
Proceedings of the 11th Brazilian Congress of Thermal Sciences and Engineering -- ENCIT 2006 
Braz. Soc. of Mechanical Sciences and Engineering -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006 
 

Paper CIT06-0256 
 
A GENERALIZED FORMULATION FOR THE FALKNER SKAN 
EQUATION 
 
Jerson Rogério Pinheiro Vaz 
Universidade Federal do Pará – Departamento de Engenharia de Materiais 
Folha 17, Qd 04, Lote Especial, Nova Marabá, Marabá, PA, Brasil – 68505-080 
jerson@ufpa.br 
 
Daniel Onofre de Almeida Cruz 
Universidade Federal do Pará – Departamento de Engenharia Mecânica 
Av. Augusto Correa, s/n - Belém, PA, Brasil – 66075-900 
doac@ufpa.br 
 
João Tavares Pinho 
Universidade Federal do Pará – Departamento de Engenharia Elétrica 
Av. Augusto Correa, s/n - Belém, PA, Brasil – 66075-900 
jtpinho@ufpa.br 
 
Abstract. The Falkne-Skan similar equation represents one of the greatest successes of the boundary layer theory for 
the laminar flow case. The domain of validity of this equation, however, is restricted to the region far from the leading 
edge and to very small pressure gradients. 

In the present work a generalized formulation of the boundary layer theory is used to derive  an extended 
version of the Falkner-Skan equation. This generalized Falkner-Skan equation (GFS) is given by a quasi-similar 
equation, which incorporates the stream wise coordinate non-similar information, but keeping the ordinary differential 
equation characteristic. It is shown that the GFS can be used to describe the flow for  Reynolds numbers as low as one,  
and for strong  adverse  pressure gradients. 
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1. Introduction 
 

The Falkner-Skan equation constitutes one of the classical results of the Prandt’s boundary layer theory. The 
variety of applications and the importance of the Falkner-Skan equation for the understanding of the physical features 
of the laminar flow, submitted to an strong favorable pressure gradient, have motivate many recent  works, most related 
to the numerical nature of it’s solution (Schlichting, 1972). 

Being a direct consequence of the classical boundary layer theory, the FSE has a restricted domain of validity. That 
limitation does not permit the description of the separated flow or the flow near the leading edge (1<Rex<1000) using 
the similarity FSE approach. The above mentioned restriction can be overcome if a more general boundary layer 
formulation is used to derive an extended version of the FSE. 

In the present work the generalized boundary layer theory is used to obtain a expanded formulation of the FSE. The 
procedure is similar to one used for the deduction of the classical FSE. After the introduction of a set of similar 
variables into the generalized boundary layer equation, a quasi-similar equation is obtained. That equation contains the 
classical FSE as a particular case. 

The new generalized Falkner-Skan equation is numerically solved and the results show that the domain of validity 
of the GFSE can be extended not only to the near leading edge region, but also to the separating flow region. This fact 
represents a great advantage over the FSE, since the last is not valid for large adverse pressure gradients, witch causes 
the flow separation. The GFSE is used to correlated the laminar separation point of diffusers, to the imposed pressure 
gradient (or the diverging angle of the diffuser), indicating that the GFSE can be used as a non expensive  simple tool 
for the project of industrial equipment. 
 
2. The Generalized Boundary Layer Equation 
 

The concept of  Kaplun limits (1967)  is used to determinate the asymptotic behavior of the Navier-Stokes equation 
as Re→ ∞. The necessary mathematical framework to obtain the high Reynolds number asymptotic behavior of the 
Navier-Stokes is exhaustively discussed in Cruz (2002) and Silva Freire (1999) here just some of the principal steps are 
presented. For a laminar incompressible, stationary and two-dimensional flow of a newtonian fluid the continuity and 
the momentum equations can be written as follows: 
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In the above equations the variables are made non-dimensional using a characteristic length and a characteristic 

velocity of the flow. The parameters u and v represent the non-dimensional velocities on the x and y directions 
respectively and P is the non-dimensional pressure.  

The parameter Re represents the Reynolds number which is assumed to be large i.e. (1/Re<<1)  
The intermediate variables ere defined as: 
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The insertion of Eq. (4) and (5) into Eq. (1), (2) and (3) results in: 
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Applying the η-limit onto Eq. (7) and (8) respectively, it is obtained: 
For the momentum equation on x-direction: 
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For the momentum equation in the y-direction: 
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In each of the above two sets of differential Eq. (9) to (12) and (13) to (14) there is only one main equation  

according to Kaplun’s definition. Equation (11) represents the main equation for the x momentum equation and Eq. (13) 
is the main equation for the y momentum equation. It should be noted that the terminology "main", is related to the fact 
that the above mentioned equations exhibit some specific characteristics. In both cases, the Eq. (11) and (13) contains 
the other equations and are not contained by any other of the remaining expressions (Cruz, 2002). This fact indicates 
that in the limit as Re→ ∞ the behavior Navier-Stokes equations is adequately described by the following set of 
equations 
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The Eq. (15) to (16) represent a generalized form of the boundary layer theory which combines the Euler inviscid 

flow equations and the Prandtl classical boundary layer formulation into a single and more widespread formulation. 
 
3. Flow past a wedge and the quasi-similar Falkner-Skan equation 
 

The classical approach to describe the flow past a wedge problem consists of the use of the Falkner-Skan equation, 
and its solutions were investigated in detail by Hartree (1937). An important characteristic of that equation, corresponds 
to the fact that the potential flow is proportional to a power of the length coordinate measured from the stagnation point, 
i. e. for 
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The transformation of the independents variables y and x, which leads to an ordinary equations, is: 

 
( ) ( ) 1

1 2
1 1

2 2

mm m uUy y x
x

η
ν ν

−+ +
= =%  (19) 

 
The stream function and the velocity components are: 
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Introduction these values into the equation of motion (16) and dividing by 2 1

1
mmu x − , it is obtained: 
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Using the stream function and of the Eq. (15) to (17) can be rewritten and the resulting transformed equation is 

obtained: 
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Where, 
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Where η∞% represents a value of η assumed to be far enough of the solid wall and Rex  is the local Reynolds number. 
The local Reynolds number represents the non dimensional distance from the leading edge 

Equation (25) must be solved according to the following boundary conditions: 
 
( )0' 0, 0F ξ =  (28) 

( )00, 0F ξ =  (29) 

( )0' , 1F η ξ∞ =%  (30) 

( )0'' , 0F η ξ∞ =%  (31) 
 
4. Results 
 

Figures 1 to 5 show the velocity profiles obtained from the solution of Eq. (25), for various values of the local 
Reynolds number. Near the leading edge the results clearly show the overshot of the velocity profiles near the wall, this 
phenomenon is caused by the abrupt change of the velocity form the undisturbed free stream flow to the flow submitted 
to the no slip condition. It is important to note that the classical boundary layer theory cannot predict the flow near the 
leading edge since, the momentum equation perpendicular to the solid surface is not considered in the theory. It is also 
important to mention that far from the leading edge, the velocity profile assumes the classical FSE shape. It can be show 
that Eq (25) contains the FSE as a particular case in the limit as Rex →∞  as show below: 
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Resulting 
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Integrating the Eq. (32), 
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Where C  is the integration constant. The boundary conditions (28) to (29), furnishes C β= . The FSE can now be 
obtained as follows:  
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Figure 1 – The nondimensional velocity profiles assumes the classical FSE shape in the limit as Rex →∞ . In this case, 
result for 9Re 10x = . 

 
The boundary layer flow subjected an adverse pressure gradient are presented in Fig. (2) and (3). Figure (3) show 

the FSE limiting case (m = -0.091) it is clear that the present formulation can predict the whole flow region. An 
interesting feature of the present formulation can be observed in Fig. (2), it is show that the Eq. (25) can adequately 
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predict the flow submitted to an adverse pressure gradient that can cause flow separation. This fact is possible due to the 
quasi-similar character of the proposed Eq. (25) that permits a changeable velocity profile witch  can take into account 
not only the effects of the leading edge but also the influence of the strong pressure gradients and/or separation. 
Equation (25) can easily be used to determinate the separation point of a diffuser and to calculate its shape for 
engineering ends. 

 

 
 

Figure 2 – Nondimensional velocity  profiles, result for m = -0.1. 
 
 
 
 
 
 
 
 
 

 
 

Figure 3 – Nondimensional velocity  profiles, Result for m = -0.091. 
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Figure 4 – Nondimensional velocity  profiles, Result for m = 0.0. 
 
 
 
 
 
 
 
 
 

 
 

Figure 5 – Nondimensional velocity  profiles, Result for m = 0.1. 
 
5. Conclusion 
 

In this work the asymptotic behavior of the Navier-Stokes equation was analyzed using the Kaplun limits-
intermediate variable technique. A set of partial differential equations was obtained, which represents a generalization 
of the classical Boundary Layer Theory. The equations developed here represent a self contained theory, making 
unnecessary any type of viscid-inviscid interactive process. A quasi-similar equation for the flow over a flat plate was 
developed witch contains the Falner-Skan formulation as a particular case. A numerical solution of the quasi-similar 
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equation was presented, showing some characteristics behaviors of the numerical solutions of the Navier-Stokes 
equation for the flow over a flat plat and other geometries. 

The deduction of the equations set (15) to (17) is the central result of the present work. The Kaplun limits 
approach was used to determine the asymptotic behavior of a set of partial differential equations, resulting in a 
generalized Boundary Layer formulation. 

The main difference between the classical Boundary Layer formulation and the approach used here is that in 
the later, the central focus of the analysis is to describe the near wall asymptotic behavior of the flow and not exactly, 
the asymptotic behavior of  Navier Stokes equation, at the fluid region as a whole. The use of Kaplun limits permitted 
to obtain the principal asymptotic equation for each component of the velocity and to compose a “principal set” set of 
equations witch are in fact, the combination of two well known formulations (the nonlinear inviscid flow and the 
Boundary Layer) into a single more general theory, witch describes the asymptotic solution of the Navier-Stoke 
equations for the entire flow region. 
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