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Abstract. In this work  we studied the application of generalized Fibonacci sequences to resistances  networks. We obtain the 
equivalent resistance for a polygon of non-identical resistors and for a plane fin, seen as a ladder network with an infinite 
number of differential elements, for different contour conditions. 
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1. Fibonacci and Generalized Fibonacci Sequences 

 
The study of aperiodically ordered structures has inspired a large amount of theoretical and experimental work, 

concerning natural and hand-made materials, like biological growth patterns, scale-rotational crystal growth (Boeyens, 
2003), non-linear excitations in DNA (Cueda and Sanchez, 2004), defects in conducting polymers (Malhotra, 1988; 
Adame, Sanchez and Kiushar, 1995) and Josephson junction arrays (Lennholm and Hornquist, 1999). The aim is to 
simulate the behavior of these systems that relate non-linearity and disorder using aperiodic chains generated by 
specific inflation rules. 

For example, the Fibonacci chain is generated from two basic units A and B using the rules: A→AB and B→A. 
Thus, beginning with a single unit chain, one generates after n successive applications of these rules a self-similar N 
unit aperiodic chain. Moreover, this chain is related to the Fibonacci sequence, defined by the recurrence relation: 

 

1nn2 F  F  F ++ +=n  
 

where  and , in such a way that it gives the number of units of the corresponding chain . On the 
other hand, as the sequence proceeds, the ratio between two consecutive terms approaches the golden ratio (Dunlap, 
1997; Huntley, 1970), 
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closely related to the self-similarity property in fractal structures (Boeyens, 2003; Dixon, 2002; Janner, 2001; 
Mandelbrot, 1988). 

The Fibonacci sequence can be generalized in many ways (Paladino and Ferreira, 2000; Mouline and Rachidi 
1995; Rachidi, Saidi and Zerouaoui, 2003). The simplest way is by introducing a coefficient in one of the terms of the 
equation (Paladino and Ferreira, 2000): 

 

1nn2 G  G  G ++ ⋅+= αn  
 

in such a way that the general term of the sequence is given by the expression 
 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++

+
=

nn

2
4

2
4

4
1  G

22

2n
αααα

α
 

 
and the ratio between two consecutive terms approaches the value  
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2. Resistance Networks and Fibonacci Sequences 
 

Electric resistor networks are self-similar systems which behavior is related to the Fibonacci sequences  (Paladino 
and Ferreira, 2000; March, 1993; Srinivasan, 1992; Basin, 1963). As an example be the ladder network of identical 
resistors (R=R’) in Fig (1). The equivalent resistance  between the axis X and Y is given by Srinivasan (1992) and 
Basin (1963):  

nR
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in such a way that the equivalent resistance for the infinite network is RR ⋅≈⋅ 618.1φ . 
 

 
Figure 1. Ladder network of resistors. 

 
Polygons of resistors like the one in Fig. (2) have a similar convergence when the number n of sides becomes large. 

For a small number of sides, the equivalent resistance can be obtained by considering the symmetry of the figure and it 
is possible to identify recursion relations that relate these systems with Fibonacci sequences. For instance, the 
equivalent resistance of an n-sided polygon of identical resistors (R'=R) is given by (March, 1993): 
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Figure 2. Resistors polygon. 
 
Now, the generalized Fibonacci sequence is related to the description of networks with non-identical resistors. 

Paladino and Ferreira (2000) obtained the formula for the ladder network described in Fig (1), with r⋅=α  R  and 
αr/  R'= :  
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Our first objective of this work is to calculate the equivalent resistance in an n-side polygon with non-identical 

resistors (see Fig. (2), for ). This network has different symmetries for even and odd number of sides 
through at the limit n→∞ the result must be the same for both. 

R⋅= 2  R' α

Polygons with an odd number of sides have a symmetry that allows the elimination of a resistor (in Fig (2), 
indicated by the arrow). Fig. (3) shows some networks after the elimination of the resistors and it indicates the self-
similarity structure that relates the (2n+3)-sided polygon with the (2n+1)-sided polygon. 

 

 
 

Figure 3. Similarity in polygons with an odd number of sides. 
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This relation allows us to obtain the equivalent resistance: 
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where α/R r=  and  r⋅=αR' . In case of a polygon with an even number of sides, it is necessary to replace the 2n-
sided polygon by an equivalent (2n+1)-sided polygon and then identify the self-similarity structure that relates the 
networks. It is shown in Fig. (4). Equation (1) holds, so we obtain the formula for the equivalent resistance: 
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Figure 4. Similarity in polygons with an even number of sides. 
 
3. Plane Fins and Generalized Fibonacci Sequences 
 

Resistance networks may describe other energy transfer processes, such as thermal and optical systems. For 
instance, a plane fin defined by its length L and its transverse section with area A and perimeter P (see Fig. (5)) transfers 
heat according to the equation: 

 

fin

base

R
T

 q ∞−
=

T
 

 
where  is the temperature at the basis of the fin,  is the free fluid temperature and  is the equivalent thermal 
resistance of the fin. Although the process is two-dimensional, the high thermal conductivity k of the (metallic) fin and 
the low convection coefficient h of the surface allows the one-dimensional analysis described in Fig. (5) (Incropera and 
DeWitt, 2002). The thermal resistances R = ∆x(kA)

baseT ∞T finR

-1, R' = (hP∆x)-1and R'' = (hA)-1 represent respectively the conduction 
process along a differential section ∆x, the convection process around this differential section and the convection 
process at the end of the fin. 
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Figure 5. A plane fin, seen as a ladder network. 
 

This system is a ladder network with an infinite number of differential elements. Here, we introduce three 
adimensional parameters: kAhPx /∆=α , kPhA/=β  and hPkAr /1= , in such a way that R = αr, R’=r/α and 
R''=r/β. 

In the case the end of the fin is isolated, R'' = 0, and the network can be represented by a generalized Fibonacci 
sequence, with  and . Then, for a fin 0  G0 = 1  G1 = xn  L ∆=n  long, 
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Figure 6. The generalized golden rule φ. 
 
and we obtain the general term of the sequence: 
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kAhPLo /=α  
 
in such a way that  as . At this limit ∆x and finR  R →n ∞→n oα go to zero while the ratio in Eq. (2) goes to 

 (see Fig. (6)) and -1(tanh(1))1,31303≈
 

hPkA
1,31303R fin ≈  

 
the classic result  (Incropera and DeWitt, 2002). We also considered the case R'' ≠ 0. Then, a distinct generalized 
Fibonacci sequence, with 1  G 0 =  and , applies. We could not obtain the general term of the equation, but it is 
possible to calculate  and show that it agrees with the classic result (Incropera and DeWitt, 2002). 
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For instance, fixing 1.0  0 =α  and 0.5  =β  we get r0944.1R fin ≈  (see Fig. (7), the same value obtained by Eq. (3). 
 

 
 

Figure 7. The equivalent resistance for the fin with R’’≠0. 
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4. Final Considerations 
 

In this work, we identify an application for Fibonacci sequences, with differential coefficients and different initial 
conditions,  and . Moreover, we analyzed the problem of an n-sided polygon of resistors in an innovative way, 
by identifying self-similar elements in the networks. This approach may be applied to other thermal and optical 
systems, for which the resistance correspondence holds. 
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