 
Since the phase change takes place without temperatures drop, one can write at vRr =  

 
vl TT =        (21) 

 
that is, the liquid temperature is equal to the saturation temperature at the local vapor pressure. 

On the external surface of tube, , the boundary conditions depend on the axial position along the tube and 
the mechanism of the local heat transfer.  In the present work boundary conditions of the second type are adopted for 
the evaporator and condenser, respectively 
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Also, the no-slip condition is imposed on the external surface of the tube ( 0Rr = ) 

 
0=== lll wvu        (24) 

 
3. The numerical treatment 
 

The conservation equations of mass, momentum and energy are solved simultaneously in the vapor and liquid 
regions by the method of finite control volumes and the SIMPLE algorithm (Patankar, 1980).  Numerical tests realized 
in order to optimize the grid size indicated that 60 control volumes along the axial direction and 17 control volumes 
along the radial direction are adequate for the vapor region.  The grid size for the porous region is found to be 60 × 5. 

To validate the numerical scheme the results are compared with available results of Faghri et al. (1993) for a 
rotating heat pipe having an evaporator length of 0.2 m, adiabatic section of 0.6 m, condenser of 0.2 m and diameter 
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0.02 m, filled with water vapor at 100ºC.  Figure (2) shows the dimensionless axial velocity for  and different 
rotational speeds.  Figure (3) shows the radial velocity component.  As can be seen the results have the same general 
tendencies, and are in good agreement over the whole range of rotational speeds. 

4Re =r

 

 
 
Figure 2.  Comparison between the predicted normalized axial velocity at mid point of the evaporator and the results of 

Faghri et al. (1993). 
 

 
 
Figure 3.  Comparison between the predicted normalized radial velocity at mid point of the evaporator and the results of 

Faghri et al. (1993). 
 
4. Results and discussion 
 

The numerical simulations were realized for a heat pipe having total length of 1.0 m divided equally between the 
evaporator and condenser with no adiabatic section and having a porous wick of sintered bronze particles of diameters 
of 6.83 × 10-4 m, wick thickness of  7.3 × 10-3 m and having water as a working fluid. 

The effects of the rotational speed on the axial velocity profiles in the vapor region are shown in Fig. (4).  As can 
be seen the rotational speed moves the region of maximum velocity from the tube center towards the interface near the 
wall region. Also one can observe the presence of reverse flow which increases with of the rotational speed. 
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Figure 4. Axial velocity profiles along the radial direction, in the vapor region, at mid point of the condenser, as a 
function of rotational speed. 

 
The axial velocity in the porous region is fairly sensitive to the variations in the rotational speed as can be deduced 

from comparing Fig. (5) and Fig. (6).  One can observe that the increase of the rotational speed leads to increasing the 
velocities near the liquid-vapor interface and reducing their values near the wall region.  This is because the mass 
exchange is mainly occurring at the interface while near the wall region the centrifugal force is relatively large and 
opposing the liquid movement.  The radial and tangential components of the velocity are nearly insensitive to the 
rotational speed in the porous region and hence their corresponding figures are omitted here. 
 

 
 
Figure 5.  Axial velocity profiles along the axial direction, in the porous region, at a distance from the interface equal to 

10% of the porous wick thickness, as a function of rotational speed. 
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Figure 6.  Axial velocity profiles along the axial direction, in the porous region, at a distance from the interface equal to 

90% of the porous wick thickness, as a function of rotational speed. 
 

Figure (7) shows the variations of the radial velocity along the tube axis with the rotational speed.  The effect of the 
rotational speed on the direction of the radial velocity can be illustrated by comparing the velocity profiles with those 
obtained only due to heat transfer (  rpm), showing positive velocities in the evaporator. Similar results, just with 
negative velocities in the condenser, are omitted here for brevity. 

0=N

 

 
 

Figure 7. Radial velocity profiles along the radial direction, in the vapor region, at mid point of the evaporator, as a 
function of rotational speed. 

 
The tangential velocity in the vapor region is strongly affected by the rotational speed as can be deduced from the 

comparison with the case of  rpm in Fig. (8).  As can be seen the effect of increasing the rotational speed is to 
increase the tangential velocity and displace the region of maximum velocity towards the wall region as a result of the 
centrifugal forces.  Similar results can be found in the case of the condenser, and are omitted here for brevity. 

0=N

 



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006, Paper CIT06-0983 
 

 
 
Figure 8. Tangential velocity profiles along the radial direction, in the vapor region, at mid point of the evaporator, as a 

function of rotational speed. 
 

If one defines the excess pressure term representing as the difference between the maximum capillary pressure and 
the difference of the local pressure at the interface, this term can be written as 
 

( )(z)p(z)p
r
σ(z)p lv
c

ex −−=
2

       (25) 

 
Figure (9) shows that the increase of the rotational speed reduces the excess pressure, due to the dominant effect of 

the centrifugal force on the liquid region because of its higher density in relation to the vapor. As a possible 
consequence, an eventual excess pressure dropping to zero could prevent the liquid return, leading to drying out the heat 
pipe. 
 

 
 
Figure 9.  Excess pressure profiles along the axial axis, on the liquid-vapor interface, as a function of rotational speed. 

 
The shear stress at the liquid-vapor interface in the θr  plane can be written as 
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Figure (10) shows the increase of the shear stress θτ r  with the increase of the rotational speed.  A negative value of 

the shear stress means that the tangential velocity of the vapor is greater than the tangential velocity at the interface. 
 

 
 

Figure 10.  Shear stress profiles along the axial axis, contained in a θr  plane, on the liquid-vapor interface, as a 
function of rotational speed. 

 
The shear stress at the interface in the rz  plane can be written as 
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Figure 11.  Shear stress profiles along the axial axis, contained in a rz  plane, on the liquid-vapor interface, as a 
function of rotational speed. 
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Figure (11) shows that the shear stress in the rz  plane increases with the increase of the rotational speed, which is 
in agreement with the fact that high axial velocities occur near the interface.  Negative values of the shear stress indicate 
that the vapor axial velocity is greater than the axial velocity at the interface (obeying the no-slip condition). 

Figures (12), Fig. (13) and Fig. (14) show the effects of the heat transfer rate on the axial, radial and tangential 
velocities, respectively.  As can be seen, the increase of the heat transfer rate leads to increasing the axial and radial 
velocity in the condenser and the evaporator as in Fig. (12) and Fig. (13). A similar increase can be seen in the 
tangential velocity profile as in Fig. (14). 
 

 
 

Figure 12.  Axial velocity profiles along the axial axis, in the vapor region, at a radius equal to 90% of the vapor 
medium radius, as a function of heat transfer rates imposed to the evaporator of the heat pipe. 

 
 

 
 

Figure 13.  Radial velocity profiles along the axial axis, in the vapor region, at a radius equal to 90% of the vapor 
medium radius, as a function of heat transfer rates imposed to the evaporator of the heat pipe. 
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Figure 14. Tangential velocity profiles along the radial axis, in the vapor region, at mid point of the condenser, as a 
function of heat transfer rates imposed to the evaporator of the heat pipe. 

 
Since the vapor circulation is from the evaporator to the condenser and the liquid circulations is in the opposite 

direction, the difference ( ) ( )zpzp lv − , Eq. (25), is greater in the evaporator than in the condenser, implying smaller 
excess pressures in the first and bigger in the last.  Also, greater heat transfer rates require greater fluid circulation and 
hence bigger pressure difference between the evaporator and the condenser, in both, the vapor and porous regions.  The 
effects of heat transfer rate on the excess pressure ( ), defined by Eq. (25), are shown in Fig. (14). exp
 

 
 
Figure 15. Excess pressure profiles along the axial axis, on the liquid-vapor interface, as a function of heat transfer rates 

imposed to the evaporator of the heat pipe. 
 
5. Conclusions 
 

This paper presents the results of a two-dimensional axisymmetric model for a rotating heat pipe of cylindrical 
geometry with a porous wick.  The validation of the model is realized by comparison with available results.  A 
parametric study is realized to investigate the effects of the rotational speed and the heat transfer rate on the radial, axial 
and tangential velocities, the pressure and shear stress distributions.  It was found that under certain rotational velocity 
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conditions, reverse flow could occur.  Also, excess pressure at the liquid-vapor interface is sensitive to the rotational 
speeds as much as to heat transfer rates and its decrease to zero can prevent the liquid return.  These conditions can lead 
to drying out the heat pipe. 
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