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Abstract The investigation of non-Newtonian flows is of paramount relevance in many fields of engineering. Indeed, numerical
approximations of non-Newtonian flow models meet some difficulties that may compromise their stability and even prevent
physically realistic results. In this article, we exploit the features of a Galerkin least-squares (GLS) finite elements method (FEM) in
approximating a multi-field mixed formulation (in extra-stress, velocity and pressure) for isochoric flows of inelastic fluids. We deal
about the specific situation when a cylindrical coordinate system is employed to describe non-swirling axisymmetric flows. This
treatment adds one degree of freedom to the formulation of 2-D flows, the third normal component of the extra-stress, in the angular
direction. We present the mechanical model for such flows, in which the extra-stress tensor is a primal variable, using the equations
of mass conservation and momentum balance. We model the stress tensor via a purely viscous constitutive model. We present a GLS
approximation which allows the use of equal order finite elements for all variables, overcoming the pressure-velocity and stress-
velocity compatibility conditions. The issues of such scheme are expressed by our numerical results. We employ both a Newtonian
constant viscosity and a viscosity function given by the Carreau model, which predicts pseudoplastic behavior. We present
numerical results for Newtonian and pseudoplastic flows through an axisymmetric contraction. Besides the features of convergence
and stability of the GLS approximations, we find good agreement between our results and those from literature. We investigate the
role of Carreau's equation parameters and Reynolds number in the flow dynamics near the contraction, interpreting the differences
between velocity profiles generated by each fluid with the aid of the extra stress tensor fields, which are directly computed in this
formulation.
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1. Introduction

The investigation of the flow of non-Newtonian fluids is a subject of a great scope of applications in engineering.
Examples of non-Newtonian fluids are products involved in the industries of petroleum, food, polymers, cosmetics, etc.
Nevertheless, the difficulties in the study of such flows are many, from the modeling of the fluids non-linear material
behavior to the mathematical dealing with the constitutive equations coupled to the flow mechanical models.

The analysis of non-Newtonian flows has always been a challenge for fluid mechanists. Specially since the last
decades, an extensive research field, the numerical simulation of non-Newtonian fluid flow, has been found of great
interest (Crochet et al., 1984; Owens and Phillips, 2002). Prediction of fluid behavior and detailed flow visualization in
complex geometry, mostly not accomplishable in experimental analysis, has stimulated the research in this area.

The mathematical modeling for non-Newtonian flows eventually originates non-explicit constitutive equations for
the extra-stress tensor. In the numerical standpoint, this feature is a difficulty, since it becomes unfeasible to deal with
only two primal variables (velocity and pressure). It is necessary to compute the extra-stress as an additional variable,
which increases the number of functional spaces comprised and also the number of degrees of freedom in the numerical
model. In the context of finite element methods, the multi-field discrete model consists of the equations of momentum
and mass conservation, plus a general constitutive equation for the extra-stress. In such cases, two compatibility
conditions arise between the finite element subspaces for the variables: the classical Babuska-Brezzi condition for
velocity and pressure subspaces, and the compatibility condition between the extra-stress and velocity subspaces.

As for the mixed formulations in two variables approach, the classical Galerkin method for incompressible fluids
suffers from two major difficulties. First, the need to satisfy Babuska-Brezzi condition (Ciarlet, 1978) in order to
achieve a compatible combination of velocity and pressure subspaces in mixed formulations. Further, the inherent
instability of central difference schemes in approximating advective dominated equations (Brooks and Hughes, 1982).
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In the context of the Stokes equations for Newtonian fluids, the Galerkin least-squares method (GLS) (Hughes et al.,
1986) was developed to provide stability to the original Galerkin method by adding mesh-dependent terms to Galerkin
formulation, which are functions of the residuals of Euler-Lagrange equations evaluated elementwise. Since the
residuals of the Euler-Lagrange equations are satisfied by the exact solutions, consistency is preserved in these methods.
This idea was also extended to incompressible Navier-Stokes equations in (Franca and Frey, 1992) employing stability
parameters designed to optimize stability and convergence.

Multi-field formulations have been analyzed by several researchers, with the aim of constructing formulations that
have the properties of stability and convergence, and also establishing the combinations of finite element subspaces
which would be effective for each of those formulations. In the context of the Stokes problem, the three-field
formulation is already a challenge, being exploited by authors as Marchal and Crochet (1987), Franca and Stenberg
(1991), Baranger and Sandri (1992), Baaijens (1998) and references therein, Carneiro de Araujo and Ruas (1998) and
references therein, Bonvin ef al. (2001), among others. A four field formulation known as Elastic Viscous Split Stress
(EVSS) is an alternative which employs the rate of strain tensor as an additional variable, in order to appease the
compatibility conditions between the tensor and velocity subspaces (Guenette and Fortin, 1995; Sun et al., 1996; Gatica
et al., 2004). Stabilized formulations based on the Galerkin lest-squares methodology have been employed to multi-
field formulations with two main goals. One is the achieving of the necessary stability and convergence for both
Newtonian and non-Newtonian models. The other, which may be considered as the main advantage of such methods, is
the circumvention of the compatibility conditions between the functional subspaces. Some authors have been successful
in achieving these goals via methodologies that may differ in the possible finite elements to employ, in the design of the
stability parameter, in the GLS terms which are present in the formulation, in the sign for these terms, and also in the
solution algorithms that effectively converge for such formulations. Among the main works one may cite Franca and
Stenberg (1991), who give a first GLS formulation for Stokes flows in three fields; Behr ef al. (1993), who extend the
former formulation to inertial flows; and Bonvin et al. (2001), who present two GLS formulations for equal-order
triangular elements in two dimensional flows.

In this study, we employ a GLS three-field formulation which is based on the stabilized formulations of Behr et al.
(1993) and Bonvin et al. (2001). We have incorporated features of both works to come up with a GLS three-field
formulation for isochoric generalized Newtonian flows. It is important to notice that, for flows of pseudoplastic fluids,
even if the global Reynolds number of the flow, calculated usually with the fluid’s zero-shear-rate viscosity, is low, the
asymmetric inertial operator may be locally important in the flows regions where the shear rates are high. Such thing
happens because in these regions the viscosity may decrease much, and the advective transport of momentum becomes
dominant comparing to the diffusive one. So, for pseudoplastic flows, the stabilization of the advective operator is
necessary even for mild Reynolds flows. In addition, the implementation of such formulation for the approximation of
non-swirling axisymmetric flows is an innovation. We present some preliminary numerical tests for this formulation
which showed good stability features and comprehensive results for lid-driven cavity flows, validating our finite
element code for planar flows. For the axisymmetric case, we employ both a Newtonian constant viscosity and a
viscosity function given by the Carreau model, which predicts pseudoplastic behavior to approximate flows through an
axisymmetric contraction. Besides the features of convergence and stability of the GLS approximations, we find good
agreement between our results and those from literature. We investigate the role of Carreau's equation parameters and
Reynolds number in the flow dynamics near the contraction, interpreting the differences between velocity profiles
generated by each fluid with the aid of the extra stress tensor fields, which are computed directly in this formulation.

2. Mechanical model

The mechanical modeling presented herein concerns a material body /4 for which flow is defined by the triple

velocity, mass density and stress tensor fields, (v, p, T), and the associated system of contact and body forces, (t(n), f).
Principle of Mass Conservation: The mass of a mechanical body 4 does not change with time: Mathematically, this
primer principle may be stated as

d
— | pdV =0 1
dtip (1)

where p is the mass density, Zis a part of a configuration 4 of the body & at the time ¢. Applying Reynolds transport

theorem (Gurtin, 1981) to Eq.(1), and assuming an incompressible fluid model, i.e., constant p, a variational principle
for isochoric motion may be derived:

jqdivvdV:O Vgel(5) )
7

where v denotes a virtual velocity field of the flow, and L*(Z), accounts for the functional space of the pressure field.
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Principle of Power Expended (Gurtin, 1981): This major dynamic principle is equivalent to the laws of conservation
of momentum, formulated in a variational sense. It asserts that, for any part 2 with H'(&)" denoting the space of

virtual velocities associated to 4, the power expended on Pby external body forces f and surface forces t(n) is equal to
the stress power plus the rate of change of kinetic energy:

_ . . 1 nsd
jppf-vdV+Lpt(n)-vdA—LT DdV+jppv vdV VveH (5) 3)

where D is the strain rate tensor, and T stands for a second-order symmetric tensor, the stress tensor. The first term on
the right side of Eq. (3) accounts for the stress power, i.e., the power expended due to the work of internal contact
forces, and the second is the rate of change of kinetic energy.

3. Material Behavior

Although Cauchy theorem (Gurtin, 1981) describes the form of contact forces for any continuous body, the way in
which materials deform or flow when submitted to any dynamic condition is not stated by this theorem. Besides, the
behavior of continuous bodies submitted to arbitrary conditions differs drastically, due to the material dependent
relation between contact forces within the body upon its motion and deformation. This relation is described by the
rheological constitutive equations, which are mathematical models for the stress tensor, T. These equations are
constructed in order to obey certain axiomatic principles (Astarita and Marrucci, 1974): determinism, local action and
frame indifference. A functional dependence of T with the strain rate tensor, D, is acceptable in view that this could
represent a frame indifferent model, as D is frame indifferent (Gurtin, 1981). The most general linear relation between
T and D tensors may be given as the following isotropic function:

T=(-P+adivv)l+2uD )

where u is the fluid viscosity and the parameter @ is related to the scalar function x, called bulk coefficient of
viscosity. For an incompressible fluid, the divergence of the velocity field is null, and Eq. (4) may be written as function
of a mean pressure, p, the mean of the normal components of T, as:

T=-pl+2uD=-pl+1 (5)

where 7 is the extra-stress tensor.

The practically observed phenomena of shear-thinning, viscoplasticity and shear-thickening in pure shear flows
give rise to the construction of the generalized Newtonian models (Bird ef al., 1987). These models apply the empirical
viscosity functions which fit the behavior stress versus strain rate in viscometric flows for modeling the stress tensor.
They maintain the mathematical structure of a Newtonian fluid, in the form that 4=n(y ), being the non-Newtonian

viscosity of the fluid, which is a function of the strain rate, y . For flows in general, y is defined as a Frobenius norm
of D:

y=(Q2I,)" =2uD*)" (6)

An example of an empirical model for the viscosity is the Carreau model (Bird et al., 1987), employed to model the
behavior of pseudoplastic fluids. This model is given by the following constitutive equation:

77(7) —1 _ I:l + (ﬂ}/)Z :|% 7
o =1

The Reynolds number for a generalized Newtonian fluid may be defined, for a general characteristic viscosity, 7.,
which depends on the model employed, as follows,

_ pLu,
e

Re ®)

in which L and u are the characteristic length and velocity of the flow. Note that for the Newtonian model 7. = z.

For viscoelastic fluids, i.e., fluids with memory, the most common models are the differential constitutive equations
(Astarita and Marrucci, 1974; Bird et al., 1987). In general, they are given as functions of the objective derivatives
(Astarita and Marrucci) of the extra stress tensor, in order to maintain the necessary feature of frame indifference.
Among these viscoelastic models, two are of great importance in numerical simulation of non-Newtonian flows, due to
their widespread employment: the Maxwell-B and the Oldroyd-B models, given as:
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\% v
T+ At =2(y D+, D) 9)

where A and g are the material functions for these models, with =0 for the Maxwell-B model. The symbol V
represents the upper convected derivative of the respective variable. In numerical approximations, the Oldroyd-B
constitutive equation (Eq. (9)) is sometimes decomposed in the following form (Crochet and Keunings, 1982):

T=1+1,

v
T, +A41=2uD (10)
T, =2/,D

Thus, the model is viewed as the sum of an elastic (1;) portion of T and a viscous and one (7;).

4. Multi-field finite element formulations

The formulation that we are about to present assumes problems defined on a bounded domain Q — R™“**, with a
polygonal or polyhedral boundary I', formed by the union of I',, where Dirichlet conditions are imposed, and I,
subjected to Neumann boundary conditions. As usual, L*(Q), L,A(Q), H'(Q), Hy'(Q) stand for Hilbert and Sobolev
functional spaces (Ciarlet, 1978). Finally, || , ||, denotes the L*(©2) norm and || , |lo.x the L*(Q) one.

Multi-field formulations are those that employ as primal variables, besides the usual velocity (u) and pressure (p),
any of the fields of extra stress (1), strain rate (D) or velocity gradient (grad u). In this section we make some basic
comments on mixed multi-field formulations for isochoric flows and also present the stabilized formulation employed
in this study. We use the following notation: C; is a partition of the closed domain Q into elements, R; denote the
polynomial spaces of degree k , and ( - , - ) represents the L* inner product (Ciarlet, 1978).

The Galerkin formulation for the isochoric flow of a Newtonian fluid may be stated as: given f, find the triple (1",
P u")eW" x P' x V" such as:

Bl(rhsph,uh;saq3v):FI(Saq3v)’ (S’q’v)ewhxvhxph (11)

where

B/ (t,p,u;S,q,v) :i(‘r, S)—(D(u),S)+ p([gradulu, v) + (p,divv) — (1,D(v)) + (divu, q)

(12)
F(S,q,v)=—(f.,v)
introducing the finite element subspaces:
P'={qeC'(QNL(Q) gy € R(K),KeC,}
V' ={veH(Q)"™ Vi €R, (K)*",K eC,} (13)

W' ={S e C'(Q)"" ™ NI~

S; =S,si=1..,nsd|S, € R(K)"" K eC,}

In the context of the Stokes problem, i.e., when the inertial term is negligible, Franca and Stenberg (1991) proposed a
GLS formulation which is stable for any combinations of finite elements. They established the convergence and
stability lemmas for such formulation. Behr ef al. (1993) improved these results presenting a stabilized formulation very
similar to this former, but also incorporating the inertia terms which had been neglected by Franca and Stenberg (1991).
Behr et al. (1993) used a design of the stability parameter which incorporates the local Reynolds number and the mesh
size parameter /i, as in Franca and Frey (1992).

A mixed formulation which is largely employed (Baaijens, 1998) is the one based on a linear version of the
Oldroyd-B model, using the split of Eq. (10). The model is linear in view that the parameter A; in Eq. (10) is null. The
Galerkin finite element formulation for such model is given as: find the triple (t,", p", u")e W" x P x V" such as

B, (1], p"u";8,q,v)=F,(S,q,V), (S,q,v)e W' xP"'xV" (14)

with



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006 — Paper CIT06-0281

B, (1), p,u;8,4,v) =2L(T1 »8)=(D(u),S) + p([grad u]u, v) + 277, (D(u), D(V)) + (7, D(V)) = (p,div v) + (divu, )

F2 (Ss q, V) = _(fs V)
(15)

Bonvin ez al. (2001) prove uniqueness and existence of the problem of Eq. (14), neglecting the inertial term (o = 0).
They also establish the stability lemma for the finite element formulation, which depends on two compatibility
conditions, one between the finite element subspaces of stress and velocity, and other between the subspaces of velocity
and pressure. The former is the classical Babuska-Brezzi condition for the Stokes problem. Bonvin et al. (2001) derive
Galerkin least-squares methods that circumvent those compatibility conditions, adding terms to the forms B, and F3,
which correspond to the least squares forms of the residual equations. These formulation is valid for equal-order
triangular elements.

In this study, we employed a GLS formulation based on the Galerkin scheme of Eq. (14), based on the stabilized
formulations of Behr et al. (1993) and Bonvin ez al. (2001): Find the triple (t,", p", u") € W' x P* x V" such as:

B¢ (‘rf,ph,uh;S,q, V)=F;(S,q,v) ¥V (S,q,V) € W' x P"x V" (16)
where

Bes (T, pow;S,q,v)= B, (1, p,w;S,q,v) + D, 7(Re, )([graduu— 27, divD(u) +grad p—divT,,

KeC,

[grad v]u -2, divD(v)+ gradg —divS), + 27,5 (% T, - D(u),zLS - D(V)J (17)
n

P P

F(8,0,V)gss = F(8.q.v)+ Y, 7(Re, )E, [grad viu—27, divD(v) + gradg — divS),

KeC,

where 7(Reg) is the stability parameter, given as suggested by Franca and Frey (1992) and Behr ef al. (1993):

h
t(Rey) = ﬁf(ReK)

£(Re.) Re,,0< Re, <1
e =
711, Rep 11
_mk|u|wh,(
Cx ="
4n,(7)/ p
m, =min{1/3,2C, }

2, < ¢ Il
K

(18)

REMARK 1: The differences between our formulation (Eq. (16)) and the formulation of Behr ef al. (1993) are that
ours represents a truly Galerkin least-squares formulation, in the sense that the stabilizing terms are added as the least
squares forms of the residual equations; and that the term containing the solvent viscosity 7, is also present. The
differences between the formulation of Bonvin et. al. (2001) and ours are the design of the stability parameter and that
our formulation also accounts for inertia effects. In addition, this formulation is designed to circumvent the
compatibility conditions between all functional subspaces even for quadrilateral elements, allowing the use of
structured meshes.

REMARK 2: In this paper we give emphasis to the case of non-swirling axisymmetric flows. The geometric models
are made in a two-dimensional manner. The Cartesian components of the frame of reference are x;, the axial
component, and x,, the radial component. Symmetry in the angular direction of x; is assumed, so that all velocity and
body force components in this direction are null, and so are all the derivatives of velocity, pressure and forces.
Nevertheless, the third normal component of the stress and strain rate tensors may not be assumed as nulls. Being so, in
two-dimensional planar problems there are six degrees of freedom per node, namely u,, u,, p, 71, 711 and 7, and in
axisymmetric problems they are seven: uy, uy, p, 712, 711, 72 and zi3.

5. Numerical results

We implemented the formulation of Eq. (16) in the finite element code named FEM, developed by our laboratory
group. We present some results for 2-D isochoric flows which were obtained using meshes of quadrilateral bilinear
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elements for all variables (Q,/Q,/Q; - T;-p-u). We have also obtained similar results for the combinations of elements
Q,/Q1/Q, and Q,/Q,/Q,, which are not shown here. To solve the resulting algebraic system of equation, we have
implemented a Newton-based method (Dalquist and Bjorck, 1969).

5.1. Newtonian flow in a square lid-driven cavity
In this section, we present the results obtained with formulation of Eq. (16) for Newtonian flow in a lid-driven

cavity flow (see Fig. 1 for the problem statement), using a 40x40 mesh, which the problem statement is given as in Fig.

1(a).

L 1
Figure 1. Problem statement for the lid-driven cavity.

We tested three different cases: Stokes flow where the Newtonian viscosity was split in two parts, 77,=7,=0.5; flows
with inertia 73,>7,; flows with inertia with 7,=0. For the first two cases, the results were compared to those of Behr et
al. (1993) and they were found to be in agreement (Zinani and Frey, 2005). The third case was deeply investigate in
order to validate our FEM code. The Reynolds number was calculated with the constant viscosity 7=

Reynolds numbers from 1 to 1000 were approximated. Here we show some results for Re=1, Re=100 and Re=400.
These results are compared with some authors: Ghia et al. (1982), Screiber and Keller (1983), Ku and Hatziavramidis
(1985), Sivaloganathan and Shaw (1988), Jurjevic (1999), for the horizontal velocity and pressure profiles in the line
x1=0.5L and for the eye of vortex position. For all Reynolds number the fields of extra-stress, pressure and velocity
were stable and physically comprehensive, as depicted in Figure 2.

(©) (e)

Figure 2. (a) pressure elevation, (b) contours of 7j,, (¢) contours of 7, (d) contours of 7, (e) streamlines
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Figure 3 shows our results of the horizontal velocity #; versus x, in x,=0.5L, for Re=1 and Re=400, comparing
these results with the literature.

Re=1

08 =

0.6
[ J T U W SRS SO USRS SRR N s 1 O SUSRUSURPNU 1 SN SO SRR SRR SRR
02 _. O SN S S
+ Jurjevic + Ghia et al.
04 : i —CI-;LSt-p-u Uy i —GILSl—p-u i,
-0.5 -0.25 o] 0.25 0.5 0.75 1 -0.5 -0.25 ] 0.25 05 0.75 1

(a) (b)
Figure 3. Horizontal velocity versus position in x, (a) Re=1, (b) Re=400.

In Tab. 1 we compare the eye of the vortex position with results found in literature, for Re=100 and Re=400.

Table 1. Eye of the vortex position

Re Reference X X

100 Screiber and Keller, 1983 0.61667 0.74167
Ku and Hatziavramidis, 1985 0.62109 0.73752
Sivaloganathan and Shaw, 1988 0.61 0.73
FELAB t-p-u GLS 0.618 0.736

400 Ku and Hatziavramidis, 1985 0.55463 0.60415
Sivaloganathan and Shaw, 1988 0.56 0.61
Jurjevic, 1999 0.564 0.6055
FELAB 1-p-u GLS 0.561 0.605

All the numerical results for the lid-driven cavity Newtonian flow agreed with the literature not differing plus than
1% in all cases investigated.

5.2. Pseudoplastic flow through a sudden axisymmetric contraction

In this section we present results for Newtonian and non-Newtonian flows trough an axisymmetric 4:1 sudden
contraction. We employed the same Galerkin Least-Squares formulation from Eq. (16), developed in a cylindrical
coordinate system with null angular velocity and null gradients in the angular direction. The characteristic length of the
problem is the outflow’s diameter, L=D,, the characteristic velocity is the outflow mean velocity, uy, and the
characteristic viscosity is 77, for non-Newtonian flows and y for Newtonian flows. The solvent viscosity 7; is set as zero
for all cases. The polymeric viscosity function used to predict fluid’s shear thinning was the Carreau model (Eq. (7)),
for which we varied the parameters A, n and 7, setting 77,,=0. The problem statement is given as in Fig. 4, we use only
half of problem’s actual domain to build the geometric model.
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X,=
D,/2 Suj16
° Uy y
B S sy =L

?

Figure 4. Problem statement: flow through an axisymmetric contraction

We based our investigation in the paper of Kim et al. (1983). In this paper, a dimensionless Carreau number, Cu, is
defined in order to accomplish for the effects of varying the parameter A:

Au,

Cu=
D, /2

(19)

Kim et al. (1983) investigate the flows of Carreau fluid for very low Reynolds numbers, Re=0 to Re=2. In this
paper we extend this investigation to a grater range of Re, varying it from Re=0 to Re=10. The Carreau numbers tested
were Cu=0.01, Cu=1 and Cu=100, the former predicting the most pseudoplastic behavior because the viscosity shear-
thins at lower levels of shear rates. The parameter n tested were n=0 (Newtonian), n=0.4 and n=0.2, where the former is
the most pseudoplastic one. A mesh dependency analysis was performed over four meshes, comprised of 1934 to 6266
elements. The results were found to be mesh independent for any mesh from 4368 elements, and the results presented
herein correspond to that 4368 finite element mesh, with 4653. In following figures, the components of the frame of
reference are dimensionless as: r*:xz/DO and xl*:xl/DO.

Figure 5 deals with the Carreau fluids with 5.(a) Cu=10, n=0.2 and 5.(b) Cu=100, »=0.2, both with Re=2. We show
the contours of u;", where u; =u,/ug, superposed by the flow streamlines. The differences between the axial velocity
fields are easily perceived: for lower Cu, this field is similar to that of a Newtonian fluid, in which the axial velocity
increases quadratically with the distance from the wall, and experiments a smooth acceleration in the contraction. For
the high Cu flow, axial velocity gradients occur close to the walls, and are almost null in the symmetry line,
characterizing the flat velocity profile typically pseudoplastic. In the contraction, advective acceleration happens more
harshly, because high deformation rates reduce the viscosity in this region and allow the quick acceleration of the fluid.
The streamlines show that, for the low Cu, a mild recirculation appears in the contraction corner, as in Newtonian low
Reynolds number flows. For the high Cu the recirculation does not occur, the behavior is similar to high Reynolds
number Newtonian flows.

Figure 6 and shows the contours for the component 77, (dimensionless as 72 —( rlzL)/uO) of the extra-stress tensor
obtained as a variable of the numerical problem. Figure 7 shows the field of uz , where u, —uz/uo One may notice the
lower values of 71, and higher values of u, in the contraction are obtained for the most pseudoplastic flows, due to the
low viscosity that appear in regions of high deformation rates, reducing considerably the resistance to flow. High
deformation rates in the contraction promote a great viscosity thinning near to the its corner, and high viscosity
gradients in the same place, which may even compromise numerical stability locally, but not compromising the global
results. In Fig. 8 we depict the dimensionless viscosity fields, 77°=7/7,, obtained for those cases. These fields showed
the expected features of low viscosity in the high strain rate regions, close to the walls of the most narrow duct, with
such features being more pronounced in the high Cu flow.

(a) " (b)
Figure 5: Axial velocity contours and streamlines, Re=2, (a) Cu=10, n=0.2 and (b) Cu=100, »=0.2.
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Figure 6: Shear component of the extra stress tensor, Re=2, (a) Cu=10, n=0.2 and (b) Cu=100, n=0.2.
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Figure 7: Radial velocity contours and streamlines, Re=2, (a) Cu=10, »=0.2 and (b) Cu=100, n=0.2.
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Figure 8: Viscosity contours, Re=2, (a) Cu=10, »=0.2 and (b) Cu=100, n=0.2.

In the following graphics we investigate the effects of inertia, through the Reynolds number, and the fluid’s
material behavior, through the Carreau number, in the flow dynamics.

In Fig. 9 we investigate the axial velocity profile in the contraction plane. In Fig. 9.(a) we investigate different
Carreau numbers for the same n=0.2 and Re=2, plotting this profile for Cu=0 (Newtonian), Cu=10 and Cu=100. In Fig.
9.(b) we investigate different n for the same Cu=100 and Re=2, n=0 (Newtonian), n=0.2 and n=0.4. In both cases we
observe that the most shear-thinning fluid tend to form a more flattened profile. In Fig. 9.(c) we investigate different
Reynolds number for Cu=100 and n=0.2, Re=0, Re=2, and Re=10. We observe that, as for Newtonian flows, the
increase of the Reynolds number tends to flatten the velocity profile. The tendency of a non-centerline maximum
velocity may be seen in the high Reynolds flow (Re=10).
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Figure 9. Axial velocity profile in the contraction.
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In Fig. 10 we investigate the axial velocity profile in the symmetry line along the domain, for the same cases as
above: Fig. 10.(a) n=0.2 and Re=2, Fig. 10.(b) Cu=100 and Re=2, Fig. 10.(c) Cu=100 and »=0.2. We observe that
pseudoplasticity decreases the value of the centerline axial velocity. This is understood when we remember the flattened
velocity profile that occurs due to shear-thinning, different from the parabolic profile of Newtonian flows. Although,
when comparing pseudoplastic fluids with the same Cu and 7, in part (c), we notice that the Reynolds number does not
have much influence on the value of the centerline velocity, which was expected due to the velocity profile depends
only on the fluids parameters.
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Figure 10. Axial velocity profile in the symmetry line.

In Fig. 11 we investigate the pressure drop in the symmetry line along the domain, for similar cases as above: Fig.
11.(a) n=0.2 and Re=2, Fig. 11.(b) Cu=100 and Re=2, Fig. 11.(c) Cu=100 and #»=0.2. In part (a), we may observe the
pressure levels of different orders of magnitude when comparing pseudoplastic to Newtonian flows. Pseudoplasticity
reduces the total pressure drop. Another interesting feature is that the slope of the pseudoplastic curves differ much
from the Newtonian in the region downstream the contraction, i.e., where deformation by shear is more severe and
shear-thinning is more pronounced. The pressure drop in the region upstream the contraction is very similar for
Newtonian and pseudoplastic fluids, because in this region the Carreau number is locally small (remember that the
Carreau number was defined using the velocity and lengths from the most narrow duct). In part (b) the pressure drops
for the high Cu fluids are shown, and we observe that the levels of pressure fall much lower than the Newtonian fluid
flowing with Re=2, and that they are even lower for the most shear-thinning fluid, with »=0.2. In part (c) the total
pressure drop is compared for two equally pseudoplastic fluids flowing with different Reynolds numbers, showing that
the increase of Re reduces the pressure drop as expected and similarly to Newtonian flows.
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Figure 11. Pressure profile in the symmetry line.

6. Final remarks

We have presented some comprehensive results for Newtonian and generalized Newtonian flows using a three-field
finite element formulation stabilized by a GLS scheme. We employed that formulation to approximate non-swirling
flows in an axisymmetric domain. We used equal-order finite elements, which were able to circumvent the Babuska-
Brezzi conditions required in the classical Galerkin method. We studied the features of pseudoplastic fluids flowing
through an axisymmetric contraction, investigating the effects of shear-thinning in the flow dynamics. We found that
the main effects that occur due to viscosity reduction are the flattening of the axial velocity profile in the contraction
plane and the friction decrease, features that may be accomplished by increasing the Reynolds or Carreau numbers, or
by decreasing the n parameter in the fluid model. This study is still in progress and we intend to proceed on
investigations in the mathematical analysis of the formulation presented, and in the extension of this GLS formulation
to non-linear viscoelastic models as Maxwell-B and Oldroyd-B.
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