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Abstract. In this work, simulations of incompressible fluid flows have been done by a Least-Squares Finite Element 
Method (LSFEM) using velocity-pressure-vorticity formulation, here called u-p-ω  formulation. This formulation is 
used because the resulting equations are partial differential equations of first order, which is convenient for 
implementation by LSFEM. The main purposes of this work are the numerical computation fluid flows by LSFEM 
through the application of large eddy simulation (LES) methodology. The Navier-Stokes equations in u-p-ω formulation 
are filtered and the eddy viscosity of Smagorinsky is used for modeling the sub-grid-scale variables. The backward 
facing-step flow has been solved to study the influence of the constant of Smagorinsky on the velocity profile for 
different Reynolds numbers. The results are presented and compared with available results from the literature. 
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1 INTRODUCTION 

 
1The finite element method (FEM) is one of the most used techniques for numerical solution of partial differential 

equations in engineering and applied sciences. The mathematical foundation of the finite element method can be based 
on the weight residual method (WRM), Finlayson, (1972), which originate different formulations according to the 
weight functions used. The main versions of the FEM are the Bubnov-Galerkin, Petrov-Galerkin, Collocation, Sub-
domain and Least-Squares formulations. Another classification underlining the variational principle considers three 
major groups: the Rayleigh-Ritz method, The Galerkin Method and the Least-squares method. For convection 
dominated problems the Galerkin-based methods present often spurious oscillation of the solutions (Jiang, 1998). In 
recent works, Romão et al. (2003) and Romão (2004) applied different versions of the finite element method for 
convection-diffusion problems. Several authors have investigated the LSFEM for solution of incompressible and 
compressible fluid flows. Jiang (1998) presented a list of such works. Winterscheidt & Surana (1994) have applied p-
versions of least-squares finite element method for fluid flows. The least squares have also been used for stabilization of 
the Galerkin finite element method. Jansen (1999) presented a LSFEM for computing turbulent flows in unstructured-
grids. Some previous works have been presented: Pereira et al. (2004), Pereira and Campos_Silva (2005), Pereira et al. 
(2006a, b). Pereira (2005) has presented the u-p-ω formulation employed in this work. In that work some questions 
were not satisfactory answered. One of them was the influence of the constant of Smagorinsky in the LES methodology 
with the present formulation. In Pereira et al. (2006a, b) was tried to continue that investigation, but no high Reynolds 
number flow was still simulated for the present geometry. This work is a continuation of the previous works. Although, 
turbulence is a 3D phenomenon, in this work, only 2D simulations have been considered to understand the behavior of 
the LSFEM in the proposed formulations and due to the computational capacity available. 

Jiang (1998) enumerated several features of the LSFEM, among them: universality, efficiency, robustness, 
optimality, concurrent simulation of multiple physics and general-purpose coding. Jiang also claimed that no upwind 
technique is necessary for numerical calculation of convection dominated problems, because the resulting matrix 
systems of equations from the LSFEM application are always symmetrical and positive-definite. 

In this work, the backward-facing step flow has been solved with quadratic quadrilateral elements for investigation 
of different values of the constant of Smagorinsky. The results are compared with results from other authors. Beyond of 
this introduction, the paper covers some aspects of formulation of the proposed model, presents some results, 
discussions, conclusions and references. 

 

2- NOMENCLATURE 

 

k  = turbulent kinetic energy 
L  = length of reference 
p  = pressure 

2
0u
ppP o

ρ

−
=  = dimensionless pressure 

Re  = Reynolds number 
t  = Time 
u  = component of dimensional velocity in the - axis direction ix

iu  = component of velocity in the - axis direction ix

0u  = reference velocity 

ouuU = - dimensionless component of velocity in the X-axis direction 

iU  = dimensionless component of velocity in the -axis direction iX
v  = component of dimensional velocity in the -axis direction y

LxX =  = dimensionless X coordinate 

ix  = ith- axis in Cartesian coordinates 
LxX ii =  = ith dimensionless coordinate 

LyY =  = dimensionless Y coordinate 

Greek Symbols 
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α  = index that indicates local node number inside an element 
ijδ  = Krönecker delta 

θ  = time discretization parameter 
µ  = dynamic viscosity 

tµ  = dynamic eddy viscosity 
ρ  = density 
φ  = any scalar variable 
ψ  = stream function 

jω  = vorticity around the j-axis 

312,231,123;1 == ijkifijkε  

321,213,132;1 =−= ijkifijkε  

 indices equal any twofor  0=ijkε  

Superscripts 
n = variable evaluated at time t 
n+1 = variable evaluated at time  tt ∆+

Subscripts 
i = direction of the axis in the system of coordinates or component 
j = direction of the axis in the system of coordinates or component 
k = direction of the axis in the system of coordinates or component 
 

3 – FORMULATION 

 

3.1 - Governing Equations 

 

The Navier-Stokes equations for incompressible transient fluid flows in vector notation can be written as follow: 
 

fu uuu
=∇++⎟

⎠
⎞

⎜
⎝
⎛ •+
∂
∂ 2µρ p

t
∇∇   (1) 

 
0=•u∇   (2) 

 
where ρ  is the fluid density,  is the velocity vector with components , is the pressure, u iu p µ  is the dynamic 

viscosity and  is the body forces vector with components .  f if
The Equation (1) is a second order partial differential equation and this is not the most appropriated form for 

solution by LSFEM. The LSFEM generally is applied for first order differential equations. However, second order 
partial differential can be transformed in first order system by using auxiliary variables. This is another advantage of the 
least-squares method: the direct calculation of secondary variables that have physical interpretation such as heat and 
mass fluxes, stresses and vorticity. According to Brodkey (1967), using vectorial identities: 

uuuuuu ××−•=• ∇∇∇ 2/)(  and , the Navier-Stokes can be rewritten, 
now, in tensorial notation as 

)()(2 uuu ××−•=∇ ∇∇∇∇

 

i
j

k
ijk
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i
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∂
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x
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 ;  (4) 
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j

k
ijki x

u
∂
∂

= εω  .  (5) 

 
For application of the large-eddy simulation methodology, the equations must be filtered for separation of the large 

scales from the sub-grid scales. So, the large scales are simulated by solution of the equations for the filtered variables 
after modeling the sub-grid scales terms that come from the filter process. Large-eddy simulation has been studied by a 
several researchers. Some few references are Moin & Kim (1982), Germano et al. (1991), Silveira-Neto (2002, 2003), 
Tejada-Martinez (2002). Chidambaram (1998) presented different filter functions for LES. The filtered Equations (3)–
(5) are of the form  

 

( ) ikjkjijk
j
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ijk

i

ii

i

i
kjijk

i

fuu
x

x
uup

x
u

u
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+
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+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂
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ωερ
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1 222

 (6) 

 

0=
∂
∂

i

i

x
u

 ;  (7) 

 

j

k
ijki x

u
∂
∂

= εω  .  (8) 

 
The differences between Eq. (3) and Eq. (6) are the additional term to the pressure and in the fourth term of left 

hand side of Eq. (6) that originated from the convection term of the Navier-Stokes equations. These terms correspond to 
the turbulent kinetic energy and the vorticity of the sub-grid scales respectively. The purpose of this work is the 
modeling of the fourth term, by analogy with the modeling of the sub-grid scale stresses in the conventional formulation 
of the Navier-Stokes equations. So, it is defined the sub-grid scale effects and the turbulent pressure as 

 

j

k
tkjkj x

uu
∂
∂

−=−
ωµωωρ )(  ; 2/)( 22

iit uupp −+= ρ .  (9) 

 
Now, after modeling of the sub-grid scale effects, the dimensionless form of the Eqs. (6)-(8) is as follow, Pereira 

(2005):  
 

i
j

k
tijk
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t
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XX
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X
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 ;  (11) 

 

j

k
ijki X

U
∂
∂

=Ω ε  .  (12) 

 
The dimensionless variables in Eqs. (10)-(12) are defined in function of the characteristic parameters of length  

and velocity  as  
L

0u
 

L
xX i

i = ;    
0u

uU i
i = ;    

2
0

0

u
ppP t

t ρ
−

= ;    
0

*

/uL
tt = ; ( ) 2/1

2

0
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==
νν ;    

0u
Li

i
ω

=Ω ;    
µ
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The eddy viscosity is calculated according to the Smagorinsky model in the form 
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( ) ( ) 2/12* 2 klklst ssC ∆=ν ; ⎟
⎟
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where  is the constant of Smagorinsky and sC ∆  is the filter width defined as:  for 3D or 

 for 2D geometry. 

( 3/1zyx ∆∆∆=∆ )

]

( ) 2/1yx∆∆=∆
The first order system (10)-(12) for 2D problems, after discretizing the transient term can be written in a compact 

form as 
 

nn fL =Φ +1  ;  (14) 
 

where is the vector of unknown variables, [ TPVU Ω=Φ ,,, [ ]Tvu SSf 0,0,,=  is the vector of independent 
terms and now L is a matrix differential operator defined as 
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The source terms  and  are:  uS vS
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and 10 ≤≤θ  is a parameter of time discretization. 

The variable Φ  in finite element methods, for equal order interpolation of all degrees of freedom, can be 
interpolated inside an element in the form: 

 

∑
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where  is the interpolation function associated to the node j of the element and  is the number of nodes. It has 
been pointed out that the LSFEM is not restricted by LBB (Ladyzhenskaya-Babuska-Brezzi) condition like the 
Galerkin-based method, Jiang (1998), Winterscheidt & Surana (1994). 

jN Ne
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3.2 - Least-Squares Finite Element Method  

 

Substituting Eq. (18) in Eq. (14) a residual vector can be defined inside an element as 
 

nn fLNR −Φ= +1 .  (19) 
 
The application of LSFEM consists in the minimization of a functional defined as the integral of the squared 

residuals. If inside an element ones define a functional as ( ) ∫ •=Φ +

eA

Tn
e RdARJ 1 , the functional, in the whole 

domain divided in Nelem elements, can be calculated as follow  
 

( ) ∑ ∫
=

+ •=Φ
Nelem

e
A

Tn

e

RdARJ
1

1 .  (20) 

 
The minimization of the functional requires that ( ) 01 =Φ +nJδ , which results in the following matrix system: 
 

FK =Φ   (21) 
 
Now, in Eq. (21),  is the global vector of nodal values. The global matrix K is assembled from the element 

matrices, 
Φ
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where  is the area of the finite element, T denotes the transpose and the global vector F is assembled with the 
contribution of the element vectors 
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3.3 - Backward-Facing Step Flow 

 

 In this section some results for backward-facing step flow are presented for Reynolds number in the range of 100 
to 1000 and values of the constant of Smagorinsky of 0.1, 0.17 and 0.21. The geometry of the problem and dimensions 
of the channel are shown in Figure 1. The Figure 2 illustrates a mesh utilized composed by 1840 finite elements and 
7541 nodes. The ratio of expansion in this case is of 1:2. At the entrance of the channel was imposed a parabolic 
velocity profile of the form: [ ]22

0 /)(/)(22/3 ww rhyrhyuu −−−= , where h is the step height,  is the half 

spacing of the small channel and in this case 
wr

2/hrw = . At all other walls was imposed zero velocities and at exit of 
the channel was imposed null pressure. For the vorticity was not necessary to impose any boundary condition, Jiang 
(1998). 
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h

H= 2h

3.5h

L=  45h

 
Figura 1. Non symmetric channel with a step. 

 

 

Figura 2. Mesh with 1840 finite elements and 7841 nodes. 

 

The Reynolds numbers has been based on the step height, h. The computational code has been validated by Pereira 
(2005). Here, the main objective has been to analyze the influence of constant of Smagorinsky, in the simulation of the 
backward-facing step flow. The results presented below are for Reynolds numbers of 700 and 1000. Others low 
Reynolds numbers have been considered, in previous works, however, for lacking of spacing was not possible to 
present all results. The intent of this work is simulating high Reynolds number flows; however, until the present 
moment due to the computational resource available it was not possible to attain such objective. Figures 3 and 4 show 
velocity profiles at some positions along the channel, for different values of the constant of Smagorinsky.  Differences 
between the velocities profiles appear only at some intermediate position along the channel. Figures 5 to 7 and 8 to 10 
show the streamlines for Re equal to 700 and 1000 respectively for constant of Smagorinsky Cs = 0.1, 0.17 and 0.21. 
The behavior of the flow has been simulated satisfactorily. The non-dimensional reattachment lengths are 
approximately, 10 and 15 times step height for Re = 700 and 1000 respectively. The reattachment length result from 
Barber & Fonty (2003) for a similar flow and a Reynolds number are of 300 is about 7 times step height. Barber & 
Fonty presented results until Re of 600. For the Reynolds number of 400 and 600 respectively, the reattachment length 
of 10 and 16 times step height were showed by Barber & Fonty. For this low Reynolds numbers, the use of the 
Smagorinsky constant seems to create an effect of a more high Reynolds number. Until now, only one case of 
Re = 2000 has been simulated with Cs = 0.1. The stream functions are presented in Figure 11. This last result, however, 
presents a strange behavior and shall be investigated in future works. The profiles of velocity of this case, not included 
by lacking of space, seem to have been qualitatively and correctly simulated.  
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Figure 3. Profiles of velocity at some stations along the channel, for Re =700. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006 – Paper CIT06-0452 
 
 

-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

0,0

0,5

1,0

1,5

2,0

Re = 1000  X = 0,74
 CS= 0,1
 CS= 0,17
 CS= 0,21

U

Y

 

 

-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

0,0

0,5

1,0

1,5

2,0

Re = 1000  X = 1,88
 CS= 0,1
 CS= 0,17
 CS= 0,21

U

Y

 

-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

0,0

0,5

1,0

1,5

2,0

Re = 1000  X = 5,88
 CS= 0,1
 CS= 0,17
 CS= 0,21

U

Y

 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4

0,0

0,5

1,0

1,5

2,0

Re = 1000  X = 12,09
 CS= 0,1
 CS= 0,17
 CS= 0,21

U

Y

 

-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2

0,0

0,5

1,0

1,5

2,0

Re = 1000  X = 29,36
 CS= 0,1
 CS= 0,17
 CS= 0,21

U

Y

 0,0 0,2 0,4 0,6 0,8 1,0

0,0

0,5

1,0

1,5

2,0

Re = 1000  X = 44,25
 CS= 0,1
 CS= 0,17
 CS= 0,21

U

Y

 
Figure 4. Profiles of velocity at some stations along the channel, for Re = 1000. 
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Figure 5. Streamlines for Re = 700 and Cs = 0.1. 
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Figure 6. Streamlines for Re = 700 and Cs = 0.17 
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Figure 7. Streamlines for Re = 700 and Cs = 0.21 
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Figure 8. Streamlines for Re = 1000 and Cs = 0.1. 
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Figure 9. Streamlines for Re = 1000 and Cs = 0.17. 
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Figure 10. Streamlines for Re = 1000 and Cs = 0.21. 
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Figure 11. Streamlines for Re = 2000 and Cs = 0.1. 

 

A comparison of Figures 5, 8 and 11 shows a crescent reattachment length with the increase of Reynolds number. 
However, was not possible to compare the results in this range of Reynolds with another results form the literature. The 
simulations have to be continued to investigate this behavior. Simulations by other numerical techniques present short 
reattachment length for high Reynolds number. Even this result is not true, it serves to indicate that the present 
numerical modeling has to be better investigated and calibrated for this kind of problem.  More simulations are need in 
this case. 

 

4 – CONCLUSIONS 

 

A least-squares finite element method with eddy viscosity model of Smagorinsky has been applied in this work for 
simulation of Navier-Stokes equations, in u-p-ω formulation. The results were obtained for several low Reynolds 
numbers and Cs = 0.1; 0.17 and 0.21. Since, the interest is to simulate high Reynolds flows, more investigation is still 
necessary for improvement of the model. Since turbulence is a three-dimensional phenomenon, cases of 3D geometry 
shall be treated in future works. In this work, was applied the frontal method, with storage in hard disk and only steady 
flows have been simulated in personal computers. Unsteady flows need to be also investigated in more details. For 3D 
and high Reynolds numbers flows the challenge still goes on for the present numerical method in this kind of problem. 
The solution method has to be changed to a method like conjugate gradient method for symmetrical matrices 
considering the sparsity of matrices for simulation of very large problems.  So the solutions shall be faster than the 
solution by frontal method. 
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