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Abstract. In microhydrodynamics we are interested in solving flow problems in micro geometries, e.g., in porous
media and micro heat pipes, where the fluid flow is frequently conditioned by surface forces and surface phenomena,
such as in capillary flows, coalescence and surface break-off. In micro flows, the interaction forces at the fluid-
fluid and fluid-solid interfaces play an important role in the description of the fluid flow. These forces are from a
molecular origin and the translation of their effects to our macroscopic scales is a chief problem, considering that
by its multiscale nature these phenomena do not, frequently, have a homogeneization scale. In this work, we present
a mesoscopic method based on discrete models of the Boltzmann equation, which should provide the establishment
of a conceptual bridge between the molecular and the macroscopic domains, in the study of microhydrodynamics.
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1. Introduction

The purpose of this work is to discuss fluid mechanics problems when the spatial scale is very small and
when the hydrodynamic balance equations cannot be closed by the use of simple rules. This is the case of micro
flows, when the interaction forces at the fluid-fluid and fluid-solid interfaces play an important role in their
description, Israelachvili, 1992.

Taking into account that these forces are from a molecular nature, the question to be placed here is how to
translate the description of their effects from the molecular scale to our macroscopic scales, which are several
order of magnitudes larger, considering that by its multiscale nature these phenomena, frequently, do not have
a homogeneization scale.

In this work we present a mesoscopic method based on discrete models of the Boltzmann equation, which
have been developed in very recent years, after 1990 and which should provide the establishment of a conceptual
bridge between the molecular and the macroscopic domains.

Considering the molecular chaos hypothesis, Boltzmann considered a fluid as a mechanical system of particles
with the purpose of demonstrating the irreversibility, a common attribute of classical thermodynamic systems
but a nonsense in classical mechanics. Developed, in its origin, for monoatomic rarefied gases the Boltzmann
equation has received several contributions in the course of the last 130 years by: i) the inclusion of finite volume
effects in the Enskog’s kinetic theory of dense gases, Enskog, 1921 ii) the consideration of the rotational, Lifshitz
and Pitaevskii, 1999, and vibrational degrees of freedom, Wang Chang and Uhlenbeck, 1970, of the modelled
particles, iii) the inclusion of electromagnetic effects in the study of plasmas, Tanenbaum, 1987. Recently, He
and Doolen, 2002, proposed a split of the collision term in two parts for taking the long-range intermolecular
attraction forces into account, in the kinetic description of liquids.

Lattice-Boltzmann models are discrete forms of the Boltzmann equation, when in addition to the discretiza-
tion of time and of the physical space, the velocity space is also discretized, with the peculiarity that after
each time step and following a local collision process the particles are propagated from each site to its next
neighbours. The number of first neighbours to each site is related to the higher order of the kinetic moments
that are to be described, Philippi et al., 2006b.

In addition to the lattice-Boltzmann collision-propagation schemes (LBM) a number of alternative discrete
velocity methods have been appearing in recent years based on finite differences, finite volumes and, more rarely,
on finite elements numerical schemes, but the discussion of these methods is outside the scope of this work.

The lattice-Boltzmann equation (LBE) was introduced by McNamara and Zanetti, 1988, replacing the
Boolean variables in the discrete collision-propagation equations by their ensemble averages. Higuera and
Jimenez, 1989, proposed a linearization of the collision term derived from the Boolean models, recognizing that
this full form was unnecessarily complex when the main purpose was to retrieve the hydrodynamic equations,



with a very few relaxation parameters. Following this line of reasoning, Chen et al., 1991, suggested replacing
the collision term by a single relaxation-time term, followed by Qian et al., 1992, and Chen et al., 1992, who
introduced a model based on the Bhatnagar-Gross and Krook (BGK) collision term (Bhatnagar et al., 1954),
retrieving the correct incompressible Navier-Stokes equations, with third-order non-physical terms in the local
speed, u. In fact, the BGK collision term describes the relaxation of the distribution function to an equilibrium
distribution, but in the above works, this discrete equilibrium distribution was settled by writting it as a second-
order polynomial expansion in the particle-velocity &;, with parameters that were adjusted to retrieve the mass
density, the local velocity and the momentum flux equilibrium moments, which are necessary conditions for
satisfying the Navier-Stokes equations.

In trying to describe non-isothermal full compressible flows, thermal lattice-BGK schemes included higher
order terms in the equilibrium distribution function (Alexander et al., 1993, Chen et al., 1994), requiring to
increase the lattice dimensionality (Alexander et al., 1993, McNamara and Alder, 1993, Chen et al., 1994), i.e.,

the number of vectors in the finite and discrete velocity set {f_;, 1=0,.., b}, but the polynomial expansion form

in the particle-velocity 5:-, with adustable parameters, was retained, the numerical simulations being peformed
on, somewhat, empirically chosen lattices.

In thermal problems, BGK single relaxation time collision term restricts the models to a single Prandtl
number. The full description of fluids and fluid flow requires multiple relaxation time models (MRT). A two-
parameters model was introduced by He et al., 1998, using two sets of distributions for the particles number
density and the thermodynamic internal energy, coupled through a viscous dissipation term and proposed to
be runned with a two-dimensional 9-velocities lattice. Full MRT models were firstly introduced in the LBE
framework by d’Humiéres, 1992, d’Humiéres et al., 2001, by modifying the collision step, considering it to be
given by the relaxation to the equilibrium of a set of non-preserved kinetic moments.

Nevertheless, the presently known lattice-Boltzmann equation (LBE) has not been able to handle realistic
thermal and fully compressible flow problems with satisfaction, since the simulation of the LBE is, frequently,
hampered by numerical instabilities when the local velocity increases, Lallemand and Luo, 2003.

Considering the kinetic nature of the LBE, establishing a formal link between the LBE and the continuous
Boltzmann equation, allowing the conceptual analysis of this discrete numerical scheme, could perhaps shed
some light on this question. Indeed, there are several features that let the lattice Boltzmann regular-lattice based
framework far away from the continuous Boltzmann equation, which would be desirable to be its conceptual
support. These features include the particles model, the collision and long-range interaction models and the
approach used for the time and the velocity space discretization.

With a few exceptions, in all the above works there is no formal link connecting the LBE to the continuous
Boltzmann equation, although the main ideas were based on the kinetic theory fundamentals.

He and Luo, 1997, have directly derived the LBE from the continuous Boltzmann equation for some widely
known lattices by the discretization of the velocity space, using the Gauss-Hermite and Gauss-Radau quadrature.
Unhappily, excluding the above mentioned lattices, the discrete velocity sets obtained by this kind of quadrature
do not generate space-filling lattices.

In a recent paper, Philippi et al., 2006b, the velocity discretization problem was considered as a quadrature
problem with prescribed abcissas, starting from the Boltzmann continuous equation, by requiring the discrete
equilibrium distribution f;? to have the same value of the continuous distribution f¢¢ when evaluated at a
quadrature pole ¢. In this manner, when the order of approximation N of a Hermite polynomial expansion
to the MB equilibrium distribution is chosen, a set \1197(%), 0 =0,..., N, of Hermite polynomials is established,

and the infinite and enumerable basis of the Hilbert space H : ¢? — R, is replaced by a finite set of Hermite
polynomial tensors, restricting the solutions to N*"-degree polynomials in the velocity ¢ The quadrature
problem was, then, considered as to select a regular lattice {¢;}, in such a manner that functions \1191(7«9) preserve
the orthogonality with respect to the inner product in the discrete space. This was shown to be posible to
be accomplished by assuring that the norm of each one of these functions Yo, (r,) 18 retrieved, exactly, in the
discrete space. The number b of the required lattice vectors is proportional to the order N of the polynomial
approximation, b = b(N) and, tt was,formally, shown that the lattice dimensionality is directly related to the
order of approximation of the discrete equilibrium distribution, with respect to the full Maxwell-Boltzmann
distribution and, consequently, to the highest order of the kinetic moments that are to be correctly described.
In addition, it was shown that when the quadrature problem is solved, the 26-rank velocity tensors are isotropic
in the discrete space, for § = 1,...N. Similar results were, almost, simultaneously, obtained by Shan et al., 2006,
although using a different procedure.

An important practical result from Philippi et al., 2006b, was to show that when the space-filling lattices
are built taking lattice-vectors which are integer multiples of the D2Q9 velocity vectors, i.e., the DQ hierarchy,
the 4'" kinetic moments, important in describing the flow of energy, cannot be correctly described.

Although the proposed method in Philippi et al., 2006b leads to MRT collision models, the method has impor-



tant differences with respect to D "Humiéres moments method. In D’Humiéres moments method (d’Humiéres,
1992, d’Humieéres et al., 2001), dispersion equations are used as constraints for the adjustable parameters re-
lated to the short wave-length, non-hydrodynamic, moments and numerical stability is assured by buffering
these higher frequency moments. In Philippi et al. method (Philippi et al., 2006b), non-physical lattice effects
and numerical instability, in the description of higher-order hydrodynamic phenomena, can be only avoided by
increasing the lattice dimensionality, required by the highest order of the kinetic moment to be preserved with
the modelled LBE. The highest order of the kinetic moments possible to be correctly described with the LBE
equation is limited by the number of lattice velocities, Philippi et al., 2006b, and high-order kinetic moments are
not correctly described when all the b-moments in a b-discrete velocities set are considered, as in the moments
method. In fact, in currently produced works dealing with applications of the moments method, e.g. Lallemand
and Luo, 2003, the main worry is numerical stability and not the description of non-isothermal, multicompo-
nent or immiscible fluids flows, which, effectively, require additional relaxation parameters with respect to BGK
models.

In this work, we present the lattice-Boltzmann framework, as a discrete method with its starting point at
the Boltzmann continuous equation. Some important questions are discussed related with the suitability of this
framework to solve non-isothermal, multiphase physical problems in microhydrodynamics.

In fact, although the LBM can be used for solving advection-diffusion problems, instead of the full set of
macroscopic transport equations, which is the basis of classical CFD methods, some questions have been shown
to be important to be answered considering the exciting possibility that is open in building the lattice-Boltzmann
framework as a real bridge connecting the molecular to the macroscopic domain:

i) Collision term: When the particles are considered as material points without long-range interactions
the modelled fluid follows an equation of state for ideal gases, P = ngkT. In this manner the isothermal
compressibility x,. is high and the simulation of incompressible flows are subjected to compressibility effects,
Surmas et al., 2006. In LBM, these compressibility effects are usually avoided by working with small local
velocities, but this restricts the simulations to low Reynolds numbers or requires to increase the number of
lattice sites for high Reynolds number, increasing the computational costs and reducing LBM competitiveness
with respect to conventional CFD methods. Enskog’s collision term, Enskog, 1921, was derived considering the
particles to be rigid spheres with a finite volume and the equation of state was derived as P = ngkT (1 + pby)
where b is related to the particle volume by unity mass and x is a correction factor which can be written in
terms of the mass density p, Chapman and Cowling, 1999. For liquids, the long-range attraction among particles
was considered by He and Doolen, 2002, by splitting the collision term in two parts, the first part related to
short-range interaction and the second one related to long-range interaction. After some simplifications, this
second part was further written in terms of a mean interparticle potential and the equation of state was derived
as a van-der-Waals like equation P = ngkT (1 + pbyx) — ap®.

ii) Collision model. The collision term (2 is dependent on the distribution function itself and, indeed, the
Boltzmann equation is a non-linear integro-differential equation that has been shown to be too difficult to be
solved. Instead of the full collision term, a collision model is required leading to a non-linear partial differential
equation, which can be numerically solved, Philippi et al., 2006a.

iii) Velocity discretization. The distribution function depends on the particles velocity and this requires
the discretization of the velocity space, in addition to the discretization of the physical space. Considering
the required accuracy for a given discrete scheme, the problem is how to find the minimal number of discrete
velocities for that given accuracy (Philippi et al., 2006b, Philippi et al., 2006¢). In the present work, we deal
with the lattice Boltzmann method (LBM) in space-filling lattices where, after each time-step, the particles are
displaced from a given site to their next neighbors.

iv) Boundary conditions. In LBM, the boundary condition are reflection laws for the particle populations,
since macroscopic variables such as velocity and temperature are not accessible as primitive variables. In certain
cases, these boundary conditions can be related to velocity slips and temperature jumps that are difficult to
overcome.

v) Ideal mixtures. Particles with different masses, at a given site, but with the same peculiar kinetic
energy will be displaced to different points after a given time step, reaching intermediate positions between two
contiguous sites and requiring the use of reallocation rules that, localy, preserve mass, momentum and energy.
Interpolation schemes may be the source of numerical instability and alternative modelling strategies may show
to be necessary, Ortiz et al., 2006.

vi) Non ideal mixtures and Immiscible fluids. The electrostatic forces among the molecules produce
the non-ideal behavior of fluids and fluid-mixtures and are at the origin of the phase separation process, when
two immiscible fluids are put in contact, being responsible for the interfacial tension. These forces must be
considered and correctly modelled in LBM.

Topics i), ii), iii), iv) and vi) are treated in some detail in present work.



2. Boltzmann equation as providing an alternative method for solving fluid mechanics problems

The Boltzmann equation can be derived from Liouville’s equation, Cercignani, 1969, by supposing statistical
independence for the 2-particle distribution function, in the limit when the number of particles N— oo, with a
finite value of No2, o being related to the particles diameter, o — 0. It reads

Of +EVf+GVef =, (1)
where 7 is the position, { the particles translational velocity and ¢ the acceleration due to the external forces.

The particles are considered as material points without long-range interaction and the collision term 2 in
Eq. (1) must satisfy

/ QmdE =0, (2)
/ QmédE = 0, (3)

/Q%médg: 0, )

due to the preservation of mass, momentum and kinetic translational energy in collisions. .
In this manner when Eq. (1) is, respectively, multiplied by the mass, m, the momentum m¢ and the energy
%m§2, after some straightforward algebra, the following transport equations are obtained,

Oip + 0o (pua) = 0, (5)
at (pua) + aa (puauﬁ + Péaﬁ + Taﬁ) = PYGa, (6)
Oy (pe) + 0a (peua + go) = —TapOptia — POnua, (7

where pe is the internal energy per unit volume, given, in this case, by

e — / f%m (€- ﬁ)2d§ (8)

The equilibrium solution of the Boltzmann equation, Eq. (1) is the solution of,

Q=0, 9)

which can be shown to be a Maxwellian distribution, f€?.
When this equilibrium distribution is required to satisfy

/feng: g, (10)

/ FRUEAE = i, (1)
[ e -



where ng is the local number density of the particles with mass m, 4 is the local velocity T, the local thermody-
namic temperature, and D, the Euclidean dimension of the physical space, the Maxwell-Boltzmann distribution
is retrieved,

n) e (0"

m ].
2wkT ’ (13)

feq:nd(

and the pressure P is related to the particles number density by the ideal gas law

P = ngkT. (14)

Further, a Chapman-Enskog analysis shows that in the continuous limit, K'n — 0, the viscous stress tensor
is given by

Tap = — 1 (Optia + Datip) + Kdaplatia, 15)

and the heat flow vector by

§d=—»Ve. (16)

In this manner, in the continuous limit, the Boltzmann equation, Eq. (1) gives the correct hydrodynamics for
Newtonian fluids and can be used for solving advection-diffusion problems, instead of the full set of macroscopic
transport equations, Egs. (5-7), which is the basis of classical CFD methods.

Nevertheless, as a mesoscopic method we must consider the possibility that is open in building this framework
not as an alternative numerical method, for solving the advection-diffusion equations, but as a real bridge
connecting the molecular to the macroscopic domain.

In the next section we show some physical problems that require to downscale to be correctly understood.

3. Some physical problems in microhydrodynamics

Consider a capillary- rising problem, when a liquid raises inside a capillary tube against the gravity force,
Figure 1.

Let z4(r,t) be the position of the liquid surface above the free liquid surface and consider the problem of
finding the position =, for any radius r at a time ¢. The question that we want to answer is how to find x4(r,t)
from the solely information of the capillary tube diameter and the liquid wettability on the solid surface - given
by the equilibrium contact angle, in static conditions, when a small liquid drop is put in contact with the surface
of the capillary tube.

This problem has several simplified solutions, but all these solutions are based on an equilibrium contact
angle (Lucas, 1918, Stange et al., 2003, Washburn, 1921, Bosanquet, 1923) which is supposed to be constant
during the rising process.

Furthermore, the exact solution of this problem via the hydrodynamic Eqgs. (5-7) in the Stokes incompressible
limit leads to a velocity singularity in the triple line, Dussan et al., 1991. This singularity is easy to explain,
since at the same time the triple line is responsible for the interface advancement, it must, also, satisfy an
adherence condition of zero velocity at the solid surface.

In fact, the triple-line is not a line, but a transition region of some nanometers among the three phases (in
this case: solid, liquid and gas) and where a liquid molecule is, simultaneously, subjected to the intermolecular
forces from the adjacent liquid molecules - responsible for the liquid surface tension - and to the attractive forces
from the solid surface -related to the work of adhesion between the liquid and the solid.

In this manner, the correct understanding of the capillary-rising problem requires, in principle, the knowledge
of the fine physical structure of the triple-line and to solve a multi-scale problem, where the scales vary from
some nanometers to several micrometers.

For understanding what happens in the triple line, some elementary knowledge of surface physical-chemistry
is needed. Surface tension is responsible for keeping a liquid drop at the end of the overhanging branches of a
three in rainning days, Figure 2. The intermolecular forces among the liquid molecules produce a tension state
at the liquid surface. These forces can be considered as electrostatic forces that depend on the molecular shape,
Figure 3. Asymmetric molecules such as the water molecule have a permanent dipole moment and attract
themselves with polar (or Keesom) forces. The intermolecular forces among symmetric, non-polar, molecules,



triple line

Figure 1: The triple line in capillary rising (from Stange et al., 2003)



Figure 2: The surface tension counteracts the weight of a small liquid drop.

such as the hydrocarbon molecules, are due to the high frequency fluctuations of the geometrical center of
theirs electronic clouds. These forces are called Bond or dispersive forces. When a polar molecule is near a
non-polar molecule, the dipole moment of the polar molecule is subjected to high-frequency fluctuations due to
the electrostatic Debye induction from the non-polar molecule and this interaction produces an attractive force
which is of a dispersive nature. This cross force is frequently weaker when compared to the polar forces among
the polar molecules and to the dispersive forces among identical non-polar molecules. In this manner, polar and
non-polar liquids are, in general, immiscible.

Figure 3: Intermolecular forces are electrostatic forces that are dependent on the molecular shapes.

Fowkes, Fowkes, 1972 has proposed an empirical relationship for the interfacial tension, o4, between a polar
and a non-polar liquid, where the cross mixing force, responsible for the interfacial tension reduction, is related
to the dispersive components of the surface tensions, o, oy, of each fluid through a geometrical average,

Oubp = Ogq + 0p — 2 Uffo'gl. (17)

The main idea behind Fowkes relation is displayed in Figure 4 where the cross mixing force is, in this case,
of a pure dispersive nature.

When two drops of a liquid are close enough they will coalesce. Although the main coalescence driving force is
the result of a collective electrostatic effect among the liquid molecules from both drops, the coalescence process
is still an open problem, since vapor molecules near the contact point have theirs trajectories constrained by
an intensified electrostatic field and, apparently, they preferentially condense on the positions where the liquid
surfaces are closest, contributing to the start-up of coalescence. This picture was, indeed, observed in goniometer
experiments (Figure 5), when two water drops coalesced in despite of their initial separation distance, of about
0.2 mm, was much larger than their electrostatic interaction length, but further theoretical studies are necessary
for a more thorough analysis of this complex process.

When air displaces water inside a capilary channel, a dynamic liquid film forms separating the air phase
from the solid surface. This dynamic liquid film has been studied by several authors including some famous
ones such as Landau and Levich, 1942 and Bretherton, 1961. It has been shown that the average thickness
of this film is dependent on the interface velocity, i.e., on the capillary number. When the air-water interface
reachs very small constrictions of a porous medium, a pressure reduction in the invader phase, can give rise to



dispersive forces

hydrocarbon

Figure 4: Dispersive forces try to mix water and oil.
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Figure 5: Coalescence process between two water-droplets in a goniometer. The two drops coalesce after a
certain time, although they were put at a distance of 0.2 mm, which is much larger than their electrostatic
interaction length.

the growing of the film thickness followed by a coalescence process, breaking off the air phase and producing a
burst of bubbles from the constriction due to the sucessive pressure decay followed by a pressure restoring after
each coalescence process at the constriction. This is pictured in Figure 6.

This dynamical process can be very important in water flooding petroleum extraction, when the extraction
is performed with a high capillary number or when the oil mobility is very low. In heavy oils, the presence of
surfactants that are soluble in oil can give rise to stable emulsions.

In fact, the addition of surfactants that are soluble in the hydrocarbon phase will produce a polar cross
mixing force and a larger decrease in the interfacial tension with respect to Eq. (17), in accordance with

Oab = 0q + 0p — 24/ 0dod — 24 /0hob. (18)

Surfactant molecules such as asphaltens can be pictured as in Figure 7(a), with a long hydrocarbon tail and
a polar head. These molecules will move to the water-oil interface forming a monolayer where the molecule tails
will be oriented toward the hydrocarbon phase, Figure 7(b).

Even when water wets the porous surface, when it displaces a heavy oil inside a porous medium, it is not
able to produce a steady piston displacement, due to the high oil viscosity and water fingers will take form inside
the oil-phase. These fingers are not stable and, in flowing through constrictions, they can break-up forming
water drops, in the same manner as it was pictured in Figure 3. The presence of surfactants that are soluble
in the oil phase, in the water-oil interface, reduces the interfacial tension making the break-up easier and the
surfactant molecules will finish by forming a monolayer around each water droplet, difficulting the coalescence
of these droplets and producing a stable emulsion in the downflow direction, Figure 7(c).

In concluding this section, in spite of its great technological importance and of the growing scientific interest
in microhidrodynamics, the few physical problems that were drawn above give a sample of the great complexity
with which we are faced, when trying to correct understand fluid flows, when the spatial scales are very small
and when the interfacial physics play an important role.

In the next section the Boltzmann equation is presented, considered as a bridge that should enable to link
the microscopic to the macroscopic scales.



Figure 6: Formation of a burst of drops in a small constriction. Courtesy of O. Amyot, Amyot, 2004.
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Figure 7: Surfactants and emulsions



4. Boltzmann equation as a bridge linking the molecular to the macroscopic domains

We first investigate the origins of the Boltzmann equation.

Figure 8 shows a molecular dynamics simulation of a vapor condensation process based on an N-body
simulation of the Newton second law of motion. Each one of the N particles is subjected to a trajectory, in the
physical space, given by the solution of the following equations

d?z;
J
dz; _
= Vi 20
o v (20)

where Z; is the position, 5: the velocity of particle ¢ and Fj; is the force among each i—particle and all the
remaining particles, evaluated by supposing a Lennard-Jones interaction potential among the particles, Surmas,
2006. Particles are spherical with a diameter that is given by the inversion point of the Lennard-Jones potential,
where the attractive forces become repulsive. Each time a particle collide with the container surface, it is reflected
back following a specular reflection and with only a previously established fraction of the kinetic energy it had
before the collision, trying to reproduce a cooling process at the walls. Attractive forces between the wall
container and the particles where not considered for avoiding condensation at the wall surface.

Figure 8: Molecular dynamics simulation of vapor condensation.

The initial state 21, 5_1, ...TN, §N7 t = 0 was randomly set.

We can see that this molecular dynamics simulation gives a good picture of what is to happen in a con-
densation process at the molecular scale, although the analysis was performed on a mechanical deterministic
system of particles, subjected to Newton ’s second law of motion, without any help of thermodynamic concepts
such as thermodynamic energy and entropy.

Nevertheless the results of such analysis is restricted: a) to the very small molecular scales and b) to very
small time scales, considering the limitations imposed by the computer rounding-off error. B

Consider, now our mechanical system of N particles, when several different initial state 71, &1, ...27 ‘N, EN, T =0
are possible. Suppose that the set of all possible initial states is a dense set in the phase-space ¥1,&1,...ZN, &N -
In this case it is impossible to know where a given particle will be at a given time. Let, however,

I (5175,--~5N,5N,t)7 (21)

to be the probability of finding, at time ¢, dt the particle 1 at the position %y, d¥; with velocity 5_1, daﬂ, the
particle 2 at the position Zo, drs with velocity 52, df_; and so on, until particle N at the position Ty, dZn
with velocity 5 N dg ~- The Liouville equation describing the dynamical evolution of this system is given by,
Cercignani, 1969,

O fN + Zgi.aﬁffv + Z X, -0z Y =0, (22)
where Y, is the force acting on particle 1,

10
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)&- = )Zf + Z ﬂij' (23)
Jj=1
VE

Force x¢ is the force on particle i due to an external field and force y,; is the force on particle i due to its
interaction with particle j,

%, = — o) (24)
EICE )
where z;; = |%; — Z;| and ® is assumed to be a central potential depending, only, on the distance between

particles ¢ and j.
Conjoint probability fV can be integrated in the phase space @, &, ...Z N, 5 ~_to give the marginal probability
f* of finding, at time ¢, dt the particle 1 at the position &, dZ; with velocity 51, d§1

ft (fl,gl,t) :/.../defQ...didé...dEN, (25)

considering that the probability fV gives a too detailed description of the system, which is unnecessarily
complexe, since the dynamical evolution of an arbitrary, but, single, particle can be a reliable description of the
whole mechanical system of particles, when these particles cannot be individually labelled.

After integration, considering f = N f! the Liouville equation becomes, for large N,

- 1
0f +E0af + X0 = 0 [ [ Rt (51,6080 Gavt) diady = - x
8‘1) Ilg 5 . -, — - —

O [ [ 5 (70,65, 6t) diady (26)

which is a Boltzmann equation for the distribution function f, with a collision term 2. This collision term has
been split in two collision terms, He and Doolen, 2002, Q = Q°¢ + Q!¢ where Q¢ is referred to short distance
interactions, | — 7] < o and Q!¢ to long range interactions |, — 7] > o.

4.1. Long-range term

Cousider, first, the long-range collision term

// 1 9¢ (" —7)
|7 —7|>¢ T (7?)
x 2 (r,{,rl,fl,t) dydé,. (27)

By making the assumption that, for |} — 7] > o, the molecular chaos prevails, He and Doolen, 2002,

7 (REm&) =7 (REe) £ (7uét) = £, (28)

one obtains,

g _ M3/ o (7% — 1)
|71 —7|>0

1
m o€ or
Xn (’Fl R t) dFl, (29)

The integrand in the above equation is the mean field, i.e., the field exerted by the n molecules placed at
7 — 7, on the molecules at position 7

11



Pm () = ¢ (I =) n (71, 1) diy (30)

I'Fl —’F‘>G’

Cosider n (71,t) to vary slowly with the spatial coordinate,

n(r,t) = n(Ft)+Vn (rfi—7)+
S A (G T (31)

In this case,

Om (7) = —an — #V?n, (32)
where
a=-— ¢ () dZ, (33)
>0
1 5
n=—- ¢ () x2dz, (34)
6 >0

because, ¢ < 0.
With the above hypotheses, the long-range term can thus be written as

Qld — 1 9f (F’g’t)_

o Ven (). (85)

4.2. Short-Range term

After some lengthy algebra, under the molecular chaos hypothesis and supposing that the collisions involve
only a pair of particles, considered as material points, the short-range term collision term can be written as
(Kremer, 2005),

() (26 ) -1 (605 (6)

x gbdbdede; . (36)

This is the original Boltzmann collision term, (Boltzmann, 1866), deduced for material points, where { and
& mean the velocities of, respectively, the target and the incident particles that rescue & and &; after they

collide, g = 51 515 the relative velocity and g = |g], b is an impact parameter related to the point where a
particle, labeled as 1, reachs a spherical surface of radius ¢ around a target particle that moves, at the instant
t, with the velocity § and e is an azimuthal angle in the equatorial plane in the o-sphere that is orthogonal to

& -¢&

Enskog, Enskog, 1921, has, further, developed a collision model more appropriate for liquids, considering
the particles to have a finite volume, since, in a liquid the mean free path has the same order of magnitude than
the molecular diameter and multiple collisions are frequent, writting the collision term as

B /// r+ ak) (F ) (r+al§,§1,t>—

Ve = r—50k> ( 5) (F—UE,&,t)
02§ RdkdE, o

where
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k = (cos6,sin 6 cos e, sin f sin €) (38)

f is a polar angle in the collision plane,

0 = arcsin (g) (39)

and x is an heuristic correction factor introduced by Enskog to take account of the finite volume effects of the
N -
populations f (F, 5’,15) and f (F+ak,§1 ,t).

5. Kinetic models for the collision term in the continuous velocity space

The collision term 2 is dependent on the distribution function itself and, indeed, the Boltzmann equation
is a non-linear integro-differential equation. Instead of the full collision term, a collision model is required
leading to a non-linear partial differential equation, which can be numerically solved. We restrict ourselves to
the collision terms where the particles were considered without volume. The effect of the particle volume on
discrete models, is, presently, still under investigation, He and Doolen, 2002, Surmas et al., 2006.

5.1. BGK collision models

Considering the particles to be material points without volume and admitting the molecular chaos hypothesis,
the collision term {2 in the Boltzmann equation, Eq. (1), was derived by Boltzmann in 1868 for binary collisions
as Eq. (36).

The above hypothesis are only rigorously true for a rarefied gas without long-range attraction among their
molecules. In addition, molecular chaos means that the post-collisional states of any two molecules are uncor-
related. If these hypothesis are accepted to be true, the Boltzmann equation is a non-linear integro-differential
equation, which solution gives the distribution function f(7,¢,t), when the following molecular parameters are
known: a) The molecular mass, m and b) the interaction potential, & (|73 — #]). This means that any ther-
mohydrodynamic problem could, in principle be solved, with solely these molecular informations and with
appropriated boundary conditions. In fact, a Chapman-Enskog analysis of the Boltzmann equation with the
collision term given by Eq. (36) shows that in the limit Kn — 0, all the thermohydrodynamic equations are
retrieved, with transport coefficients that are only dependent on the local physical state and on the above
molecular properties.

Nevertheless, numerically solving this integro-differential equation has revealed to be a very complicated
task. In addition, the full Boltzmann equation has details which are not, apparently, important, when the
main worry is to describe the spatial and time evolution of the first hydrodynamic moments of the distribution
function.

In this manner, consider replacing the collision term by a single relaxation term

eq _
Q= u7 (40)
T
where 7 is a relaxation time.
In spite of its apparent simplicity, Eq. (40) satisfy the main properties Eqs. (2-4) and the Boltzmann
equation with the collision term given by Eq. (40) satisfy the H-theorem. Further, a Chapman-Enskog analysis

shows that the full set of the thermohydrodynamic equations are retrieved with, nevertheless,

3 3
33k per (41)

B == =
2 2 10 3

leading to a non-manageable Prandtl number, due to the linear dependence of the viscosity coefficients and the
thermal conductivity on the single relaxation parameter 7.
5.2. Deriving collision models with increased accuracy

Writting the distribution f = f¢? 4 f7¢4, with f"°? = f°¢, when f is near f®? the short-range collision

term can be written as

13



Q= fHL(9),

where £ is a linear operator, £ : €° — ¢,

(42)

For each point 7 the perturbation ¢ can be developed in terms of the Hermite polynomial tensors \Ilgy(re),

Philippi et al., 2006b, Shan and He, 1998,
(b = Z CLg(TG) (f, t) ‘If‘g)(re) (Cj) ,
0

¢

(43)

and coefficients a, can be related to the macroscopic moments of f. In this way, ag =0, a‘fya = 0. The

coefficient ag op 1s related to the viscous stress tensor 7,3 through

¢ Tap

T200 = 3P

where P = nkT is the thermodynamic pressure.
The peculiar kinetic energy F(Z,t) = pe is given by
. 0 . e,
pe = fam(c—u) dc = feq§m(c—u) de.
In this way
ne 1 2 3~
f q§mC dC =0,
or
nea 1 |
f qngaC’adC = gtr (1) =0.

In two-dimensions

Tox + Tyy = 0,

or
¢ [
a2,ww + a2,yy =0.
For third-order moments
Sapy = /fmcacﬁcydé’: /feqmcacﬁcydé’—i— /f"eqmcacﬁcydé'
eq neq
Saﬁ'v + Saﬁ'y’
with
Selhy = PUatgly + P (0pyUa + daytig + daptiy) -

For the non-equilibrium part,

SZZ? = /fnequaC'gCﬁ,dC_: + (T8yUa + TayUs + Taply) ;

resulting, using afa = 0, the invariance property with respect to index permutation and Eq. (51):

1
P <2kT) 2 f = Sapy { $PUGURU + 5P (6pyta + Gaytip + Oapiy) ]
»aPY 2

- —i—% (Tgvua + TayUp + Taguy)
= qaBy-

When g and ~ are contracted, defining €, to be the total energy flux along the direction «,

1
2T\ 2 1 D
P (—) agaﬁﬁ =€q— [Emﬁua +P (5 + 1) Uq + Taguﬁ] = qa,
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where q,, is the net heat flux along the direction o, i.e., the total energy flux €, excluding the flow of macroscopic
kinetic energy 1pu’uq, the compression work P (£ 4 1) u, and the viscous work 7,us.
Now, using the development, Eq. (43),

L(¢) = Z a?y(m)ﬁ (‘IJG,(re)) . (55)
[

The #-order tensor L (‘I’gy(re)) is, itself, an element of the CP space and can be developed in terms of the
f-order Hermite tensors that belong to the orthogonal basis of this space,

£ (\Ile,m;)) =2 Yoo Yoo (56)
(s0)

where 7(,,).(s,) designate the (1), (s9) components of 26-order relazation tensors. As L is a self-adjoint operator,
with non-positive eigenvalues, Cercignani, 1969,

J e (W, 0) 4

0,(mg)

Virg).(me) — 2 < 0. (57)
—C2 b
J e (W, ,) dC;
Using Einstein’s notation
_ ¢
L(¢) = Z7<re>,<s9)a9,(re)we,<s9)’ (58)
0

where repeated indexes mean summation.

Above equation is an infinite summation on #. When the terms above a chosen order N are diagonalised,
following a Gross-Jackson procedure, Cercignani, 1969,

N 00
Ny ¢ ¢
() = Z7(T9)1(59)a97(7“9)\1191(59) T T Z Or).(09) %0, (ro) Lo.(09)” (59)
6=0 0=N+1
where
(re)(sg) 5T1 S1 ""5%59' (60)

In this way, using Eq. (43)

N
N _ ¢
‘C( )((b) - lz )‘(rg),(sg)ae,(re)\ye,(sg)] - 7N+1¢7 (61)
6=0
where )\%MSB) = — (70"9),(89) +7N+15<T9>,(39)> is positive for all 79, sg, since a) )\(Te)*(se) = ~Yirg)s(e0) for all

off-diagonal components and b) the diagonal components Virg)(rg) A€ negative with an absolute value that is
greater than v, , for all § smaller or equal to N. Eq. (61) can be considered as an N*"_order kinetic model to
the collision term, with an absorption term -, , ¢ resulting from the diagonalization of the relaxation tensors
after the given N. Therefore, all the moments of order higher than N are collapsed into a single non-equilibrium
term minimizing the truncation effects on the fine structure of the L-operator spectrum.

Eq. (61) generates increasing accuracy models to 2 when the distribution function f is near the Maxwell-
Boltzmann equilibrium distribution, f€¢. Each term in the sum, in Eq. (61), gives the relaxation to the
equilibrium of second or higher order kinetic moments My that are not preserved in collisions, modulated by a
Ao relaxation tensor.

5.2.1. A second order collision model in the two-dimensional space

Without any loss in the generality, we restrict ourselves to two-dimensional spaces and second order models,
with N = 2. In present section, the isotropy of 4*" rank tensors will be used to give explicit forms for the
second-order collision model.

From Eq. (61)

A

[ _ [
<T2>,<32)a2,(r2)‘1’2,<32> = Aaﬂw6a’2,aﬁlll2,w6' (62)
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Requiring isotropy of 4** rank tensors and considering the symmetry with respect to index permutation,

)\aﬁ’yé =M\ (5a6675 + 5a7565 + 5«16567) : (63)
In this way,
Aaﬁwsag,aﬁwz,w = >\,u {Ug,aawz,w + ag,aﬁwz,ag + a;b,aﬁ‘ljz,ﬁa}
_ a2 ra (C2 ) + agﬁyy (C?y — %) +
A . , (64
2a2,wycfchy

since a$ ,, = 0. Using Eq.(44)

2, T

Au 1 1
)‘aﬁ»ysa;aﬁlllz,»ys = ? |:Tmm (C2 - 5) + Tyy (C?U - 5) + 2Tmycfwcfy] ) (65)
or, from Eq. (48), the second order model in two dimensions will be, finally, written as

A
£2(¢) = =L [7aaCFo + 13CF, + 2700 CraCry] — 7,0 (66)

Present second-order continuous kinetic model is able for analyzing non-isothermal and fully compressible
flows. The thermal conductivity is related to v, diagonalization constant. Consideration of third-order collision
models will be, only, necessary in multi-component systems, for correctly describing third-order coupling: the
Soret and Dufour effects, Philippi and Brun, 1981a.

6. Velocity discretization

Discretization means to replace the entire continuous velocity space c¢” by some discrete velocities ¢;. A
Chapman-Enskog analysis shows that the correct macroscopic equations to be retrieved is given by assuring
that the discrete distributions f{? satisfy:

<o >1= [ 11(€) wu(élaé - Z{;% 3 (67

for all {pp, =1,&n,8a €3 ,8a 3 & , ...} Of interest, where f©¢ (5) is the MB distribution written in terms of the

particles velocity { in the continuous space, h is the lattice unit, i.e., the smallest physical distance between any
two contiguous grid points, D is the Euclidean dimension, D = 2 in the plane and D = 3 in three-dimnsional
grids and < ¢, >“? means a macroscopic equilibrium moment of ¢,

In Philippi et al., 2006b, the discretization is considered as a quadrature problem, i.e., the discrete distribu-

tions f{? in the right-hand side of Eq. (67) are replaced by f¢ (5:), i.e., by the value of the MB distribution

evaluated at the pole f_;, multiplied by a parameter w;, which means the weight to be attributed to each velocity
vector {r; for satisfying the quadrature condition, considering that, for each coordinate-axis «, the lattice-speeds
& form a discrete and finite set and the continuous velocity space is continuous and extends to infinity.

In this manner, the discretization restrictions, Eq. (67) are replaced by the following quadrature equations,

< wu>er= [ 10() &€
S (2f°>D/2 721 (€) ¢0(&0). (68)

M)D/z
m

where the factor ( was introduced for assuring w; to be a dimensionless, real number, since f¢9 f)

the number of particles per unit volume of the velocity space and per unit volume of the physical space.
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When performing the quadrature, an integration variable must be chosen. If the dimensionless fluctuation
velocity 5 f = 25%21/2 is chosen as the integrating variable, the particle velocities result dependent on 7" and

on @ , Philippi et al., 2006b,

S
G—a+ (20) =g, (69

Another choice is the dimensionless particle velocity C = (2TC)U2 In this case, the particle velocities are

temperature dependent, Philippi et al., 2006b,

1/2
éz(%f) G =& (T). (70)

m

Avoiding the f_; temperature dependence requires to consider the particles velocity 5 as the integrating
variable when performing the quadrature, i.e., to let ¢? free from T in the exponential part e ¢ of the equilibrium
distribution. This can be accomplished by writing, Philippi et al., 2006b, Shan and He, 1998,

_(e—w)?

Ty
e B = (e—C?o) o (71)

ﬁ

where Tj is a reference (and constant) temperature and Cy, = is a new dimensionless peculiar velocity

referred to the temperature T,.

When T is near Tp, i.e., when the departures from thermal equilibrium are small, the above expression may

be developed in a Taylor series around Tl = 1. Considering © = Tl — 1 to be the temperature deviation, this

development gives

To
T 1
(e*C?o) T = e {1 +C7,0 + 5c?o (C7,—2)0% + .|, (72)
which terms are increasing powers of C7,.

Consider writing the MB equilibrium distribution as

D/2
e = nd( m ) /efcﬁ

D/2
= na(5om) e [1+c§09+%c;o(c§0—2)92+...

2wkT

D/2 .-
_ nd( m ) /efcﬁefugwuo.co
2wkT

1
X {1 +C7,0 + 50-20 (C7,—2)0% + } . (73)

The exponential term e~Us+2oCo g the generating function of the Hermite polynomials Yo, (r,) (C_;) in the

velocity space, where (rp) is a sequence of indexes r1, 73, ...rg,
The Hermite tensors are orthogonal in the Hilbert space H, with respect to the inner product

1 _ 2 =
(h+9). = 75 / ¢ hgdC, (74)

and symmetric wih respect to any index permutation.
After some straightforward algebra, the result for the equilibrium distribution can then be written as an
infinite series, Philippi et al., 2006b,
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D/2 . .
0

where the coeflicients agq(re) are related, respectively, to the f macroscopic properties, at equilibrium: the number
density of particles, ng, the local momentum, nq4ldo,q, the momentum flux, II%, the energy flux, e, and an

hyper-flux of momentum, Ezqm .

From Eq. (68), it is easy to see that its corresponding discrete form can be written as,

fit=w; ZQ:GZ?(TQ) (n,ﬁo,@> Yo, (r,) (C_:)z) : (76)

where n = ngh? and W; = ﬁwiefcai, Philippi et al., 2006b.
Consider the inner products in the continuous and discrete space, given respectively by,

(f*g).= W;/Q /e‘cgfgdCB, (77)

(f*9),= ZWif (@z) g (50,1') ; (78)

where W; = ﬁwie’c&‘ and their induced norms
1 L2 -
1912 = =575 [ e 682G (79)
) .
1715 =S wis? (Co). (80)

Since functions \1197(,09) (C;) are orthogonal in the continuous space with respect to the inner product Eq.
(77), it can be shown, Philippi et al., 2006b, that the quadrature equation, Eq. (68) requires the orthogonality
of Yo, (r,) (C_'M) and their norm preservation in the discrete space, i.e.,

S wi ., (6) _ # /6—08\1157(,09) (d,) dc, (81)

In this manner, the still unknown weights W; and the discrete velocities CHM must be chosen in such a manner
that the orthogonality of the Hermite polynomial tensors \1191(7«9) is assured in the discrete space and satisfying
the norm preservation equation, Eq. (81). In Philippi et al., 2006b, it is shown that the norm preservation

—

equation warrants the orthogonality of W (. (CO,Z—) , with respect to the inner product, Eq. (78), when the

discrete velocity space is a Bravais lattice.

The above conclusion is very important because it reduces our discretization problem to find the weights W;
and the poles C,; satisfying, solely, the norm restrictions, Eq. (81).

With the exception of a very few lattices, Gaussian-like quadratures does not give a regular discrete set Coi-
Nevertheless, if any Bravais velocity set {€;}, giving a space-filling lattice, is chosen, the quadrature problem
can be considered as to find the weights W; and a scaling factor a such that CHM = agj, satisfying Eq. (81).
Considering that the poles ¢€; are previously known, this quadrature method was named as quadrature with
prescribed abcissae, Philippi et al., 2006b.

In this way, when the order of approximation N of the Hermite polynomial expansion to the MB equilibrium
distribution is chosen, a set \Ilgy(re), 0 =0,..., N, is established, and the infinite and enumerable basis of the
Hilbert space H : c” — R, which generates the solutions of the continuous Boltzmann equation, is replaced by
a finite set of Hermite polynomial tensors, restricting the solutions to N*"-degree polynomials in the velocity
¢. The quadrature problem is, now, to select a regular lattice {€;}, in such a manner that functions ‘119)(%)
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preserve the orthogonality with respect to the inner product in the discrete space and this can be accomplished
by assuring that the norm of each one of these functions Yo (r,) 18 retrieved, exactly, in the discrete space.
The number b of the required lattice vectors is proportional to the order N of the polynomial approximation,
b= b(N). In addition, we have shown, Philippi et al., 2006b, that when the quadrature problem is solved, the
260-rank tensors given by,

Ary)(sy) = Z WiCo,i,rq-+-C0,i,r9C0,i,50++-Cosiys (82)

are isotropic in the discrete space, for 6 =1,...N.

6.1. Two-dimensional square lattices

We restrict our attention to two-dimensional square lattices, in this work, although the above presented
quadrature procedure is general and may be used for deriving two and three-dimensional lattices.
The dimensionless local velocity

- U

_ 7 83

(200) 172 (83)
m

can be scaled for enabling to work with unitary lattice-units. In this manner, the spatial and the time scales,

respectively, h and §, can be chosen so as to satisfy,

5 m

and, since

nZlo = Z fZC_'m = aZfi(?i, (85)
i i
where €; are the usual lattice vectors in 2D lattices, a new local velocity can be defined as

i
nit = — =Y fi;. (86)

a

In two dimensions, square lattices like the D2Q9, D2Q13,..., have four discrete velocities at each energy level
C,. Figure 9 summarizes some square lattices that are being used in lattice-Boltzmann simulation: each set
of four discrete velocities is superposed to the previous lattice-vectors set when adding a single energy level,
following the sequence (0, 1, v2, 2, 2v/2, 3, 3v/2,...).

N
A

D2QY%

D2Q13 D2Q17 D2Q21

Figure 9: Some two-dimensional square lattices that are usual in LBM.
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When N = 2 there will be 4 linearly independent equations for 4 unknowns related to the scaling factor
a, and the D2Q9 weights Wy, W7,Ws. This set has a unique solution leading to the widely known values
Wo =16/36, Wy =4/36,W5 = 1/36 and a = 1/3/2.

The equilibrium distribution for the D2Q9 lattice is, then,

e 1+ 2a°ule; o + 20°ubufy (aPeineip — 16a8) +
fi,g = Win ( o (a262ﬁ£ 1) B3 B) , (87)

with third-order errors O(Ou*,u*3), with respect to the full MB distribution.

The effect of temperature on the equilibrium distribution can be clearly seen from Eq. (87). In higher
temperature sites, the amount of rest particles is reduced and redistributed to higher energy levels, trying to
mimic the temperature dependence of the continuous MB distribution. This effect is highly desirable in thermal
LBE simulation. An equilibrium distribution similar to Eq.(87) is given as Eq. (18) of Shan and He, 1998.

The D2Q13 and the next lattices are also able to run second-order models. In these cases, the number of
unknowns is greater than the number of disposable equations and several solutions will be available, satisfying
the quadrature problem.

Nevertheless, contrary to MacNamara and Alder results (McNamara and Alder, 1993) and to the results
that would be expected with fitting methods, this lattice is not able to run full third order models. Indeed, when
N = 3, it is impossible to find real positive values for a, Wy, W1,Ws, W3 satisfying all the norm restrictions,
Eq. (81) related to W3 o3,. This result is the same for the D2Q17 lattice.

Considering the D2Q21 lattice as a next candidate for third order models, there will be, in this case, 7
unknowns a, Wy, Wy, Ws, W3, Wy, W5 for 6 norm restrictions, after eliminating identical equations. Letting
a to be a free variable, the system gives a solution with real positive roots when a is inside the interval
0.659836 < a < 1.16208.

The values a = 0.659836 and a = 1.16208 (in fact, a = 75v/5v/v/193 + 25) are roots of the polynomials
Wo(a) and Ws(a), respectively. In this manner, when the value a = 1.16208 is chosen, W5 = 0 and the lattice
loss an energy level, giving a modification of the D2Q17 lattice, which has been named D2V17, shown in Figure
10. The weights, with six significant digits, are Wy = 0.402005, W7 = 0.116155, Wy = 0.0330064, W5 = 0,
W4 = 0.0000790786, W5 = 0.000258415.

D2VA7

Figure 10: The D2V17 lattice.

This modified square lattice is less expensive considering computer requirements and has the same properties
when compared with the D2Q21 lattice, i.e., it retrieves, exactly, all the equilibrium moments up to the 3¢
order and ii) gives isotropic tensors up to the 6 rank. Therefore, present method can be, also, considered
as a tool for investigating the structure of minimal velocity sets giving regular lattices.The D2V17 equilibrium
distribution can be written as

fis = fiz+Wiagl,s,Vsa8,(i) =
1+ 2a2ule; o +2 a2u2uz) (a%eincip — %5@3)"’
O (a%e? — 1)
Win 3 (88)

a’e; 0€i,3€iy— ’
3 (€i,008y + €5,80ay + €i70ap)

+§a3ugugufy [
+200a? (a®e] — 2) ule;
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with fourth-order errors O(Qu*2, u*4).

In addition to the equilibrium moments up to order 3, thermohydrodynamics requires the 4*"-order equi-
librium moments < C5C3 , >, < C5C3 ,, >“Yand < C5Co.Co,y >“Ito be retrieved, McNamara and Alder, 1993.
Since these functions are not orthogonal in the continuous velocity space, a Gram-Schmidt orthogonalization
procedure was used to find orthogonal polynomials from this set by using the previous Hermite polynomials
and the inner product Eq. (77).

The result was

7 1
_ 202 o2 1o
Wi =CoCo. — 5C00 — 500y + 1, (89)
1
Wy = - (Cg (7Cg,y - Cgm) - 2463,74 + 6) ) (90)
\114,3 = C)o,mco,y (Cg - 3) . (91)

When we require the norm preservation of the functions W41, W42 and W43 this gives a system of 8
independent equations for 9 unknowns. In this case, a is, again, a free parameter and the solution gave real
positive weights for 0.590193 < a < 0.760569.

Further, when « is, respectively, taken as 0.590193 or 0.760569 the weights W7 or Wy are null, giving two
D2V25 lattices that retrieve the correct thermohydrodynamics equations. These lattices are shown in Figure
11. For the first lattice, called D2V25(W1), a = 0.590193 and the calculated weights are Wy = 0.235184, W, =
0, Wy =0.101817, W3 = 5.92134 x 1072, Wy = 2.00409 x 1072, W5 = 6.79523 x 1073, W = 1.143 76 x 1073,
Wz =2.19788 x 1073 . Lattice D2V25(W6) has a = 0.760569 and Wy = 0.239059, Wy = 0.063 158, W, = 8.
75957 x 1072, W3 = 3.11800 x 1072, Wy = 6.19896 x 1073, W5 = 2.02013 x 1073, Ws = 0, Wy = 8.
38224 x 107°.

| p2vas )

Figure 11: The D2V 25 lattices for thermal problems.

Therefore, thermohydrodynamic equations are correctly retrieved with the LBE based on these lattices, but
isotropy of 8*"-rank tensors cannot be assured. The equilibrium distribution for this lattice can be written as

fitn = 15+ Wi [ag a1 () + a3 Wa (i) + a3 Wa3(i)] (92)

with, nevertheless, fourth-order errors O(Ou*?,u**, ©2) with respect to the full MB distribution. Parameters

ayly can be found by using the orhogonality properties of Wy g (50) in the continuous space, giving,

2
ayhy = - (2a*u?u* + Oa” (6ui” + u*?) +20?), (93)
e 1 * * *2 % *
ayly = D (7a4uy4 + aturt + 6a4uw2uy2 + 24a2uy2® + 692) , (94)
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ayly = gaQU;u; (30 + a*u?) .

For full fourth-order model, the norm preservation of a full set of Hermite orthogonal polynomials until
the 4'"-order is required, giving a set of 9 norm restrictions. This system will be, only, closed for a lattice
with 8 energy levels. The D2Q29 lattice, with 8 weights Wy, ...,W 7, is a natural candidate to be the minimal
square lattice to run fourth-order models in the square lattices hierarchy. For this lattice, there are 9 linearly
independent equations. This closed set of 9 independent equations has, nevertheless, no solution.

This result was the same for the next D2Q33 lattice, when a is let as a free parameter.

Since each function \1197(,09) is a linear combination of the monomials ¢ = {1,Com,Coy,C§$,ng,CwCOy, },
the norm restrictions, Eq. (81), can be indifferently used on the set ¥ of orthogonal functions or on set ¢
of monomials. The last choice is, in present case, preferable, for identifying a symmetry overcome in the

Q-series hierarchy of square lattices (Figure 9). Indeed, consider the fourth-order functions ¢4, = C3,C2,

and @49 = C3,Coy. These functions have different norms in the continuous space, respectively, % and ./%—2.

Nevertheless, since @41 = (COyCO$)2 and @492 = (cmcoy)cgm the only contributions for their norms, in the
discrete space, came from the diagonal vectors and are the same, because, along these directions, Co iy = Co, -

This is an important result, since it means that the Q-series of square lattices are unable to run full fourth-
order LBE models.

In this way, we have tried another building structure for the lattices, filling completely the available Cartesian
space around each site, following the sequence |e;| = 0, 1, V2, 2, V5, 2v/2, 3, V10 with sequentially increasing
values for |e;|.

Figure 12 shows a D2V37 lattice, constructed in such a manner, with 37 velocity vectors, but 8 weights W;.
Solution of the 9 norm equations is unique and gives, when 6 significant digits are considered, a = 0.846393,
Wy = 0.233151, W7 = 0.107306, Wy = 0.0576679, W5 = 0.0142082, W, = 0.00535305, W5 = 0.00101194,
Wes = 0.000245301, W7 = 0.000283414. This lattice came from the solution of a closed system with 9 linearly
independent norm restriction for 9 unknowns.

D2V37

Figure 12: The D2V37 lattice.

Since, in the D2V37 lattice, all the fourth-order Hermite polynomial tensors belong to the orthogonal basis
of this lattice, the equilibrium distribution can be written as,
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fze,(zl = fze,?i + Wia’fl?aﬁv6‘lj4>a5’>’5(i) =

1+ 2d%ule; o0 +2 (a2u(’;ug> (a%eineip — %5(15)

+0 (a?e? — 1)
3
a’e; o€; ge;

_|_§a3u* wruk 1,atq,8C0,y
87 7T | 8 (ei.a0py + €080y + €indap) |
+20a* (a%e? — 2) ul e+
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The D2V37 lattice, with the above equilibrim distribution, can be considered as the minimal square lattice
giving a fourth-order approximation to the continuous Boltzmann equation, wih errors O (©%u*, u*®).

The weights W;, in general, decrease with ¢ and attain very small values when i is large. The smallness
of W; for large i is expected and is a consequence of: a) the restriction that was imposed on the lattice to be
space filling, requiring the norm of each added lattice-vector, €; to be, frequently, an integer multiple of the
norm of the lattice-vectors forming the D2Q9 lattice unitary-cell, in square-lattices; b) the required degree of
approximation leading to polynomials with terms of O (el’).

7. Immiscible fluids

Flow of immiscible fluids is, classically, treated in fluid mechanics by considering that the transition layer
has a null thickness and by performing a momentum balance around this layer. At microscopic level, when
two immiscible fluids r» and b are mixed, the long-range attraction between the molecules of each fluid is the
molecular mechanism promoting fluid segregation. Intermolecular forces may be of many different types, includ-
ing electrostatic forces between permanent dipoles, induction forces between permanent dipoles and induced
dipoles, dispersion forces between non-polar molecules and hydrogen bonds. In the transition region between
the two fluids, a molecule is, predominantly, subjected to attractive fields from its own phase that acts as a
potential barrier and gives rise to fluid-fluid interfacial tension. In addition, molecules that are found in this
transition layer are subject to r-b collisions that try to mix the two fluids and are responsible for r-b diffu-
sion. The thickness of the transition layer is, consequently, controlled by the strength and length of long-range
potentials and by cross collisions, r-b.

Theoretical difficulty is strongly increased when these two fluids interact with a solid surface. In fact, the
interfacial energies ¢"* and ¢ between fluids r and b and the surface are the main macroscopic mechanisms
governing interface advancing or receding on a solid surface. When the interface advances or recedes along a
solid surface, dynamic effects will change the contact angle 87%¢ with respect to its equilibrium value.

Due to the complexity of intermolecular forces and considering their important contribution in defining
fluid-fluid and fluid-solid interaction, the lattice Boltzmann method appear to be very suitable as a downscale
method that can improve the understanding of complex physical phenomena that are very difficult to describe
at the hydrodynamic scale.

In Santos et al., 2003, the field mediators concept, described in dos Santos and Philippi, 2002, was extended
for Boltzmann models of immiscible fluids. Mediators are null-mass particles that mimic the action of elec-
trostatic forces. They are emitted from the lattice sites and their only action is to invert the momentum of
lattice particles, simulating a long-range field. When a site ¥ can be considered as an attractive center for k
particles, k = r, b, it will emit mediators of kind k that will be propagated to neighbor sites in the propagation
step. Interference of k-mediators pull back to site r , k-particles moving away from ¥ . In this way, following
very simple emission and interference rules, mediators try to simulate the effect of long-range forces in fluid
separation. Particles of kind r in the 7-b interface that are thrown by collisions toward the b-phase will be pulled
back to the r-phase when they found r-mediators in the same site and in the same direction, after propagation
step.

Gunstensen et al., 1991, Gunstensen and Rothman, 1992, are attributed to be the first who introduced
immiscible fluids color based models in the frame of the lattice Boltzmann method. A more popular two-phase
flow model, based on a pseudo-potential function, was derived by Shan and Chen, 1993. This method was
later extended to three dimensions, Martys and Chen, 1996. A drawback in the above model is that it become
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unstable when used to simulate fluids with very different viscositys (say u1/p2 > 7), as reported in J. et al.,
2002.

In Santos et al., 2003, immiscible fluids  and b are modelled by splitting BGK collision term, separately
considering r-r and r-b collisions. In this way, in contrast with the previous models, viscosity coefficients p,
and pp and binary diffusivity D,;, can be independently managed using three independent relaxation times.
Interfacial tension is retrieved by modifying b collision term, introducing long-range forces in the transition
layer through the use of field mediators. Mediators’ action is restricted to the transition layer and ideal gas
state equation is retrieved for each fluid, far from the interface. In this way, we limit ourselves to an athermal
model and no attempt to describe phase transitions and their related effects will be given here.

7.1. A heuristic BGK model for immiscible fluids

In Santos et al., 2003, considering two immiscible fluids r and b, the long-range attraction between the
particles of the same species is simulated by producing field mediators on the lattice-sites, just before the
propagation step. Considering R;(¥,t) to be the particles distribution of r-particles in site ¥ at time ¢ and,
similarly, for B;(F,t), mediators are created just before propagation step, and propagated, following

Zj Rj(f:a t)
Zj R; (Fv t) + Zj B, (Fv t)7

M](¥+€6,t+6) =aM(F,t)+ 3 (96)
where a4+ 3 = 1.

The first term in the right hand side of the above equation is, in fact, a recurrence relation, since M (¥, t)
depends on M (¥ — €;6,t —9) and on K;(r—€;0,t —0) , K = R, B, for all j neighbors sites around site ¥ — €;0,
through second order terms in « and . In this way, M at site I, will be dependent on the next neighbors
r-particles concentration through first order terms, on the second neighbors r-particles through second order
terms and so on. When o« = 0 (or 8 = 1), mediators are created at site T, with the solely information of
the concentration of r-particles on next neighbors sites: mediators distribution related to the direction 7 will
be given by the mass fraction of r-particles on site ¥ — €;0, at time ¢ — 4. In this case, the interaction length
corresponds to 1 lattice-unit. By increasing o with respect to (3, interaction length can be, arbitrarily, increased.

Mediators are created at each site ¥ and propagated with the unitary lattice velocity €;. The interference of
field mediators with lattice-particles is described in the following.

The lattice-Boltzmann equation for kind K particles, is written as

K;(¥+€0,t+9) — K;(7, t) = Q(Ro, ..., Rp,,, Bo, .., Bv,,) , (97)

for K = R, B. The collision operator Qf is required to satisfy the mass and momentum preservation equations,

d ar=o, (98)

> e (4 +9))=0. (100)

=0

A three-parameters BGK collision term that satisfies the above restrictions was proposed in Santos et al.,
2003, written as

R (n",u",T) - R; wbeq(nr,VTb, T)—R;

Qf =w’ = + o : (101)
where
b’VTL
nf ="K, (102)
1=0
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and
IR
d :FZK&-, (103)
=1

are, respectively, the macroscopic number density of particles and the velocity of component k, k = r,b. The
w’s in Eq.101  are the molar fractions, w* = n*/n.

The first term in the r.h.s. of Eq. 101 is related to the relaxation of r-particles distribution to an equilibrium
state given by the r-component number density and momentum, considering r-r collisions, only. The second
term considers r-b collisions and is related to the relaxation of r-particles to an equilibrium state given by the
number density n” and by the momentum mti’modified by the action of r-mediators present in the same site,

mr = mbib — A (104)
Constant A is to be related to interfacial tension. For ideal miscible fluids, A = 0 and this collision term will
describe the relaxation of r-particles distribution to an equilibrium state given by n” and by the momentum
mPa®, as a consequence of r-b cross collisions. In immiscible fluids, Eq. 104 means that particles of kind r will

-m
be separated from b-particles by long-range attractive forces from r-phase, represented here by —u .
In the same way,

b=br r=r =m
m’v" =m'ad" + Au . (105)

In Egs. 104 and 105,

. a™ —=m
m rimy when #0 7 (106)
0 when u™ =0
where mediators velocity at site X is given by
b
@ = (M}~ M})&; , (107)
i=1
pointing to the same direction where r-mediators were propagated, i.e., to the b-phase.
—m
In present model, since ’ﬁ ’ = {0, 1}, the long-range effect on the cross-collision part of Qf is to relax

r-particles distribution to an equlibrium distribution with a G velocity, modified, in all lattice sites inside
lattice-domains where r and b particles are simultaneously found, by a vector which modulus is constant and
equal to A, which is to be related to the net value of interfacial tension. This is not the only choice for satisfying
the restrictions on local mass and momentum preservation, but the simplest one and, although this could appear
as a model ’s restriction, the direction of 4 ina given site ¥ will be dependent on the mediators distribution
M7 and M in that site and these distributions are dependent on the r and b particle distributions in the
neighbors sites, at the previous time steps.

8. Boundary Conditions
8.1. Momnophasic flows inside capillaries

Considering a discrete set of particle velocities ¢ = {é;,i =0,...,b} a boundary condition in the LBM
framework can be thought as a reflection law,

fi*(fzvt*) = ZBijfj*(fzvt*)v (108)

where €;+ represents a lattice-vector exiting from the solid surface at the site 2}, toward the fluid phase and
€;- a lattice vector exiting the fluid phase at the site Z;. The (b+ 1) x (b + 1) reflection matrix B;; is written
in accordance with the macroscopic property it is desired to describe at the boundary.

The simplest and mostly used boundary condition is the bounce-back condition,
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Bij = (Sij, (109)

giving

fi+ = fi-, (110)

which satisfies the adherence condition @ = 0 at the solid boundary.

) N exiing molecules
incoming molecules ‘

Figure 13: Boundary conditions in LBM.

Bounce-back conditions are pictured in Figure 13. It avoids all the complexity of the description scale related
to fluid-solid interaction. At this scale, a certain amount of adsorbed fluid molecules exit the surface, where they,
presumably, have reached an equilibrium state with the solid molecules and is replaced by another amount of
incoming fluid-molecules from the fluid phase. In steady-state conditions, these incoming and exiting amounts
of molecules must be identical. Nevertheless, at this nanometric scale, a slip in the local velocity and a jump in
the local temperature are to be expected, since the incoming molecules do not know the equilibrium state that
was imposed by the solid surface on the exiting molecules that were adsorbed on it, Philippi and Brun, 1981b.
Velocity slips and temperature jumps are dependent on the Knudsen number, i.e., on the ratio between the
mean free path and the length of the macroscopic domain of interest. The Knudsen number, itself, is a function
of the fluid density and Knudsen discontinuities at the solid surface are only expected to be important, when a
low-density gas flows inside a capillary. In this manner, these discontinuities are not expected to be important
in liquid-flows. Nevertheless, in the mostly used lattice-BGK collision-propagation schemes, the mean free path
is dependent on the dimensionless relaxation parameter 7 used for the collision term, since when this parameter
grows-up, collisions are less-effective in changing the particles distribution in a given site. In this manner, since
the space discretization imposes a numerical lower limit in 7 of 1/2, the Knudsen number is not expected to be
small enough, as it is required for a continuum approach, and O(Kn?) numerical effects are expected to happen
in lattice-Boltzmann simulation. These numerical effects are instability sources and these sources are believed
to be specially important near the solid walls.

In this way, establishing the correct boundary conditions in LBM is, still, an open problem and a subject of
intensive research nowadays.

In athermal problems the bounce-back conditions such as the ones pictured in Figure 13 are in current
use and have shown to be suitable for velocity non-slipping problems for several lattices. Adequate boundary
conditions for avoiding temperature jumps are still in progress in thermal problems, when a LBE that correctly
describes the internal energy balance equation is used.
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8.2. Immiscible displacement in capillaries

In immiscible displacement athermal problems, bounce-back conditions are also in use for the particle dis-
tributions, but the preferential wettability of one fluid on the solid wall is simulated using different reflection
laws for the field mediators (Figure 14). Wettability of a given fluid on a solid surface is related to the relation
between the cross adhesion forces among the liquid molecules and the solid and the cohesive forces that happen
among the liquid mlecules themselves.

N

f(_zl_ medlators r—

Figure 14: Boundary conditions in immiscible displacement.

The Young’s law for liquid drops in contact with a solid surface and with its vapour (or a gas) gives a
measurable parameter that quantifies the wettability,

€08 0eq = M, (111)

n

where 0.4 is the equilibrium contact angle, v, is the interfacial free energy at the solid-vapour interface reducing
to s when the adsorption energy can be neglected, ~; is the liquid surface tension and, in accordance with Fowkes
law,

Vst =Vs + Ve — <2\/7§7? +2 7575), (112)

adhesion work

where the quantity <21 [vdyd + 24/48AF ) is the adhesion work, Wg.

When 755 — vs1 > 7, the adhesive forces are strong and the liquid will spread as a liquid film on the entire
solid surface. When v,4 — 75 < 71, the cohesive forces among the liquid molecules are dominant.

We have 7,4 > 74 for a wetting liquid such as water on glass and sy < 74 for a non-wetting liquid such as
mercury. In effect, in accordance with the Fowkes equation above,

Ysg — Vsl = —Ve + 2\/ ’Yg')/g +2 75757 (113)

and this quantity can be either positive, when v, < 24 /’yg’yg +24/7%77, i.e., when the liquid surface tension is
smaller than the mixing cross forces among the liquid molecules and the solid surface, or negative, when the
liquid surface tension (related to the intermolecular forces among the liquid molecules themselves) are stronger
than the forces among liquid and solid molecules.

Oil and water are both wetting fluids on, e.g., a glass surface. Nevertheless, for water, w, the cross mixing
forces with the glass molecules are strong giving a large adhesion work and a small ~g,,, when compared with
an oil, o, such as isopentano, with a small adhesion work and a large v5,. When water and oil are in contact
with a solid surface

'Yso - 'st

cosleq = 5
rb

(114)
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Present lattice-Boltzmann schemes for simulating immiscible displacement in capillaries are based on rather
simple rules, by adjusting the reflected amounts of fluids » and b in such a maner as to retrieve the equilibrium
contact angle in equilibrium simulations (Figure 15). In this way, in addition to the viscosity ratio, the only
experimental information that is needed in these kind of simulations are the equilibrium contact angle, 6., and
the interfacial tension, 7,4. Further studies are necessary for including the polar and dispersive surface energies
in the model parameters.

(a) (b) (c)

Figure 15: Equilibrium between a liquid drop and a solid surface for (a) a wetting liquid, (b) a non-wetting
liquid and (c) a totally spreading liquid.

9. A sample problem: capillary invasion

The simulation results of the capillary invasion of a wetting liquid, r, into a cylindric tube, under zero gravity,
is shown in Figure 16. Only capillary forces are considered and, in this way, the pressure in the capillary entrance
and exit were kept the same, the non-wetting fluid particles, b, that exit the numerical domain being reintroduced
at the capillary entrance, after they change their label as wetting fluid r-particles. A model similar to the one
that was developed for immiscible fluids was used. The fluid viscosities and the interfacial tension are the only
informations required for the model, when the fluid-solid interaction is not considered.

Figure 16: Capillary invasion

The LBM simulation was performed without any velocity singularity in the triple line, since the triple-line
is here considered as a transition region where the fluid-particles are subjected to electrostatic forces from the
wall and from the fluid phases.

In the fluid-fluid interface the electrostatic attractive forces among, e.g., the r-particles and the r-phase are
simulated by deviating a certain amount of r-particles to the r-phase in accordance with Eq. (101), in the
direction from where the r-mediators were emitted (Figure 16). This amount, which is the same for b-particles,
is given by the force parameter A, in Eq. (104), directly related to the v, interfacial tension (Santos et al.,
2003).

Boundary conditions are reflection laws for the particles and the mediators such as the ones described in the
above section. The reflected amounts of » and b mediators are kept constant and adjusted in accordance with
a given equilibrium contact angle, ., in static conditions.

In this manner, in capillary invasion, the wetting fluid r-particles in the triple line will be simultaneously
subjected to the attraction forces from the r-phase and from the solid surface, since the incoming mediators,
after reflection on the solid wall, are predominantely r-mediators. From Figure 17, it can be seen that the
predominancy of the fluid adhesion to the solid surface with respect to the cohesive forces to the r-phase, will
be decided by the larger relative value of the horizontal projection of the attractive force from the wall, with
respect to the atractive force from the r-phase.

A Poiseuille parabolic velocity profile was obtained in both phases for points that are far enough from the
interface and from the tube entrance. Figure 18 shows the streamlines near the fluid-fluid interface in the
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Figure 17: The fluid-fluid interface and the triple line.

course of the capillary invasion, at a symmetry plane. A strong recirculating zone, a vortex, is presented near
the triple line. The vortex length is dependent on the strength and on the interaction length of the fluid-fluid
and fluid-solid electrostatic forces. It belongs, indeed, to the same nanometric scale that is used for describing
the triple-line itself and cannot be accessed by experimental visualizations.

Figure 18: Streamlines near the fluid-fluid interface, showing a recirculating flow close to the triple-line.
In this way, the physical structure of this vortex is dependent on the model that was used for describing the
capillary invasion process and this model cannot be validated against experimental results, at this nanometric

scale. Nevertheless, Figure 19, a macroscopic result from the present LBM simulations, shows the capillary
number dependence of the dynamic contact angle, as

cosy = cosl, — aCa” (115)
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where the capillary number is

Ca= L (116)
Yrb

and w;p, is the interface velocity. Angle 6. is the equilibrium contact angle at static conditions. Eq. (115) was
verified to be in correct agreement with experimental visualizations.
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Figure 19: Capillary number dependence of the dynamical contact angle.

10. Conclusion

In spite of its great technological importance and of the growing scientific interest, microhydrodynamics has
still a number of open questions to solve since macroscopic methods based on the Navier-Stokes framework
have revealed to be insufficient to solve dynamic problems when interfacial forces and surface phenomena play
an important role in the description of the problem. Although the great development of up-scaling methods
from the molecular to the macroscopic scales based on the Boltzmann mesoscopic equation: a) the Boltzmann
equation itself appropriated for liquids, taking the finite volume of particles and long range interaction into
account, is still under investigation; b) The discretization of the Boltzmann equation leading to a manageable
numerical method has not a unique issue when the computer limitations must be considered.

In this work, these several questions were discussed and some main problems in constructing a numerical
method based on the spatial and velocity discretization of the Boltzmann equation were presented.
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