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Abstract. This work presents a numerical investigation for the turbulent flow in an abrupt contraction pipe (section area ratio of 
0.285) with a porous insert placed past the contraction. The Reynolds number considered is 50,000 based on the pipe inlet diameter. 
The flow equations are discretized by using the control volume method and the SIMPLE algorithm is applied for the velocity-
pressure coupling. Results for the hybrid medium are obtained using linear and nonlinear k-ε macroscopic models. Parameters such 
as permeability and thickness of the porous insert are varied in order to analyze their effects on the flow pattern. Pressure losses 
and streamlines results obtained by the two turbulence models are compared for the cases without and with a porous insert. For the 
cases without porous insert, whereas the minor loss obtained by the linear model over-predicts the experimental data, good 
agreement was found for the minor loss obtained by the nonlinear model indicating an advantage of the nonlinear closure in 
predicting more realistic results. For the cases with porous insert, the results show that despite the attenuation or the suppression of 
the recirculating bubble, the flow losses are always higher in comparison with the cases without porous insert and the losses are 
significantly more affected by the porous insert permeabity than  its thickness.  
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1. Introduction  
 

Flow studies in pipes with sudden contraction have been the subject of numerous publications. Streeter (1961) and 
Rouse (1950) showed experimental values of minor losses as a function of exS / inS , the ratio between the pipe outlet 
cross section area ( exS ) and its inlet section area ( inS ), for turbulent flows. Benedict et al. (1966) compared 
experimentally losses considering incompressible and compressible turbulent flows through pipes with abrupt 
enlargements and contractions, reviewed the basis of the theory concerning the loss coefficients for abrupt enlargements 
and contractions and discussed some references about the subject. Durst & Loy (1985) investigated laminar flows for 

exS / inS  = 0.285. In that work, experimental and numerical results for velocity profiles, recirculating bubble dimensions 
and pressures losses were compared. Ajayi et al. (1998) investigated experimentally the effect on the flow losses of a 
perturbation upstream a pipe sudden contraction ( exS / inS  = 0.25) from laminar to moderately high Reynolds numbers. 
Also, numerical simulations were performed for the cases without upstream perturbation and good agreement between 
numerical and experimental results was found for the contraction loss coefficient. 

Many articles have been recently published in the literature concerning numerical simulations of flows past planar 
channels with porous insert. In the works of Assato & de Lemos (2002, 2003) and Assato et. al. (2005) it was simulated 
numerically a turbulent flow through a backward-facing step and in Assato & de Lemos (2004a-b) it was simulated the 
case of a flow past a forward-facing step. In general, these articles showed a comparison of numerical results applying 
both linear and non-linear turbulence models and in order to analyze the effects of the porous insert on the flow pattern 
some parameters such as porosity, permeability and thickness were varied. In addition, with regard to this subject, other 
recent works can be mentioned such as the work of Chan & Lien (2005) where it was examined the influence of 
permeability, forchheimer’s constant and thickness on the flow (turbulent) in a planar channel which suffers a sudden 
expansion (back-step). And the work of de Lemos & Tofaneli (2003) where it was analyzed the influence of porosity, 
permeability and Reynolds number on the flow pressure drop in a parallel-plate channel containing porous fins. 

Concerning numerical simulations of turbulent flow through an axisymmetric sudden contraction with porous 
insert, some articles have been recently published such as the works of Orselli & de Lemos (2004, 2005a-c), where, 
essentially, it was investigated the effect of permeability and thickness on the flow pattern past a sudden contraction 
pipe with section area ratio of 0.10 and 0.285. And, also, the work of Orselli & de Lemos (2006) where numerical 
results applying linear and nonlinear turbulence models were shown with a section area ratio of 0.10. 

In the present work, numerical results for turbulent flow through a sudden contraction pipe (section area ratio of 
0.285) with a porous insert (located past the sudden contraction section) are presented in which both linear and 
nonlinear eddy viscosity macroscopic models are employed.  
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Developments of nonlinear eddy viscosity models (NLEVM) have recently been the subject of many publications 
such as in Speziale (1987), Nisizima & Yoshizawa (1987), Rubinstein & Barton (1990), Shih et al. (1993) and Park & 
Sung (1995). The NLEVM which corresponds to an extension of the linear eddy viscosity models (LEVM) have 
presented some advantage over the LEVM mainly for flows in which anisotropy of the normal Reynolds stresses is 
important (Assato & de Lemos, 2000, Wilcox, 1998). 

Therefore, in this work, comparisons of results simulated with both linear and nonlinear macroscopic k - ε  
turbulence models for turbulent flow past a sudden contraction pipe without and with a porous insertion are presented. 
In addition, parameters such as permeability and thickness of the porous insert are varied in order to analyze 
particularly its influence on the flow losses and on the damping of the recirculating bubble. 
 
2. Geometry Under Consideration 
 

Figure (1a) shows the geometry under consideration where due to the sudden contraction the flow direction changes 
abruptly resulting in a recirculating bubble past the contraction section. The recirculating bubble causes a reduction of 
the effective flow area, phenomenon known as vena contracta, whose minimum area is denoted cS . Figure (1b) 
presents a sketch of the porous insert in the pipe, the subscripts in  and ex  represent the pipe inlet and outlet, 
respectively. In Figs. (1a) and (1b), inU  and exU  are the mean velocities at a pipe cross section in the stream-wise 
direction, inl  and  exl  are the pipe lengths, ind  and exd  or 2 inr  and 2 exr  correspond to the diameters and a  is the 
porous insert thickness. In this work, two porous insert thickness are considered which are a / exr  = 0.083 and a / exr  = 
0.166. The adopted section pipe ratio is exS / inS  = 0.285 which corresponds to exr / inr  = 0.534. 

a) 

b) 
Figure 1. Simple sketch of the pipe geometry: a) vena contracta; b) Porous insert. 

 
3. Mathematical Model 
 

The governing equations applied here have already been derived in details, Pedras & de Lemos (2001a-c), and for 
this reason their derivation need not to be repeated here. Considering the porous medium homogeneous, rigid and 
saturated in an incompressible single-phase fluid, the macroscopic form of the governing equations is obtained by 
employing the volumetric average to the time-averaged equations, where this development is based on the concept of 
double decomposition, de Lemos & Pedras (2001), Pedras & de Lemos (2000). 

In the following governing equations, the transient and the gravitational terms are neglected.  
The macroscopic continuity equation can be written as, 

 
0=⋅∇ Du         (1) 
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where Du  is the average surface velocity (“seepage” or Darcy velocity). Equation (1) was found by applying the 

Dupuit-Forchheimer relationship, i
D 〉〈= uu φ , where φ  is the porous medium porosity and i〉〈u  is the intrinsic 

(liquid) average of the local velocity vector u  (Gray & Lee, 1977). 
The macroscopic momentum equation is given by, 
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where the correlation uu ′′− ρ  is obtained by employing the time-average operator to the local instantaneous 
momentum equation. Then, applying the volume-average procedure to the entire momentum equation (see Pedras & de 
Lemos, 2001a for details), results in the term i〉′′〈− uuρφ  of Eq. (2). This term is here recalled the Macroscopic 

Reynolds Stress Tensor (MRST). Then, making use the relationship i
D 〉〈= uu φ , Eq. (2) is finally obtained. The last 

two terms in the right hand side of Eq. (2) represent the Darcy-Forchheimer contributions where the constant Fc  is the 

Forchheimer coefficient. In addition, the term ip〉〈  is the intrinsic average pressure of the fluid, ρ  is the fluid density, 
µ  represents the dynamic fluid viscosity and the symbol K  corresponds to the porous medium permeability. Also, the 
equations given are valid for the clear medium as well, setting 1φ =   ( K →∞) and discarding the last two terms. 

As proposed by Pedras & de Lemos (2001a), the term MRST is modeled considering a linear stress-strain 
relationship in analogy with the Boussinesq concept for clear flow case as, 
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where ik〉〈  represents the intrinsic average of the turbulent kinetic energy ( k ) and the term 
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corresponds to the mean macroscopic deformation tensor and I  is the unity tensor. In Eq. (3), the term 

φ
µ t  is the 

macroscopic eddy viscosity which is modeled similarly to case of clear fluid and a proposal for it was presented in 
Pedras & de Lemos (2001a) as follows, 
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where µc  = 0.09 and i〉〈ε  is the intrinsic average of the dissipation rate of k . 

The macroscopic transport equations for ik〈 〉 / 2i′ ′= 〈 〉u u  and iε〈 〉 ( ): /T iµ ρ′ ′= 〈∇ ∇ 〉u u  in the k - ε  High-
Reynolds form were proposed in Pedras & de Lemos (2001a) as, 
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where kσ = 1.0, εσ = 1.33, 1c = 1.44, 2c = 1.92 are non-dimensional empirical constants and, specially for the porous 
medium, kc  was found to be equal to 0.28 through numerical calculations by Pedras & de Lemos (2001a-c, 2003). 

In this work, numerical results involving nonlinear eddy viscosity models (NLEVMs) are analyzed. Differently 
from the linear stress-strain rate relationship, Eq. (3), a more general nonlinear constitutive equation is employed. The 
NLEVMs here adopted is based on the developments of Speziale (1987), Nisizima & Yoshizawa (1987), Rubinstein & 
Barton (1990), Shih et al. (1993) among others. In these works, quadratic products were introduced involving the strain 
rate and vorticity tensors with different derivations and calibrations for each model. These nonlinear constitutive 
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relations offer some advantages over the Boussinesq approximation, most notably for flows in which anisotropy of the 
normal Reynolds stresses plays an important role, for example, in capturing secondary motion in noncircular ducts or in 
predicting reattachment length for the back-facing step (Wilcox, 1998, Assato & de Lemos, 2000). 

The nonlinear macroscopic k - ε  turbulence model here analyzed is composed of the same system of equations (1)-
(7). The sole difference between both macroscopic models (linear and nonlinear) lies on the macroscopic Reynolds 
stress expression, brought to the second order. The macroscopic nonlinear stress-strain expression, in the indexed form, 
is given as follows: 
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where ijδ  is Kronecker delta; the superscripts L  and NL  indicate, respectively, the liner and nonlinear contributions, 

v
ijD 〉〈  and v

ik 〉Ω〈  are, respectively, the macroscopic deformation and vorticity tensors which can be written in the 
indexed form as: 
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The nonlinear model proposed by Shih et al. (1993) is here adopted whose non-dimensional constants are given by: 
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where / 0.5i i v v

ij ijs k D Dε= 〈 〉 〈 〉 〈 〉 〈 〉  and / 0.5i i v v
ij ijk εΩ = 〈 〉 〈 〉 〈Ω 〉 〈Ω 〉 . 

 
4. Boundary Conditions and Numerical Details 
 

A developed profile of velocity, k  and ε  (obtained numerically) was imposed at the pipe inlet cross section, and, 
at its outlet, it was applied a zero diffusion flux condition. In addition, the classical logarithmic wall function was 
employed for describing the flow near the wall. 

In order to solve numerically the flow equations, it was employed the finite volume method applied to a boundary-
fitted coordinate system. Equations were discretized in a bi-dimensional axisymmetric domain involving both the clear 
and the porous medium. Moreover, the SIMPLE algorithm was used for handling the velocity-pressure coupling, 
(Patankar, 1980) and residues for all transport equations were brought down to 610− . For more details about the 
numerical method implemented, see Pedras & de Lemos (2001b). 

In order to verify grid independence on the numerical results, besides the axisymmetric mesh of size 202 x 82 
(upstream the pipe contraction) and 924 x 46 (downstream the pipe contraction), two additional grids were generated: a 
coarser mesh with size of 135 x 52 and 616 x 28 and a refined mesh with size of 267 x 115 and 1233 x 64. The 
differences between the results given by the two more refined meshes were less than 1% for the contraction minor loss 
coefficient, ck , whose definition is presented in the following section. Therefore, the grid of size 202 x 82 and 924 x 46 
was considered to be sufficiently refined and Fig. (2) presents a partial view of the grid points distribution at the 
contraction region where it can be observed a concentration of grid points towards the wall and the contraction corner.  
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Figure 2. Partial view of the axysimmetric grid at the contraction region: grid size of 202 x 82 (upstream the 
contraction) and 924 x 46 (downstream the contraction). 

 
5. Results and Discussion 
 
5.1. Clear flow 
 

As presented in Fig. (1), the geometry considered is of a pipe which suffers a sudden contraction whose section 
area ratio ( exS / inS ) is 0.285. In order to have a negligible influence of the inlet and outlet pipe sections on the results, 
the inlet and outlet pipe length were found to be, respectively, inl / inr  = 2.965 and exl / exr  = 80. Moreover, it was 
verified that the outlet pipe length was long enough to assume the flow fully developed in its outlet cross section, 
condition necessary to use Eq. (14) (shown below) and to assure the validity of a zero diffusion flux as a boundary 
condition at the pipe outlet.  

In all results presented in this work, it was adopted an inlet Reynolds number ( inRe ) of 50,000 based on the pipe 
inlet diameter ( ind ) which corresponds to an outlet Reynolds number ( exRe ) of 93,627 based on the pipe outlet 
diameter ( exd ). The inlet and the outlet Reynolds number are, respectively, defined as, 
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where inU  and exU  are the stream-wise bulk velocities, respectively, upstream and downstream the pipe contraction 
and ν  is the kinematic viscosity. 

According to the definition given in Fox & McDonald (1998), the minor loss due to the contraction ( ch ) can be 
written as, 
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where ck  is the contraction minor loss coefficient which is a non-dimensional parameter. In Streeter (1961) and Rouse 
(1950), experimental values of ck  without porous insert are presented for several geometries for turbulent flows. It was 
observed that the experimental values of Streeter (1961) and Rouse (1950) are presented independently of the Reynolds 
number which indicates that the ck  values are not significantly affected by the Reynolds number for fully turbulent 
flows. Thus, according to Streeter (1961) and Rouse (1950), the ck  value was found to be, respectively, 0.367 and 
0.408 for exS / inS  = 0.285. 
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According to Fox & McDonald (1998), considering the energy conservation between two cross sections of steady 
incompressible flow, under the assumption of no external work and uniform pressure and internal energy across the two 
sections results, 
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where Th  is the total head loss between the two sections, p  is the pressure in each section, g  is the acceleration of 
gravity, α  is the kinetic energy coefficient and z  is the coordinate which corresponds to the height level of the pipe 
section. Subscriptions in  and ex  represent the inlet and outlet cross section area, respectively. The kinetic energy 
coefficient, α , is defined as, 
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where u  is the time average of the local instantaneous velocity in the axial direction. 

The major losses, lh , can be written as a function of the friction factor, f , 
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The total head loss is the sum of all major and minor losses and considering the case of a pipe with a sudden 

contraction, Th  is given by, 
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where, respectively, inf  and exf  are the friction factor due to the major losses upstream and downstream the pipe 
contraction. 

We can define the pressure coefficient, Cp , as, 
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where, refp  is a reference pressure which is, here, assumed to be null, and, p  is a local pressure. 

Substituting Eq. (17), (18) in Eq. (14), considering fully developed flow at the inlet and outlet pipe cross section 
and assuming the pipe sections at same height level, the minor loss coefficient can be obtained as, 
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where the last four terms (between square brackets) depend only on the pipe geometry, the Reynolds number and the 
friction factor of the corresponding developed flow. Therefore, they do not vary in the cases, here, analyzed. Thus, the 

ck  value depends only on the pressure coefficient difference ( exin CpCp − ) between the pipe inlet and outlet cross 
sections.  

In Eq. (19), the values of inα  and inf  were obtained through a numerical simulation, for Re  = 50,000, in a pipe 
with only the pipe inlet diameter ( ind ), where a periodic condition between its inlet and outlet was employed. The 
values of exf  were obtained applying the same periodic conditions but with the outlet pipe diameter ( exd ) and Re  = 
93,627. In addition, the values of exα  were calculated by employing its definition given by Eq. (15) at the pipe outlet 
section. Table (1) presents the values of exin CpCp − , inα , exα , inf  and exf  which were obtained through the 
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numerical simulations using both the linear and nonlinear macroscopic k - ε  turbulence models. Then, making use of 
Eq. (19), the ck  values can be calculated which are presented in Table (2). 
 

Table  1 - Values of Eq. (19) obtained from the numerical simulations. 
Macroscopic k - ε  
turbulence model 

exin CpCp −  inα  exα  inf  exf  

Linear 2.180 1.062 1.057 0.02097 0.01836 
Nonlinear 2.063 1.063 1.056 0.02054 0.01796 

 
 

Table 2 - Values of ck  obtained from the numerical calculations for the case without porous insert. 
Macroscopic k - ε  
turbulence model 

ck  Deviation from experimental 
value of ck  = 0.367 

(Streeter, 1961) 

Deviation from experimental 
value of ck  = 0.408 

(Rouse, 1950) 
Linear 0.473 28.8 % 15.8 % 

Nonlinear 0.373 1.5 % -8.7 % 
 

According to the results presented in Table (2), it is noted that the nonlinear macroscopic k - ε  turbulence model 
predicts well the experimental values of ck  while the linear one over-predicts their values. These results confirm (as 
demonstrated in the literature – Wilcox, 1998 and Assato & de Lemos, 2000) the better performance of the nonlinear 
eddy viscosity model (NLEVM) over the linear one for flows characterized by high streamlines curvatures and 
separation which is the case here analyzed. 

In Fig. (3), it is shown the streamlines numerical results of the flow in the pipe for the case without porous insert 
which were obtained by applying both the linear (Fig. 3a) and nonlinear (Fig. 3b) k - ε  turbulence models. Comparing 
the streamlines results given by the two turbulence models, it is clearly observed that the recirculating bubble size of the 
nonlinear model is considerably greater than the one obtained by the linear model indicating that, in this case, the 
anisotropy of the normal Reynolds stresses (predicted by the nonlinear model) affects significantly the streamlines 
results. In Figs. (3a) and (3b), it is observed an area surrounded by dashed lines which corresponds to the region used to 
present the streamlines results of Figs. (4) and (5) in the following subsection. 
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Figure 3. Streamlines numerical results of the flow in the pipe without porous insert showing an area surrounded by 
dashed lines to be used in the results of Figs. (4) and (5): a) linear k - ε  turbulence model; b) nonlinear k - ε  

turbulence model. 
 

5.2. Porous insert 
 
Concerning  the flow in a pipe with a sudden contraction for the case without porous insert, the recirculating bubble 

which reduces the effective flow area (vena contracta) is the main cause of the minor loss due to the contraction. 
Therefore, one of the objectives of the porous insert is to suppress or reduce the recirculating bubble, although the 
porous insert itself increases the losses. This way, there is a compromise between the losses caused by the porous insert 
and the gain in eliminating or damping the recirculating bubble. Moreover, the numerical results given by both 
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nonlinear and linear macroscopic eddy viscosity models are compared in order to asses their influence on the flow 
behavior. 

In this subsection, it is presented the numerical results of the flow past a sudden contraction pipe with a porous 
insert. Concerning the porous insert properties, it was considered two different thicknesses ( 083.0/ =exra  and 

166.0/ =exra ), a porosity of 85.0=φ  and three values of permeability represented by the Darcy Number 

( 31056.8 −= xDa , 51056.8 −= xDa , 71056.8 −= xDa ) which makes 6 different porous insertions. The Darcy number is 
a non-dimensional parameter related to the permeability ( K ) whose definition is given by, 

 

2)( exd
KDa =       (20) 

 
From the numerical simulations, the values of ck  were calculated for each porous insert considered, using both 

linear and nonlinear macroscopic turbulence models, whose results are presented in Tab. (3). 
 

Table 3 - ck  numerical values for each porous insert, 85.0=φ  
Macroscopic k - ε  turbulence model exra /  Da  ck  

0 - 0.473 
8.56 x 10-3 1.05 
8.56 x 10-5 5.46 0.083 
8.56 x 10-7 50.07 
8.56 x 10-3 1.54 
8.56 x 10-5 10.41 

Linear 

0.166 
8.56 x 10-7 100.45 

0 - 0.373 
8.56 x 10-3 1.02 
8.56 x 10-5 5.39 0.083 
8.56 x 10-7 50.02 
8.56 x 10-3 1.53 
8.56 x 10-5 10.34 

Nonlinear 

0.166 
8.56 x 10-7 100.41 

 
According to the results of ck  presented in Table (3), it is noted an increase of the minor flow losses in the pipe for 

lower Darcy values and, also, for higher porous insert thicknesses, being the losses significantly more affected by the 
Darcy number than the porous insert thickness. Moreover, as the minor losses increase, the differences between the ck  
values obtained by the linear and the nonlinear turbulence models become less pronounced. Therefore, the addition of 
nonlinear terms on the stress-strain expression (resulting in more computing cost) makes little difference on the minor 
losses results for the cases where the porous insert effect on the flow is more significant (cases with lower Darcy values 
and higher porous insert thicknesses). 

Figures (4) and (5) presents the streamlines numerical results obtained through the linear and the nonlinear k - ε  
macroscopic turbulence models for the cases without porous insert and with each of the 6 porous inserts considered. In 
addition, the two vertical lines observed in Figs. (4) and (5) correspond to the upstream and downstream porous insert 
interfaces. According to the streamlines results of Figs. (4) and (5), it is noticed that the recirculating bubble is 
significantly damped for 31056.8 −= xDa  and it is completely suppressed for 51056.8 −= xDa  and 71056.8 −= xDa . 
Moreover, for the cases with 51056.8 −= xDa  and 71056.8 −= xDa , it is observed nearly no difference on the 
streamlines results given by the linear and the nonlinear turbulence models. A possible explanation for this behavior is 
that the porous insert effect on the flow, which tends to flatten the Darcy velocities profiles, is more dominant than the 
influence of both the linear and nonlinear approaches given to the macroscopic Reynolds stress tensor. Nevertheless, 
when 31056.8 −= xDa , it can be observed that the recirculating bubble predicted by the nonlinear turbulence model is 
significantly greater than the one obtained by the linear turbulence model which indicates, in this case, that the added 
nonlinear terms of the turbulence model still have a prominent influence, despite the porous insert effects, on the flow 
behavior. 
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Figure 4. Comparison of streamlines between the linear and nonlinear macroscopic ε−k  turbulence models for 
083.0/ =exra  ( 85.0=φ ): (a) Without porous insert; (b) 31056.8 −= xDa ; (c) 51056.8 −= xDa ; (d) 

71056.8 −= xDa . 
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Figure 5. Comparison of streamlines between the linear and nonlinear macroscopic ε−k  turbulence models for 
166.0/ =exra  ( 85.0=φ ): (a) Without porous insert; (b) 31056.8 −= xDa ; (c) 51056.8 −= xDa ; (d) 

71056.8 −= xDa . 
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6. Conclusion 
 

In this article, both linear and nonlinear turbulence models were applied for simulating the flow past a sudden 
contraction pipe with a porous insert. In order to asses the effects of the porous insert properties on the flow pattern, 
parameters such as Darcy number and thickness were varied. 

In order to validate the numerical results, the obtained ck  values for the case without porous insert were compared 
with the experimental ones of Streeter (1961) and Rouse (1950). Whereas the ck  numerical value given by the linear 
turbulence model over-predicts the experimental data, good agreement was found for the ck  value given by the 
nonlinear model indicating an advantage of nonlinear closure in predicting more realistic results. 

Figures (3)-(5) showed that the recirculating bubble predicted by the linear model was always shorter than the one 
obtained by the nonlinear model. In addition, it was noted that as the Darcy values decreased and as the porous insert 
thicknesses increased, the differences between the results obtained by the two turbulence models became less 
pronounced indicating that the greater the effect of the porous insert on the flow, the lower the influence of the 
turbulence model on the results.  

Moreover, it was observed that the damping of the recirculating bubble and the increase of the flow losses were 
more affected by the Da  values than by the porous insert thicknesses. In addition, no recirculating bubble was 
observed for 51056.8 −= xDa  and 71056.8 −= xDa , regardless of the turbulence model used. 

Finally, results showed that the minor losses for the cases with porous insert were always higher than the case 
without porous insert despite the reduction of the recirculating bubble size which indicates that the losses caused by the 
porous insert itself are more significant than the gain due to the damping of the recirculating bubble. In spite of it, the 
effect of the permeability and thickness of the porous insert on the flow behavior was analyzed whose findings may be 
useful in the design of thermo-mechanical equipments, for instance, in the optimization of the heat exchange 
downstream the pipe contraction section as showed for a forward-facing step geometry in Assato & de Lemos (2004a-
b). 
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