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Abstract. Thermal diffusivity effects of rectangular obstruction on entrance regions of parallel flat plate channels are 

numerically investigated in the present work. The incompressible laminar flow governing equations, written in 

vorticity-stream function formulation, as well as the energy conservation equation are discretized with a WUDS finite 

volume scheme. The domain is subdivided into zones and a regular mesh is used within the obtained subdomains. 

Constant temperature boundary conditions are considered in the present study for the channel walls. Results are 

obtained for fully developed and uniform inlet velocity profiles. The effects of the obstruction thermal diffusivity on 

the temperature field and Nusselt number are analyzed. The numerical results obtained here are validated with limiting 

analytical solution available in the literature. 
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1. Introduction 
 

The conjugate heat transfer is an important field in basic and applied research. The design and development of 

flame holders for combustion devices (Williams, 1985, and Esquiva-Dano et al., 2001, Hanff and Campbell, 2002), the 

cooling of electronic systems (Davallah and Bayazitoglu, 1987, Desrayaud et al., 2002), fouling and fins in heat 

exchangers (Kern, 1965) and the intrusive aspects of measurement devices (Holman, 1989, Caldeira, 2001) are among 

the applications motivating the study of the rectangular obstructions inside parallel plate channel.  

The conjugate heat transfer effects of a symmetric rectangular obstruction on the hydrodynamical and thermal 

entrance regions within parallel plate channels were studied by Caldeira et al. (2002). The rectangular obstruction 

thermal effects were analyzed using the temperature field and the Nusselt number evaluated along the channel and 

obstruction walls. Heat transfer enhancement due to the obstruction, which presents an internal fin effect, and the 

conduction heat transfer within the obstruction were shown. The laminar incompressible flow governing equations were 

written in vorticity-stream function approach. Constant wall temperature and constant wall heat flux boundary 

conditions were considered for the channel walls. The physical solution domain was divided into five subdomains. 

Numerically, the finite difference method was used with an implicit hybrid scheme. The solutions were obtained 

employing an iterative procedure applied inside each subdomain. In other words, the systems of algebraic equations 

were not simultaneously solved for all domain, but for each subdomain in sequence. 

 

 

 

Figure 1. Physical domain and principal dimensions. 

 

Conjugate heat transfer effects of asymmetric rectangular obstruction on the fluid dynamic and thermal entrance 

regions within parallel plate channels were studied by Caldeira et al. (2005). The asymmetry effects of the rectangular 

obstruction on the temperature field and the Nusselt number behavior were analyzed. The laminar incompressible flow 

governing equations are written in vorticity-stream function approach. The momentum and energy equations are 

L

H

B

C

A D

x

y

A
rb

it
ra

ry
 e

n
tr

an
ce

 p
ro

fi
le

F
u
ll

y
 d

ev
el

o
p

ed
 p

ro
fi

le

Solid obstruction

L

H

B

C

A D

x

y

A
rb

it
ra

ry
 e

n
tr

an
ce

 p
ro

fi
le

F
u
ll

y
 d

ev
el

o
p

ed
 p

ro
fi

le

Solid obstruction



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006 – Paper CIT06-0424 
 

discretized with an implicit finite difference/ volume scheme. The physical solution domain was divided into five zones 

and regular discretizing grids were used within the obtained subdomains. The resulting systems of algebraic equations 

were solved simultaneously in the domain. Constant temperature boundary conditions are considered for the channel 

walls.  

In the present work, the thermal diffusivity effects of rectangular obstruction on entrance regions of parallel plate 

channels are numerically investigated. The incompressible laminar flow governing equations, written in vorticity-

stream function formulation, as well as the energy conservation equation are discretized with a WUDS finite difference/ 

volume scheme. The results show the relevant influence of the thermal diffusivity on the heat transfer process and on 

the Nusselt number behavior. Constant temperature boundary conditions are considered for the channel walls. The 

Graetz problem (Kays and Crawford, 1980) is used to validate the obtained numerical results. 

 

2. Mathematical Formulation 
 

It is note worthy that the proposed physical-mathematical model only considers the heat transfer into the fluid and 

solid obstruction. So, the conduction through the channel walls is not taken into account in the present work. 

The solution domain is depicted in Fig. (1), with the principal geometric dimensions, which also shows the 

Cartesian system of coordinates used in the present work. 

The dimensionless system of equations for the conservation of mass and momentum, for the fluid domain, 

considering laminar and incompressible flow inside the channel, and the energy, for the fluid and solid obstruction 

domains, are written as  
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with boundary conditions 

 

1y0,0x;1,0u),y(fu yix ≤≤==== θ  (5) 

1y0,x;x/x/,0u),y(fu wyox ≤≤∞→∂∂=∂∂== θθ  (6) 

∞≤≤== x0;0u,0u yx ;    at     hl(x,y)     and     hu(x,y) (7) 

0y,x0;y/ba lll =∞≤≤=∂∂+ ϕθθ  (8) 

1y,x0;y/ba uuu =∞≤≤=∂∂− ϕθθ  (9) 

 

The constants al, bl, au, bu, ϕl and ϕu appearing in Eq.(8-9) will be set accordingly with the kind of boundary 

condition being considered for each case. 

The initial conditions are given by  

 

1y0,x0;0,0u,0u yx <<∞<≤=== θ  (10) 

 

The functions hl(x,y) and hu(x,y) appearing in Eq.(7) are used to describe the lower and upper irregular solid 

surfaces, being defined as 
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and 
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The dimensionless variables appearing in Eqs.(1-10) are defined as 
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where the channel height )H(  and the maximum velocity at the outlet )U( max  are used as length and velocity 

characteristic quantities, respectively. The dimensionless temperature (θ ) is defined in terms of a constant 

characteristic temperature, Tc , and of a constant inlet temperature, Ti. For the constant wall temperature case, Tc , is 

defined as the channel wall temperature value, Tw. 

The dimensionless physical parameters of the system of equations are the Reynolds number (Re) and dimensionless 

diffusivity parameter (D). These parameters are defined as 
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where ν ,α and αs represent the kinematic viscosity, the fluid and solid thermal diffusivities, respectively. Df is the 

reciprocal of the Peclet number and Ds is a dimensionless diffusivity parameter for the solid obstruction. Note that Ds is 

just introduced in order to maintain the same dimensionless space and time scales on the solid and fluid subdomains. 

The flow governing equations are rewritten in dimensionless vorticity-stream function form as 
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with boundary conditions 

 

1y00,x;dy(y)f
y

0
i ≤≤=∫=ψ  (18) 

1y0,x;dy(y)f
y

0
o ≤≤∞→∫=ψ  (19) 

y)(x,hat,x00; l∞≤≤=ψ  (20) 

y)(x,hat,x0;dy(y)f u

1

0
i ∞≤≤∫=ψ  (21) 

 

and initial conditions 
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Vorticity (ξ ) and stream function (ψ ) are respectively defined in terms of the longitudinal and transversal velocity 

components as 
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The vorticity values along the solid boundaries and at the channel inlet and outlet are initially unknown. These 

quantities are determined by an iterative solution procedure of the flow equations, which also accounts for the treatment 

of the non-linear terms appearing in Eq. (16) (Anderson et al., 1984). 

 

3. Numerical Aspects 

 
In the present work, the finite volumes method was used for the numerical solution of the governing equations 

previously described. The semi-infinite physical domain was truncated at x = L / H where the outlet boundary 

conditions were applied. Numerical tests were performed for different values of L in order to guarantee independence of 

the truncated domain length. The truncated domain length was considered satisfactory when the deviation between the 

numerical Nusselt number in the end of the channel and the analytical Nusselt number (Kays and Crawford, 1980) for 

thermal developed flow were smaller than 1%. The WUDS (Raithby and Torrance, 1974) is used as the interpolation 

function in an implicit scheme. The linear systems of equations are solved by the GMRES algorithm (Press et al. 1992). 

Furthermore, despite the transient nature of equations being solved, only the steady state results were analyzed in the 

present work. The half volume approach is employed in the boundaries, becoming easier the use of the first kind 

boundary conditions for the temperature, vorticity and stream function. In the solid obstruction/ fluid interface, the 

centers of the volumes are on the interface. On these interfaces parts of the volumes are in the solid and parts of the 

volumes are in the fluid. In the solid domain the velocity is prescribed null. 

Regularly spaced points were used within the domain, defining the discretizing grid. The resulting system of 

algebraic equations was solved simultaneously for each partial differential equation discretized. In order to address the 

unknown vorticity values along the solution domain boundaries, an iterative procedure was employed. Initially, 

estimated vorticity values along the boundary were defined, allowing the solution of the vorticity transport equation, 

Eq. (16). With the obtained results, Eq. (17) was solved leading to the stream function distribution within the domain. 

Applying the velocity boundary conditions, stream function, vorticity and the definitions in terms of the primitive 

variables, a vorticity distribution along the solid boundaries was calculated. The obtained results allow the validation or 

correction of the initially estimated vorticity values. The iterative procedure was repeated until a specified tolerance 

criterion was satisfied. The solution was then marched in time. 

The numerical solution proceeds until the obtained vorticity and temperature fields for two consecutive time steps 

differ by an amount smaller than a given steady state tolerance. 

The Nusselt number along the channel walls is defined in terms of the dimensionless quantities by 
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where the dimensionless bulk temperature bθ is defined by 
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and the subscript (and sub-subscript) u and l are, respectively, associated with the upper and the lower solid wall. 
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4. Results 
 

The analytical solution of Kays and Crawford (1980), considering constant temperature in the channel walls, for 

the Graetz problem is used to validate the proposed numerical procedure. Graetz problem consider a fully developed 

velocity and a developing temperature profiles inside parallel plate channels without obstructions. The formulation 

described by the Eqs. (1-10) leads to the Graetz problem formulation as the rectangular obstruction height, or thickness, 

vanishes. Inlet and outlet velocity profiles were defined as 2
i y4y4)y(f −=  and 2

o y4y4)y(f −= , respectively. 

Constant wall temperature, or first kind, ( 00,bb1,aa wullulu ======= θϕϕ ) thermal boundary conditions 

were considered. For the present analysis, the inlet and outlet temperature profiles were considered as uniform and fully 

developed, respectively. 

Table (1) shows the comparison between the present numerical results for the Nusselt number along the channel 

wall for the Graetz problem with the analytical results of Kays and Crawford (1980), considering the cases of the first 

kind boundary conditions. Deviations smaller than 1% between the numerical and analytical results are observed in 

Tab. (1). 

 

Table 1. Nusselt number in the thermal developing region of the Graetz problem. 

 

 Nu ( wθ  = 0, Re = 100, Df = 0.01, Ds = 0.01) 

x Numerical Kays and Crawford, 1980 

4/3 8.62 8.52 

8/3 7.78 7.75 

20/3 7.56 7.55 

∞ 7.55 7.54 

 

The numerical results presented in Tab (1) were obtained by using a grid with 481 and 41 points along the x and y 

directions, respectively and L/H equal to 12. 

Results obtained for three different values of the thermal diffusivity of the rectangular obstruction are shown 

below. The geometric and physical parameters for a base case are shown in Tab (2). The base case considers the 

uniform velocity profile at the channel inlet and the constant channel wall temperature. The cases analyzed in this work 

consider the base case parameter unless the specified ones in each case.   

 

Table 2. Geometric and physical parameters for a base case. 

 

Geometric Parameters Physical Parameters 

A/H B/H C/H D/H Re Df Ds 

2 0.7 0.3 0.3 100 0.01 1 

 

Figure (2) show stream function field for the base case. However, in the present work, the heat transfer process 

does not disturb the flow field, so on the results shown in Figure (2) are valid for all the cases that will be discussed 

herein. It is possible to observe in Figure (2) the dimension of the eddy zone behind the obstruction. This zone is a low 

velocity region where the diffusion dominates the heat transfer mechanisms.  

 

 
Figure 2. Stream function for the base case. 

 

The effects of the obstruction thermal diffusivity on the temperature field are shown in Figs. (3-5). Observing the 

Figs. (2-5) is possible to identify the connection between the eddy zone and the cold zone, both of them behind of the 

obstruction, respectively, in the stream function field and in the temperature field.  

Fig. (4) shows the case where the diffusivity is sufficiently high to guarantee that temperature in the obstruction is 

basically uniform and equal to the wall temperature. In Fig. (3), the base case, the effect of the channel wall 
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temperature is not so intense when compared with the results shown in Fig. (4). The temperature field varies in the 

solid obstruction in the base case. Fig. (5) shows the case where the diffusivity is low enough to make the solid 

approximately adiabatic which is indicated by the almost vanishing heat flux at the obstruction/ fluid interface. This 

effect can be specially observed behind the obstruction in the longitudinal direction. The thermal effect of the 

obstruction on the temperature field increases with the solid diffusivity. These effects can also be observed in the 

region upstream of the obstruction, in the stagnant fluid region (in vicinity of x = 2), Figs.(3-5). 
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Figure 3. Temperature field for the base case (Ds = 1). 
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Figure 4. Temperature field for the case with Ds = 10000. 
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Figure 5. Temperature field for the case with Ds = 0.0001. 
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Figure 6. Obstruction effects on Nusselt number: (a) Nul - lower wall - and (b) Nuu - upper wall. 
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Figure (6) shows the Nusselt number behavior on the lower (Fig. (6a)) and upper (Fig. (6b)) solid walls for the 

cases with different obstruction thermal diffusivity. For the cases with Ds = 1 and Ds = 10000, the thermal effects of the 

obstructions are represented by an abrupt increase of the Nusselt number at the inlet throat position. The increase of Nu 

is associated with the higher velocities and temperature gradients present inside the throat, improving the heat transfer 

by the convection mechanism. Downstream of the obstruction an abrupt decrease of Nu is also observed. Prior to abrupt 

increase, a reduction is also observed on Nu as the axial velocity decreases and a consequential weakening of 

convective effects follows (Caldeira et al., 2002, 2005). Otherwise, for the case with Ds = 0.0001, an unexpected 

Nusselt behavior can be observed. Negative Nusselt are shown. Furthermore, for the Ds = 10000 case, the highest value 

of the Nusselt number on the upper wall are reached on the throat region, Fig. (6b) and it is linked with the reduction in 

the bulk temperature promoted by the fin effect of the obstruction. 

For all of the cases shown in Fig. (6), faraway of the obstruction, the Nusselt number asymptotically reaches the 

value predicted by the Graetz problem. In the inlet channel there is a region where the Nusselt number values are 

coincident for studied cases. These Nusselt behaviors indicate the regions where the obstruction effects are not relevant. 

In Fig. (7a), the Nusselt number behavior on the obstruction region is shown. To explain the negative Nusselt 

number the Figure (7b) reveals the dimensionless heat flux at fluid/ obstruction interface  

 

lhy
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and the difference between the bulk and fluid/ obstruction interface temperatures (θb-θw) for the case with Ds = 0.0001. 

The small values of the θb-θw, almost null, justify the high absolute value of the Nusselt number found on the 

obstruction zone. The negative Nusselt number is connected with the negative θb-θw shown in Figure (7b). 
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Figure 7. (a) Nusselt number on the obstruction. (b) Behavior of the dimensionless heat flux and of the θb - θw, on the 

fluid/ obstruction interface. 

 

5. Conclusions 
 

The present study shows the effects of the thermal diffusivity of rectangular obstructions on the thermal and fluid 

dynamical entrance regions inside parallel plate channels. This work takes account the conjugate heat transfer problem 

with the obstruction. The introduction of the conjugate effect of the obstruction shows the influence of the solid 

diffusivity on the temperature field and on Nusselt number behavior. The results show the possibility of negative 

Nusselt number on the obstruction vicinity. This phenomenon happens when the obstruction wall temperature is greater 

than the bulk temperature. It is presented in the case with small thermal diffusivity in the solid obstruction. However, 

the possibility of the negative Nusselt number should be investigated in detail in further works. It was observed in this 

work that the temperature wall boundary condition effects increases with the improvement of the thermal diffusivity, 

promoting the fin effect of the obstruction. 
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