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.brAbstra
t. In mi
rohydrodynami
s we are interested in solving �ow problems in mi
ro geometries, e.g., in porousmedia and mi
ro heat pipes, where the �uid �ow is frequently 
onditioned by surfa
e for
es and surfa
e phenomena,su
h as in 
apillary �ows, 
oales
en
e and surfa
e break-o�. In mi
ro �ows, the intera
tion for
es at the �uid-�uid and �uid-solid interfa
es play an important role in the des
ription of the �uid �ow. These for
es are from amole
ular origin and the translation of their e�e
ts to our ma
ros
opi
 s
ales is a 
hief problem, 
onsidering thatby its multis
ale nature these phenomena do not, frequently, have a homogeneization s
ale. In this work, we presenta mesos
opi
 method based on dis
rete models of the Boltzmann equation, whi
h should provide the establishmentof a 
on
eptual bridge between the mole
ular and the ma
ros
opi
 domains, in the study of mi
rohydrodynami
s.keywords: Continuous Boltzmann equation, Latti
e Boltzmann, dis
retization.1. Introdu
tionThe purpose of this work is to dis
uss �uid me
hani
s problems when the spatial s
ale is very small andwhen the hydrodynami
 balan
e equations 
annot be 
losed by the use of simple rules. This is the 
ase of mi
ro�ows, when the intera
tion for
es at the �uid-�uid and �uid-solid interfa
es play an important role in theirdes
ription, Israela
hvili, 1992.Taking into a

ount that these for
es are from a mole
ular nature, the question to be pla
ed here is how totranslate the des
ription of their e�e
ts from the mole
ular s
ale to our ma
ros
opi
 s
ales, whi
h are severalorder of magnitudes larger, 
onsidering that by its multis
ale nature these phenomena, frequently, do not havea homogeneization s
ale.In this work we present a mesos
opi
 method based on dis
rete models of the Boltzmann equation, whi
hhave been developed in very re
ent years, after 1990 and whi
h should provide the establishment of a 
on
eptualbridge between the mole
ular and the ma
ros
opi
 domains.Considering the mole
ular 
haos hypothesis, Boltzmann 
onsidered a �uid as a me
hani
al system of parti
leswith the purpose of demonstrating the irreversibility, a 
ommon attribute of 
lassi
al thermodynami
 systemsbut a nonsense in 
lassi
al me
hani
s. Developed, in its origin, for monoatomi
 rare�ed gases the Boltzmannequation has re
eived several 
ontributions in the 
ourse of the last 130 years by: i) the in
lusion of �nite volumee�e
ts in the Enskog's kineti
 theory of dense gases, Enskog, 1921 ii) the 
onsideration of the rotational, Lifshitzand Pitaevskii, 1999, and vibrational degrees of freedom, Wang Chang and Uhlenbe
k, 1970, of the modelledparti
les, iii) the in
lusion of ele
tromagneti
 e�e
ts in the study of plasmas, Tanenbaum, 1987. Re
ently, Heand Doolen, 2002, proposed a split of the 
ollision term in two parts for taking the long-range intermole
ularattra
tion for
es into a

ount, in the kineti
 des
ription of liquids.Latti
e-Boltzmann models are dis
rete forms of the Boltzmann equation, when in addition to the dis
retiza-tion of time and of the physi
al spa
e, the velo
ity spa
e is also dis
retized, with the pe
uliarity that afterea
h time step and following a lo
al 
ollision pro
ess the parti
les are propagated from ea
h site to its nextneighbours. The number of �rst neighbours to ea
h site is related to the higher order of the kineti
 momentsthat are to be des
ribed, Philippi et al., 2006b.In addition to the latti
e-Boltzmann 
ollision-propagation s
hemes (LBM) a number of alternative dis
retevelo
ity methods have been appearing in re
ent years based on �nite di�eren
es, �nite volumes and, more rarely,on �nite elements numeri
al s
hemes, but the dis
ussion of these methods is outside the s
ope of this work.The latti
e-Boltzmann equation (LBE) was introdu
ed by M
Namara and Zanetti, 1988, repla
ing theBoolean variables in the dis
rete 
ollision-propagation equations by their ensemble averages. Higuera andJimenez, 1989, proposed a linearization of the 
ollision term derived from the Boolean models, re
ognizing thatthis full form was unne
essarily 
omplex when the main purpose was to retrieve the hydrodynami
 equations,1
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ingthe 
ollision term by a single relaxation-time term, followed by Qian et al., 1992, and Chen et al., 1992, whointrodu
ed a model based on the Bhatnagar-Gross and Krook (BGK) 
ollision term (Bhatnagar et al., 1954),retrieving the 
orre
t in
ompressible Navier-Stokes equations, with third-order non-physi
al terms in the lo
alspeed, u. In fa
t, the BGK 
ollision term des
ribes the relaxation of the distribution fun
tion to an equilibriumdistribution, but in the above works, this dis
rete equilibrium distribution was settled by writting it as a se
ond-order polynomial expansion in the parti
le-velo
ity ~ξi, with parameters that were adjusted to retrieve the massdensity, the lo
al velo
ity and the momentum �ux equilibrium moments, whi
h are ne
essary 
onditions forsatisfying the Navier-Stokes equations.In trying to des
ribe non-isothermal full 
ompressible �ows, thermal latti
e-BGK s
hemes in
luded higherorder terms in the equilibrium distribution fun
tion (Alexander et al., 1993, Chen et al., 1994), requiring toin
rease the latti
e dimensionality (Alexander et al., 1993, M
Namara and Alder, 1993, Chen et al., 1994), i.e.,the number of ve
tors in the �nite and dis
rete velo
ity set {
~ξi, i = 0, ..., b

}, but the polynomial expansion formin the parti
le-velo
ity ~ξi, with adustable parameters, was retained, the numeri
al simulations being peformedon, somewhat, empiri
ally 
hosen latti
es.In thermal problems, BGK single relaxation time 
ollision term restri
ts the models to a single Prandtlnumber. The full des
ription of �uids and �uid �ow requires multiple relaxation time models (MRT). A two-parameters model was introdu
ed by He et al., 1998, using two sets of distributions for the parti
les numberdensity and the thermodynami
 internal energy, 
oupled through a vis
ous dissipation term and proposed tobe runned with a two-dimensional 9-velo
ities latti
e. Full MRT models were �rstly introdu
ed in the LBEframework by d'Humières, 1992, d'Humières et al., 2001, by modifying the 
ollision step, 
onsidering it to begiven by the relaxation to the equilibrium of a set of non-preserved kineti
 moments.Nevertheless, the presently known latti
e-Boltzmann equation (LBE) has not been able to handle realisti
thermal and fully 
ompressible �ow problems with satisfa
tion, sin
e the simulation of the LBE is, frequently,hampered by numeri
al instabilities when the lo
al velo
ity in
reases, Lallemand and Luo, 2003.Considering the kineti
 nature of the LBE, establishing a formal link between the LBE and the 
ontinuousBoltzmann equation, allowing the 
on
eptual analysis of this dis
rete numeri
al s
heme, 
ould perhaps shedsome light on this question. Indeed, there are several features that let the latti
e Boltzmann regular-latti
e basedframework far away from the 
ontinuous Boltzmann equation, whi
h would be desirable to be its 
on
eptualsupport. These features in
lude the parti
les model, the 
ollision and long-range intera
tion models and theapproa
h used for the time and the velo
ity spa
e dis
retization.With a few ex
eptions, in all the above works there is no formal link 
onne
ting the LBE to the 
ontinuousBoltzmann equation, although the main ideas were based on the kineti
 theory fundamentals.He and Luo, 1997, have dire
tly derived the LBE from the 
ontinuous Boltzmann equation for some widelyknown latti
es by the dis
retization of the velo
ity spa
e, using the Gauss-Hermite and Gauss-Radau quadrature.Unhappily, ex
luding the above mentioned latti
es, the dis
rete velo
ity sets obtained by this kind of quadraturedo not generate spa
e-�lling latti
es.In a re
ent paper, Philippi et al., 2006b, the velo
ity dis
retization problem was 
onsidered as a quadratureproblem with pres
ribed ab
issas, starting from the Boltzmann 
ontinuous equation, by requiring the dis
reteequilibrium distribution feq
i to have the same value of the 
ontinuous distribution feq when evaluated at aquadrature pole ~ci. In this manner, when the order of approximation N of a Hermite polynomial expansionto the MB equilibrium distribution is 
hosen, a set Ψθ,(r

θ
), θ = 0, ..., N , of Hermite polynomials is established,and the in�nite and enumerable basis of the Hilbert spa
e H : cD → R, is repla
ed by a �nite set of Hermitepolynomial tensors, restri
ting the solutions to N th-degree polynomials in the velo
ity ~c. The quadratureproblem was, then, 
onsidered as to sele
t a regular latti
e {~ci}, in su
h a manner that fun
tions Ψθ,(r

θ
) preservethe orthogonality with respe
t to the inner produ
t in the dis
rete spa
e. This was shown to be posible tobe a

omplished by assuring that the norm of ea
h one of these fun
tions Ψθ,(r

θ
) is retrieved, exa
tly, in thedis
rete spa
e. The number b of the required latti
e ve
tors is proportional to the order N of the polynomialapproximation, b = b(N) and, tt was,formally, shown that the latti
e dimensionality is dire
tly related to theorder of approximation of the dis
rete equilibrium distribution, with respe
t to the full Maxwell-Boltzmanndistribution and, 
onsequently, to the highest order of the kineti
 moments that are to be 
orre
tly des
ribed.In addition, it was shown that when the quadrature problem is solved, the 2θ-rank velo
ity tensors are isotropi
in the dis
rete spa
e, for θ = 1, ...N . Similar results were, almost, simultaneously, obtained by Shan et al., 2006,although using a di�erent pro
edure.An important pra
ti
al result from Philippi et al., 2006b, was to show that when the spa
e-�lling latti
esare built taking latti
e-ve
tors whi
h are integer multiples of the D2Q9 velo
ity ve
tors, i.e., the DQ hierar
hy,the 4th kineti
 moments, important in des
ribing the �ow of energy, 
annot be 
orre
tly des
ribed.Although the proposed method in Philippi et al., 2006b leads to MRT 
ollision models, the method has impor-2
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es with respe
t to D 'Humières moments method. In D'Humières moments method (d'Humières,1992, d'Humières et al., 2001), dispersion equations are used as 
onstraints for the adjustable parameters re-lated to the short wave-length, non-hydrodynami
, moments and numeri
al stability is assured by bu�eringthese higher frequen
y moments. In Philippi et al. method (Philippi et al., 2006b), non-physi
al latti
e e�e
tsand numeri
al instability, in the des
ription of higher-order hydrodynami
 phenomena, 
an be only avoided byin
reasing the latti
e dimensionality, required by the highest order of the kineti
 moment to be preserved withthe modelled LBE. The highest order of the kineti
 moments possible to be 
orre
tly des
ribed with the LBEequation is limited by the number of latti
e velo
ities, Philippi et al., 2006b, and high-order kineti
 moments arenot 
orre
tly des
ribed when all the b-moments in a b-dis
rete velo
ities set are 
onsidered, as in the momentsmethod. In fa
t, in 
urrently produ
ed works dealing with appli
ations of the moments method, e.g. Lallemandand Luo, 2003, the main worry is numeri
al stability and not the des
ription of non-isothermal, multi
ompo-nent or immis
ible �uids �ows, whi
h, e�e
tively, require additional relaxation parameters with respe
t to BGKmodels.In this work, we present the latti
e-Boltzmann framework, as a dis
rete method with its starting point atthe Boltzmann 
ontinuous equation. Some important questions are dis
ussed related with the suitability of thisframework to solve non-isothermal, multiphase physi
al problems in mi
rohydrodynami
s.In fa
t, although the LBM 
an be used for solving adve
tion-di�usion problems, instead of the full set ofma
ros
opi
 transport equations, whi
h is the basis of 
lassi
al CFD methods, some questions have been shownto be important to be answered 
onsidering the ex
iting possibility that is open in building the latti
e-Boltzmannframework as a real bridge 
onne
ting the mole
ular to the ma
ros
opi
 domain:i) Collision term: When the parti
les are 
onsidered as material points without long-range intera
tionsthe modelled �uid follows an equation of state for ideal gases, P = ndkT . In this manner the isothermal
ompressibility χ
T
is high and the simulation of in
ompressible �ows are subje
ted to 
ompressibility e�e
ts,Surmas et al., 2006. In LBM, these 
ompressibility e�e
ts are usually avoided by working with small lo
alvelo
ities, but this restri
ts the simulations to low Reynolds numbers or requires to in
rease the number oflatti
e sites for high Reynolds number, in
reasing the 
omputational 
osts and redu
ing LBM 
ompetitivenesswith respe
t to 
onventional CFD methods. Enskog's 
ollision term, Enskog, 1921, was derived 
onsidering theparti
les to be rigid spheres with a �nite volume and the equation of state was derived as P = ndkT (1 + ρbχ)where b is related to the parti
le volume by unity mass and χ is a 
orre
tion fa
tor whi
h 
an be written interms of the mass density ρ, Chapman and Cowling, 1999. For liquids, the long-range attra
tion among parti
leswas 
onsidered by He and Doolen, 2002, by splitting the 
ollision term in two parts, the �rst part related toshort-range intera
tion and the se
ond one related to long-range intera
tion. After some simpli�
ations, thisse
ond part was further written in terms of a mean interparti
le potential and the equation of state was derivedas a van-der-Waals like equation P = ndkT (1 + ρbχ) − aρ2.ii) Collision model. The 
ollision term Ω is dependent on the distribution fun
tion itself and, indeed, theBoltzmann equation is a non-linear integro-di�erential equation that has been shown to be too di�
ult to besolved. Instead of the full 
ollision term, a 
ollision model is required leading to a non-linear partial di�erentialequation, whi
h 
an be numeri
ally solved, Philippi et al., 2006a.iii) Velo
ity dis
retization. The distribution fun
tion depends on the parti
les velo
ity and this requiresthe dis
retization of the velo
ity spa
e, in addition to the dis
retization of the physi
al spa
e. Consideringthe required a

ura
y for a given dis
rete s
heme, the problem is how to �nd the minimal number of dis
retevelo
ities for that given a

ura
y (Philippi et al., 2006b, Philippi et al., 2006
). In the present work, we dealwith the latti
e Boltzmann method (LBM) in spa
e-�lling latti
es where, after ea
h time-step, the parti
les aredispla
ed from a given site to their next neighbors.iv) Boundary 
onditions. In LBM, the boundary 
ondition are re�e
tion laws for the parti
le populations,sin
e ma
ros
opi
 variables su
h as velo
ity and temperature are not a

essible as primitive variables. In 
ertain
ases, these boundary 
onditions 
an be related to velo
ity slips and temperature jumps that are di�
ult toover
ome.v) Ideal mixtures. Parti
les with di�erent masses, at a given site, but with the same pe
uliar kineti
energy will be displa
ed to di�erent points after a given time step, rea
hing intermediate positions between two
ontiguous sites and requiring the use of reallo
ation rules that, lo
aly, preserve mass, momentum and energy.Interpolation s
hemes may be the sour
e of numeri
al instability and alternative modelling strategies may showto be ne
essary, Ortiz et al., 2006.vi) Non ideal mixtures and Immis
ible �uids. The ele
trostati
 for
es among the mole
ules produ
ethe non-ideal behavior of �uids and �uid-mixtures and are at the origin of the phase separation pro
ess, whentwo immis
ible �uids are put in 
onta
t, being responsible for the interfa
ial tension. These for
es must be
onsidered and 
orre
tly modelled in LBM.Topi
s i), ii), iii), iv) and vi) are treated in some detail in present work.3
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eedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-01002. Boltzmann equation as providing an alternative method for solving �uid me
hani
s problemsThe Boltzmann equation 
an be derived from Liouville's equation, Cer
ignani, 1969, by supposing statisti
alindependen
e for the 2-parti
le distribution fun
tion, in the limit when the number of parti
les N→ ∞, with a�nite value of Nσ2, σ being related to the parti
les diameter, σ → 0. It reads
∂tf + ~ξ.∇rf + ~g.∇ξf = Ω, (1)where ~r is the position, ~ξ the parti
les translational velo
ity and ~g the a

eleration due to the external for
es.The parti
les are 
onsidered as material points without long-range intera
tion and the 
ollision term Ω inEq. (1) must satisfy
∫

Ωmd~ξ = 0, (2)
∫

Ωm~ξd~ξ = 0, (3)
∫

Ω
1

2
mξ2d~ξ = 0, (4)due to the preservation of mass, momentum and kineti
 translational energy in 
ollisions.In this manner when Eq. (1) is, respe
tively, multiplied by the mass, m, the momentum m~ξ and the energy

1
2mξ2, after some straightforward algebra, the following transport equations are obtained,

∂tρ + ∂α (ρuα) = 0, (5)
∂t (ρuα) + ∂α (ρuαuβ + Pδαβ + ταβ) = ρgα, (6)
∂t (ρe) + ∂α (ρeuα + qα) = −ταβ∂βuα − P∂αuα, (7)where ρe is the internal energy per unit volume, given, in this 
ase, by
ρe =

∫
f

1

2
m

(
~ξ − ~u

)2

d~ξ (8)The equilibrium solution of the Boltzmann equation, Eq. (1) is the solution of,
Ω = 0, (9)whi
h 
an be shown to be a Maxwellian distribution, feq.When this equilibrium distribution is required to satisfy
∫

feqd~ξ = nd, (10)
∫

feq~ξd~ξ = nd~u, (11)
∫

1

2
mfeq

(
~ξ − u

)2

d~ξ =
D

2
ndkT, (12)4
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al number density of the parti
les with mass m, ~u is the lo
al velo
ity T , the lo
al thermody-nami
 temperature, and D, the Eu
lidean dimension of the physi
al spa
e, the Maxwell-Boltzmann distributionis retrieved,
feq = nd

( m

2πkT

)D/2

e
−

(~ξ−~u)2

2kT
m , (13)and the pressure P is related to the parti
les number density by the ideal gas law

P = ndkT. (14)Further, a Chapman-Enskog analysis shows that in the 
ontinuous limit, Kn → 0, the vis
ous stress tensoris given by
ταβ = −µ (∂βuα + ∂αuβ) + κδαβ∂αuα, (15)and the heat �ow ve
tor by
~q = −κ∇e. (16)In this manner, in the 
ontinuous limit, the Boltzmann equation, Eq. (1) gives the 
orre
t hydrodynami
s forNewtonian �uids and 
an be used for solving adve
tion-di�usion problems, instead of the full set of ma
ros
opi
transport equations, Eqs. (5-7), whi
h is the basis of 
lassi
al CFD methods.Nevertheless, as a mesos
opi
 method we must 
onsider the possibility that is open in building this frameworknot as an alternative numeri
al method, for solving the adve
tion-di�usion equations, but as a real bridge
onne
ting the mole
ular to the ma
ros
opi
 domain.In the next se
tion we show some physi
al problems that require to downs
ale to be 
orre
tly understood.3. Some physi
al problems in mi
rohydrodynami
sConsider a 
apillary- rising problem, when a liquid raises inside a 
apillary tube against the gravity for
e,Figure 1.Let xs(r, t) be the position of the liquid surfa
e above the free liquid surfa
e and 
onsider the problem of�nding the position xs for any radius r at a time t. The question that we want to answer is how to �nd xs(r, t)from the solely information of the 
apillary tube diameter and the liquid wettability on the solid surfa
e - givenby the equilibrium 
onta
t angle, in stati
 
onditions, when a small liquid drop is put in 
onta
t with the surfa
eof the 
apillary tube.This problem has several simpli�ed solutions, but all these solutions are based on an equilibrium 
onta
tangle (Lu
as, 1918, Stange et al., 2003, Washburn, 1921, Bosanquet, 1923) whi
h is supposed to be 
onstantduring the rising pro
ess.Furthermore, the exa
t solution of this problem via the hydrodynami
 Eqs. (5-7) in the Stokes in
ompressiblelimit leads to a velo
ity singularity in the triple line, Dussan et al., 1991. This singularity is easy to explain,sin
e at the same time the triple line is responsible for the interfa
e advan
ement, it must, also, satisfy anadheren
e 
ondition of zero velo
ity at the solid surfa
e.In fa
t, the triple-line is not a line, but a transition region of some nanometers among the three phases (inthis 
ase: solid, liquid and gas) and where a liquid mole
ule is, simultaneously, subje
ted to the intermole
ularfor
es from the adja
ent liquid mole
ules - responsible for the liquid surfa
e tension - and to the attra
tive for
esfrom the solid surfa
e -related to the work of adhesion between the liquid and the solid.In this manner, the 
orre
t understanding of the 
apillary-rising problem requires, in prin
iple, the knowledgeof the �ne physi
al stru
ture of the triple-line and to solve a multi-s
ale problem, where the s
ales vary fromsome nanometers to several mi
rometers.For understanding what happens in the triple line, some elementary knowledge of surfa
e physi
al-
hemistryis needed. Surfa
e tension is responsible for keeping a liquid drop at the end of the overhanging bran
hes of athree in rainning days, Figure 2. The intermole
ular for
es among the liquid mole
ules produ
e a tension stateat the liquid surfa
e. These for
es 
an be 
onsidered as ele
trostati
 for
es that depend on the mole
ular shape,Figure 3. Asymmetri
 mole
ules su
h as the water mole
ule have a permanent dipole moment and attra
tthemselves with polar (or Keesom) for
es. The intermole
ular for
es among symmetri
, non-polar, mole
ules,5
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Figure 1: The triple line in 
apillary rising (from Stange et al., 2003)
6
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Figure 2: The surfa
e tension 
ountera
ts the weight of a small liquid drop.su
h as the hydro
arbon mole
ules, are due to the high frequen
y �u
tuations of the geometri
al 
enter oftheirs ele
troni
 
louds. These for
es are 
alled Bond or dispersive for
es. When a polar mole
ule is near anon-polar mole
ule, the dipole moment of the polar mole
ule is subje
ted to high-frequen
y �u
tuations due tothe ele
trostati
 Debye indu
tion from the non-polar mole
ule and this intera
tion produ
es an attra
tive for
ewhi
h is of a dispersive nature. This 
ross for
e is frequently weaker when 
ompared to the polar for
es amongthe polar mole
ules and to the dispersive for
es among identi
al non-polar mole
ules. In this manner, polar andnon-polar liquids are, in general, immis
ible.

Figure 3: Intermole
ular for
es are ele
trostati
 for
es that are dependent on the mole
ular shapes.Fowkes, Fowkes, 1972 has proposed an empiri
al relationship for the interfa
ial tension, σab, between a polarand a non-polar liquid, where the 
ross mixing for
e, responsible for the interfa
ial tension redu
tion, is relatedto the dispersive 
omponents of the surfa
e tensions, σa, σb, of ea
h �uid through a geometri
al average,
σab = σa + σb − 2

√
σd

aσd
b . (17)The main idea behind Fowkes relation is displayed in Figure 4 where the 
ross mixing for
e is, in this 
ase,of a pure dispersive nature.When two drops of a liquid are 
lose enough they will 
oales
e. Although the main 
oales
en
e driving for
e isthe result of a 
olle
tive ele
trostati
 e�e
t among the liquid mole
ules from both drops, the 
oales
en
e pro
essis still an open problem, sin
e vapor mole
ules near the 
onta
t point have theirs traje
tories 
onstrained byan intensi�ed ele
trostati
 �eld and, apparently, they preferentially 
ondense on the positions where the liquidsurfa
es are 
losest, 
ontributing to the start-up of 
oales
en
e. This pi
ture was, indeed, observed in goniometerexperiments (Figure 5), when two water drops 
oales
ed in despite of their initial separation distan
e, of about0.2 mm, was mu
h larger than their ele
trostati
 intera
tion length, but further theoreti
al studies are ne
essaryfor a more thorough analysis of this 
omplex pro
ess.When air displa
es water inside a 
apilary 
hannel, a dynami
 liquid �lm forms separating the air phasefrom the solid surfa
e. This dynami
 liquid �lm has been studied by several authors in
luding some famousones su
h as Landau and Levi
h, 1942 and Bretherton, 1961. It has been shown that the average thi
knessof this �lm is dependent on the interfa
e velo
ity, i.e., on the 
apillary number. When the air-water interfa
erea
hs very small 
onstri
tions of a porous medium, a pressure redu
tion in the invader phase, 
an give rise to7
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Figure 4: Dispersive for
es try to mix water and oil.
Figure 5: Coales
en
e pro
ess between two water-droplets in a goniometer. The two drops 
oales
e after a
ertain time, although they were put at a distan
e of 0.2 mm, whi
h is mu
h larger than their ele
trostati
intera
tion length.the growing of the �lm thi
kness followed by a 
oales
en
e pro
ess, breaking o� the air phase and produ
ing aburst of bubbles from the 
onstri
tion due to the su
essive pressure de
ay followed by a pressure restoring afterea
h 
oales
en
e pro
ess at the 
onstri
tion. This is pi
tured in Figure 6.This dynami
al pro
ess 
an be very important in water �ooding petroleum extra
tion, when the extra
tionis performed with a high 
apillary number or when the oil mobility is very low. In heavy oils, the presen
e ofsurfa
tants that are soluble in oil 
an give rise to stable emulsions.In fa
t, the addition of surfa
tants that are soluble in the hydro
arbon phase will produ
e a polar 
rossmixing for
e and a larger de
rease in the interfa
ial tension with respe
t to Eq. (17), in a

ordan
e with

σab = σa + σb − 2
√

σd
aσd

b − 2
√

σp
aσp

b . (18)Surfa
tant mole
ules su
h as asphaltens 
an be pi
tured as in Figure 7(a), with a long hydro
arbon tail anda polar head. These mole
ules will move to the water-oil interfa
e forming a monolayer where the mole
ule tailswill be oriented toward the hydro
arbon phase, Figure 7(b).Even when water wets the porous surfa
e, when it displa
es a heavy oil inside a porous medium, it is notable to produ
e a steady piston displa
ement, due to the high oil vis
osity and water �ngers will take form insidethe oil-phase. These �ngers are not stable and, in �owing through 
onstri
tions, they 
an break-up formingwater drops, in the same manner as it was pi
tured in Figure 3. The presen
e of surfa
tants that are solublein the oil phase, in the water-oil interfa
e, redu
es the interfa
ial tension making the break-up easier and thesurfa
tant mole
ules will �nish by forming a monolayer around ea
h water droplet, di�
ulting the 
oales
en
eof these droplets and produ
ing a stable emulsion in the down�ow dire
tion, Figure 7(
).In 
on
luding this se
tion, in spite of its great te
hnologi
al importan
e and of the growing s
ienti�
 interestin mi
rohidrodynami
s, the few physi
al problems that were drawn above give a sample of the great 
omplexitywith whi
h we are fa
ed, when trying to 
orre
t understand �uid �ows, when the spatial s
ales are very smalland when the interfa
ial physi
s play an important role.In the next se
tion the Boltzmann equation is presented, 
onsidered as a bridge that should enable to linkthe mi
ros
opi
 to the ma
ros
opi
 s
ales. 8
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Figure 6: Formation of a burst of drops in a small 
onstri
tion. Courtesy of O. Amyot, Amyot, 2004.

Figure 7: Surfa
tants and emulsions
9
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ular to the ma
ros
opi
 domainsWe �rst investigate the origins of the Boltzmann equation.Figure 8 shows a mole
ular dynami
s simulation of a vapor 
ondensation pro
ess based on an N-bodysimulation of the Newton se
ond law of motion. Ea
h one of the N parti
les is subje
ted to a traje
tory, in thephysi
al spa
e, given by the solution of the following equations
mi

d2~xi

dt2
=

∑

j

Fij , (19)
d~xi

dt
= ~vi, (20)where ~xi is the position, ~ξi the velo
ity of parti
le i and Fij is the for
e among ea
h i−parti
le and all theremaining parti
les, evaluated by supposing a Lennard-Jones intera
tion potential among the parti
les, Surmas,2006. Parti
les are spheri
al with a diameter that is given by the inversion point of the Lennard-Jones potential,where the attra
tive for
es be
ome repulsive. Ea
h time a parti
le 
ollide with the 
ontainer surfa
e, it is re�e
tedba
k following a spe
ular re�e
tion and with only a previously established fra
tion of the kineti
 energy it hadbefore the 
ollision, trying to reprodu
e a 
ooling pro
ess at the walls. Attra
tive for
es between the wall
ontainer and the parti
les where not 
onsidered for avoiding 
ondensation at the wall surfa
e.

Figure 8: Mole
ular dynami
s simulation of vapor 
ondensation.The initial state ~x1, ~ξ1, ...~xN , ~ξN , t = 0 was randomly set.We 
an see that this mole
ular dynami
s simulation gives a good pi
ture of what is to happen in a 
on-densation pro
ess at the mole
ular s
ale, although the analysis was performed on a me
hani
al deterministi
system of parti
les, subje
ted to Newton 's se
ond law of motion, without any help of thermodynami
 
on
eptssu
h as thermodynami
 energy and entropy.Nevertheless the results of su
h analysis is restri
ted: a) to the very small mole
ular s
ales and b) to verysmall time s
ales, 
onsidering the limitations imposed by the 
omputer rounding-o� error.Consider, now our me
hani
al system of N parti
les, when several di�erent initial state ~x1, ~ξ1, ...~xN , ~ξN , t = 0are possible. Suppose that the set of all possible initial states is a dense set in the phase-spa
e ~x1, ~ξ1, ...~xN , ~ξN .In this 
ase it is impossible to know where a given parti
le will be at a given time. Let, however,
fN

(
~x1, ~ξ1, ...~xN , ~ξN , t

)
, (21)to be the probability of �nding, at time t, dt the parti
le 1 at the position ~x1, d~x1 with velo
ity ~ξ1, d~ξ1, theparti
le 2 at the position ~x2, d~x2 with velo
ity ~ξ2, d~ξ2 and so on, until parti
le N at the position ~xN , d~xNwith velo
ity ~ξN , d~ξN . The Liouville equation des
ribing the dynami
al evolution of this system is given by,Cer
ignani, 1969,

∂tf
N +

∑

i

~ξi.∂~xi
fN +

∑

i

~χ
i
.∂~ξi

fN = 0, (22)where ~χ
i
is the for
e a
ting on parti
le i, 10
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~χi = ~χe

i
+

N∑

j=1
j 6=i

~χij . (23)For
e ~χe
i
is the for
e on parti
le i due to an external �eld and for
e ~χ

ij
is the for
e on parti
le i due to itsintera
tion with parti
le j,

~χ
ij

= − ∂Φ (xij)

∂ (~xi − ~xj)
, (24)where xij = |~xi − ~xj | and Φ is assumed to be a 
entral potential depending, only, on the distan
e betweenparti
les i and j.Conjoint probability fN 
an be integrated in the phase spa
e ~x2, ~ξ2, ...~xN , ~ξN to give the marginal probability

f1 of �nding, at time t, dt the parti
le 1 at the position ~x1, d~x1 with velo
ity ~ξ1, d~ξ1

f1
(
~x1, ~ξ1, t

)
=

∫
...

∫
fNd~x2...d~xNd~ξ2...d~ξN , (25)
onsidering that the probability fN gives a too detailed des
ription of the system, whi
h is unne
essarily
omplexe, sin
e the dynami
al evolution of an arbitrary, but, single, parti
le 
an be a reliable des
ription of thewhole me
hani
al system of parti
les, when these parti
les 
annot be individually labelled.After integration, 
onsidering f = Nf1 the Liouville equation be
omes, for large N ,

∂tf + ~ξ.∂~xf + ~χe.∂~ξf = −∂~ξ

∫ ∫
~χ

12
f 2

(
~x1, ~ξ1, ~x2, ~ξ2, t

)
d~x2d~ξ2 =

1

m
×

∂~ξ

∫ ∫
∂Φ (x12)

∂ (~x1 − ~x2)
f 2

(
~x1, ~ξ1, ~x2, ~ξ2, t

)
d~x2d~ξ2 (26)whi
h is a Boltzmann equation for the distribution fun
tion f , with a 
ollision term Ω. This 
ollision term hasbeen split in two 
ollision terms, He and Doolen, 2002, Ω = Ωsd + Ωld, where Ωsd is referred to short distan
eintera
tions, |~r1 − ~r| < σ and Ωld to long range intera
tions |~r1 − ~r| > σ.4.1. Long-range termConsider, �rst, the long-range 
ollision term

Ωld =
∂

∂~ξ
.

∫ ∫

|~r1−~r|>ς

1

m

∂φ (|~r1 − ~r|)
∂ (~r)

×f2
(
~r, ~ξ, ~r1, ~ξ1, t

)
d~r1d~ξ1. (27)By making the assumption that, for |~r1 − ~r| > σ, the mole
ular 
haos prevails, He and Doolen, 2002,

f2
(
~r, ~ξ, ~r1, ~ξ1

)
= f

(
~r, ~ξ, t

)
f

(
~r1, ~ξ1, t

)
= ff1, (28)one obtains,

Ωld =
1

m

∂f
(
~r, ~ξ, t

)

∂~ξ
.
∂

∂~r

∫

|~r1−~r|>σ

φ (|~r1 − ~r|)

×n (~r1, t) d~r1, (29)The integrand in the above equation is the mean �eld, i.e., the �eld exerted by the n mole
ules pla
ed at
~r1 − ~r, on the mole
ules at position ~r, 11
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φm (~r) =

∫

|~r1−~r|>σ

φ (|~r1 − ~r|)n (~r1, t) d~r1 (30)Cosider n (~r1, t) to vary slowly with the spatial 
oordinate,
n (~r1, t) = n (~r, t) + ∇n. (~r1 − ~r) +

1

2
∇∇n : [(~r1 − ~r) (~r1 − ~r)] + ..., (31)In this 
ase,

φm (~r) = −an − κ∇2n, (32)where
a ≡ −

∫

ẋ>σ

φ (x) d~x, (33)
κ ≡ −1

6

∫

ẋ>σ

φ (x) x2d~x, (34)be
ause, φ < 0.With the above hypotheses, the long-range term 
an thus be written as
Ωld =

1

m

∂f
(
~r, ~ξ, t

)

∂~ξ
.∇φm (~r) . (35)4.2. Short-Range termAfter some lengthy algebra, under the mole
ular 
haos hypothesis and supposing that the 
ollisions involveonly a pair of parti
les, 
onsidered as material points, the short-range term 
ollision term 
an be written as(Kremer, 2005),

Ωsd =

∫ (
f

(
~r, ~ξ,, t

)
f

(
~r, ~ξ1

,
, t

)
− f

(
~r, ~ξ, t

)
f

(
~r, ~ξ1, t

))

×gbdbdǫd~ξ1. (36)This is the original Boltzmann 
ollision term, (Boltzmann, 1866), dedu
ed for material points, where ~ξ, and
~ξ,
1 mean the velo
ities of, respe
tively, the target and the in
ident parti
les that res
ue ~ξ and ~ξ1 after they
ollide, ~g = ~ξ1 − ~ξ is the relative velo
ity and g = |~g|, b is an impa
t parameter related to the point where aparti
le, labeled as 1, rea
hs a spheri
al surfa
e of radius σ around a target parti
le that moves, at the instant

t, with the velo
ity ~ξ and ǫ is an azimuthal angle in the equatorial plane in the σ-sphere that is orthogonal to
~ξ1 − ~ξ.Enskog, Enskog, 1921, has, further, developed a 
ollision model more appropriate for liquids, 
onsideringthe parti
les to have a �nite volume, sin
e, in a liquid the mean free path has the same order of magnitude thanthe mole
ular diameter and multiple 
ollisions are frequent, writting the 
ollision term as

Ωsd
Ensk =

∫ ∫ ∫ 


χ

(
r + 1

2σ~k
)

f
(
~r, ~ξ′, t

)
f

(
~r + σ~k, ~ξ′1, t

)
−

χ
(
r − 1

2σ~k
)

f
(
~r, ~ξ, t

)
f

(
~r − σ~k, ~ξ1, t

)





×σ2~g.~kd~kd~ξ1 (37)where 12
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~k = (cos θ, sin θ cos ǫ, sin θ sin ǫ) (38)

θ is a polar angle in the 
ollision plane,
θ = arcsin

(
b

σ

) (39)and χ is an heuristi
 
orre
tion fa
tor introdu
ed by Enskog to take a

ount of the �nite volume e�e
ts of thepopulations f
(
~r, ~ξ′, t

) and f
(
~r + σ~k, ~ξ1

′
, t

).5. Kineti
 models for the 
ollision term in the 
ontinuous velo
ity spa
eThe 
ollision term Ω is dependent on the distribution fun
tion itself and, indeed, the Boltzmann equationis a non-linear integro-di�erential equation. Instead of the full 
ollision term, a 
ollision model is requiredleading to a non-linear partial di�erential equation, whi
h 
an be numeri
ally solved. We restri
t ourselves tothe 
ollision terms where the parti
les were 
onsidered without volume. The e�e
t of the parti
le volume ondis
rete models, is, presently, still under investigation, He and Doolen, 2002, Surmas et al., 2006.5.1. BGK 
ollision modelsConsidering the parti
les to be material points without volume and admitting the mole
ular 
haos hypothesis,the 
ollision term Ω in the Boltzmann equation, Eq. (1), was derived by Boltzmann in 1868 for binary 
ollisionsas Eq. (36).The above hypothesis are only rigorously true for a rare�ed gas without long-range attra
tion among theirmole
ules. In addition, mole
ular 
haos means that the post-
ollisional states of any two mole
ules are un
or-related. If these hypothesis are a

epted to be true, the Boltzmann equation is a non-linear integro-di�erentialequation, whi
h solution gives the distribution fun
tion f(~r,~c, t), when the following mole
ular parameters areknown: a) The mole
ular mass, m and b) the intera
tion potential, ξ (|~r1 − ~r|). This means that any ther-mohydrodynami
 problem 
ould, in prin
iple be solved, with solely these mole
ular informations and withappropriated boundary 
onditions. In fa
t, a Chapman-Enskog analysis of the Boltzmann equation with the
ollision term given by Eq. (36) shows that in the limit Kn → 0, all the thermohydrodynami
 equations areretrieved, with transport 
oe�
ients that are only dependent on the lo
al physi
al state and on the abovemole
ular properties.Nevertheless, numeri
ally solving this integro-di�erential equation has revealed to be a very 
ompli
atedtask. In addition, the full Boltzmann equation has details whi
h are not, apparently, important, when themain worry is to des
ribe the spatial and time evolution of the �rst hydrodynami
 moments of the distributionfun
tion.In this manner, 
onsider repla
ing the 
ollision term by a single relaxation term
Ω =

feq − f

τ
, (40)where τ is a relaxation time.In spite of its apparent simpli
ity, Eq. (40) satisfy the main properties Eqs. (2-4) and the Boltzmannequation with the 
ollision term given by Eq. (40) satisfy the H-theorem. Further, a Chapman-Enskog analysisshows that the full set of the thermohydrodynami
 equations are retrieved with, nevertheless,

µ

2
=

3η

2
=

3κ

10
=

ρeτ

3
, (41)leading to a non-manageable Prandtl number, due to the linear dependen
e of the vis
osity 
oe�
ients and thethermal 
ondu
tivity on the single relaxation parameter τ .5.2. Deriving 
ollision models with in
reased a

ura
yWritting the distribution f = feq + fneq, with fneq = feqφ, when f is near feq the short-range 
ollisionterm 
an be written as 13
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Ω = feqL(φ), (42)where L is a linear operator, L : ξD → ξD.For ea
h point ~r the perturbation φ 
an be developed in terms of the Hermite polynomial tensors Ψθ,(r

θ
),Philippi et al., 2006b, Shan and He, 1998,

φ =
∑

θ

aφ
θ,(r

θ
) (~x, t)Ψθ,(r

θ
)

(
~Cf

)
, (43)and 
oe�
ients aφ

θ 
an be related to the ma
ros
opi
 moments of f . In this way, aφ
0 = 0, aφ

1,α = 0. The
oe�
ient aφ
2,αβ is related to the vis
ous stress tensor ταβ through

aφ
2,αβ =

ταβ

2P
, (44)where P = nkT is the thermodynami
 pressure.The pe
uliar kineti
 energy E(~x, t) = ρe is given by

ρe =

∫
f

1

2
m (~c − ~u)

2
d~c =

∫
feq 1

2
m (~c − ~u)

2
d~c. (45)In this way

∫
fneq 1

2
mC2d~C = 0, (46)or

∫
fneq 1

2
mCαCαd~C =

1

2
tr (τ) = 0. (47)In two-dimensions

τxx + τyy = 0, (48)or
aφ
2,xx + aφ

2,yy = 0. (49)For third-order moments
Sαβγ =

∫
fmcαc

β
cγd~c =

∫
feqmcαc

β
cγd~c +

∫
fneqmcαc

β
cγd~c

= Seq
αβγ + Sneq

αβγ , (50)with
Seq

αβγ = ρuαuβuγ + P (δβγuα + δαγuβ + δαβuγ) . (51)For the non-equilibrium part,
Sneq

αβγ =

∫
fneqmCαCβCγd~C + (τβγuα + ταγuβ + ταβuγ) , (52)resulting, using aφ
1,α = 0, the invarian
e property with respe
t to index permutation and Eq. (51):

P

(
2kT

m

) 1
2

aφ
3,αβγ =

Sαβγ

2
−

[
1
2ρuαuβuγ + 1

2P (δβγuα + δαγuβ + δαβuγ)
+ 1

2 (τβγuα + ταγuβ + ταβuγ)

]

≡ qαβγ . (53)When β and γ are 
ontra
ted, de�ning ǫα to be the total energy �ux along the dire
tion α,
P

(
2kT

m

) 1
2

aφ
3,αββ = ǫα −

[
1

2
ρu2uα + P

(
D

2
+ 1

)
uα + ταβuβ

]
= qα, (54)14



Pro
eedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0100where qα is the net heat �ux along the dire
tion α, i.e., the total energy �ux ǫα, ex
luding the �ow of ma
ros
opi
kineti
 energy 1
2ρu2uα, the 
ompression work P

(
D
2 + 1

)
uα and the vis
ous work ταβuβ.Now, using the development, Eq. (43) ,

L(φ) =
∑

θ

aφ
θ,(rθ)L

(
Ψθ,(rθ)

)
. (55)The θ-order tensor L (

Ψθ,(rθ)

) is, itself, an element of the CD spa
e and 
an be developed in terms of the
θ-order Hermite tensors that belong to the orthogonal basis of this spa
e,

L
(
Ψ

θ,(rθ)

)
=

∑

(sθ)

γ
(rθ),(sθ)

Ψ
θ,(sθ)

, (56)where γ(rθ),(sθ) designate the (rθ), (sθ) 
omponents of 2θ-order relaxation tensors. As L is a self-adjoint operator,with non-positive eigenvalues, Cer
ignani, 1969,
γ

(rθ),(mθ )
=

∫
e−C2

fL
(
Ψ

θ,(rθ)

)
Ψ

θ,(mθ)
d~Cf

∫
e−C2

f

(
Ψ

θ,(mθ)

)2

d~Cf

≤ 0. (57)Using Einstein's notation
L(φ) =

∑

θ

γ
(rθ),(sθ)

aφ
θ,(rθ)Ψθ,(sθ)

, (58)where repeated indexes mean summation.Above equation is an in�nite summation on θ. When the terms above a 
hosen order N are diagonalised,following a Gross-Ja
kson pro
edure, Cer
ignani, 1969,
L(N)(φ) =

N∑

θ=0

γ
(rθ),(sθ)

aφ
θ,(rθ)Ψθ,(sθ)

− γ
N+1

∞∑

θ=N+1

δ
(rθ),(sθ )

aφ
θ,(rθ)Ψθ,(sθ)

, (59)where
δ
(rθ),(sθ)

= δr
1
s
1
....δr

θ
s

θ
. (60)In this way, using Eq. (43)

L(N)(φ) = −
[

N∑

θ=0

λ
(r

θ
),(s

θ
)
aφ

θ,(r
θ
)Ψθ,(s

θ
)

]
− γ

N+1
φ, (61)where λ

(r
θ
),(s

θ
)

= −
(
γ

(rθ),(sθ)
+ γ

N+1
δ
(rθ),(sθ)

) is positive for all rθ, sθ, sin
e a) λ
(r

θ
),(s

θ
)

= −γ
(rθ),(sθ )

for allo�-diagonal 
omponents and b) the diagonal 
omponents γ
(rθ),(rθ )

are negative with an absolute value that isgreater than γN+1 for all θ smaller or equal to N . Eq. (61) 
an be 
onsidered as an Nth-order kineti
 model tothe 
ollision term, with an absorption term γ
N+1

φ resulting from the diagonalization of the relaxation tensorsafter the given N . Therefore, all the moments of order higher than N are 
ollapsed into a single non-equilibriumterm minimizing the trun
ation e�e
ts on the �ne stru
ture of the L-operator spe
trum.Eq. (61) generates in
reasing a

ura
y models to Ω when the distribution fun
tion f is near the Maxwell-Boltzmann equilibrium distribution, feq. Ea
h term in the sum, in Eq. (61), gives the relaxation to theequilibrium of se
ond or higher order kineti
 moments Mθ that are not preserved in 
ollisions, modulated by a
λθ relaxation tensor.5.2.1. A se
ond order 
ollision model in the two-dimensional spa
eWithout any loss in the generality, we restri
t ourselves to two-dimensional spa
es and se
ond order models,with N = 2. In present se
tion, the isotropy of 4th rank tensors will be used to give expli
it forms for these
ond-order 
ollision model.From Eq. (61)

λ
(r

2
),(s

2
)
aφ
2,(r2)

Ψ
2,(s2)

= λ
αβγδ

aφ
2,αβΨ

2,γδ
. (62)15
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onsidering the symmetry with respe
t to index permutation,
λ

αβγδ
= λµ (δαβδγδ + δαγδβδ + δαδδβγ) . (63)In this way,

λ
αβγδ

aφ
2,αβΨ

2,γδ
= λµ

[
aφ
2,ααΨ2,γγ + aφ

2,αβΨ
2,αβ

+ aφ
2,αβΨ

2,βα

]

= λµ

[
aφ
2,xx

(
C2

fx − 1
2

)
+ aφ

2,yy

(
C2

fy − 1
2

)
+

2aφ
2,xyCfxCfy

]
, (64)sin
e aφ

2,αα = 0. Using Eq.(44)
λ

αβγδ
aφ
2,αβΨ

2,γδ
=

λµ

P

[
τxx

(
C2

fx − 1

2

)
+ τyy

(
C2

fy − 1

2

)
+ 2τxyCfxCfy

]
, (65)or, from Eq. (48), the se
ond order model in two dimensions will be, �nally, written as

L(2)(φ) = −λµ

P

[
τxxC2

fx + τyyC2
fy + 2τxyCfxCfy

]
− γ

3
φ. (66)Present se
ond-order 
ontinuous kineti
 model is able for analyzing non-isothermal and fully 
ompressible�ows. The thermal 
ondu
tivity is related to γ

3
diagonalization 
onstant. Consideration of third-order 
ollisionmodels will be, only, ne
essary in multi-
omponent systems, for 
orre
tly des
ribing third-order 
oupling: theSoret and Dufour e�e
ts, Philippi and Brun, 1981a.6. Velo
ity dis
retizationDis
retization means to repla
e the entire 
ontinuous velo
ity spa
e cD by some dis
rete velo
ities ~ci. AChapman-Enskog analysis shows that the 
orre
t ma
ros
opi
 equations to be retrieved is given by assuringthat the dis
rete distributions feq

i satisfy:
< ϕp >eq=

∫
feq

(
~ξ
)

ϕp(~ξ)d~ξ =
∑

i

feq
i

hD
ϕp(~ξi), (67)for all {ϕp = 1, ξα, ξα ξβ , ξα ξβ ξγ , ...} of interest, where feq

(
~ξ
) is the MB distribution written in terms of theparti
les velo
ity ~ξ in the 
ontinuous spa
e, h is the latti
e unit, i.e., the smallest physi
al distan
e between anytwo 
ontiguous grid points, D is the Eu
lidean dimension, D = 2 in the plane and D = 3 in three-dimnsionalgrids and < ϕp >eq means a ma
ros
opi
 equilibrium moment of ϕp.In Philippi et al., 2006b, the dis
retization is 
onsidered as a quadrature problem, i.e., the dis
rete distribu-tions feq

i in the right-hand side of Eq. (67) are repla
ed by feq
(
~ξi

), i.e., by the value of the MB distributionevaluated at the pole ~ξi, multiplied by a parameter ωi, whi
h means the weight to be attributed to ea
h velo
ityve
tor ~ξi for satisfying the quadrature 
ondition, 
onsidering that, for ea
h 
oordinate-axis α, the latti
e-speeds
ξiα form a dis
rete and �nite set and the 
ontinuous velo
ity spa
e is 
ontinuous and extends to in�nity.In this manner, the dis
retization restri
tions, Eq. (67) are repla
ed by the following quadrature equations,

< ϕp >eq=

∫
feq

(
~ξ
)

ϕp(~ξ)d~ξ

=
∑

i

ωi

(
2kT0

m

)D/2

feq
(
~ξi

)
ϕp(~ξi), (68)where the fa
tor (

2kT0

m

)D/2 was introdu
ed for assuring ωi to be a dimensionless, real number, sin
e feq
(
~ξ
) isthe number of parti
les per unit volume of the velo
ity spa
e and per unit volume of the physi
al spa
e.16
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hosen. If the dimensionless �u
tuationvelo
ity ~Cf =
~ξ−~u

( 2kT
m )

1/2 is 
hosen as the integrating variable, the parti
le velo
ities result dependent on T andon ~u , Philippi et al., 2006b,
~ξi = ~u +

(
2kT

m

)1/2

~Cfi = ~ξi (T, ~u) . (69)Another 
hoi
e is the dimensionless parti
le velo
ity ~C = ~c

( 2kT
m )1/2 . In this 
ase, the parti
le velo
ities aretemperature dependent, Philippi et al., 2006b,

~ξi =

(
2kT

m

)1/2

~Ci = ~ξi (T ) . (70)Avoiding the ~ξi temperature dependen
e requires to 
onsider the parti
les velo
ity ~ξ as the integratingvariable when performing the quadrature, i.e., to let c2 free from T in the exponential part e−C2of the equilibriumdistribution. This 
an be a

omplished by writing, Philippi et al., 2006b, Shan and He, 1998,
e
− (c−u)2

2kT
m =

(
e−C2

fo

)T0
T

, (71)where T0 is a referen
e (and 
onstant) temperature and ~Cfo =
~ξ−~u

( 2kT0
m )

1/2 is a new dimensionless pe
uliar velo
ityreferred to the temperature To.When T is near T0, i.e., when the departures from thermal equilibrium are small, the above expression maybe developed in a Taylor series around T
To

= 1. Considering Θ = T
To

− 1 to be the temperature deviation, thisdevelopment gives
(
e−C2

fo

)T0
T

= e−C2
fo

[
1 + C2

foΘ +
1

2
C2

fo

(
C2

fo − 2
)
Θ2 + ...

]
, (72)whi
h terms are in
reasing powers of C2

fo.Consider writing the MB equilibrium distribution as
feq = nd

( m

2πkT

)D/2

e−C2
f

= nd

( m

2πkT

)D/2

e−C2
fo

[
1 + C2

foΘ +
1

2
C2

fo

(
C2

fo − 2
)
Θ2 + ...

]

= nd

( m

2πkT

)D/2

e−C2
oe−U2

o+2~Uo.~Co

×
[
1 + C2

foΘ +
1

2
C2

fo

(
C2

fo − 2
)
Θ2 + ...

]
. (73)The exponential term e−U2

o+2~Uo.~Co is the generating fun
tion of the Hermite polynomials Ψθ,(r
θ
)

(
~Co

) in thevelo
ity spa
e, where (rθ) is a sequen
e of indexes r1, r2, ...rθ,The Hermite tensors are orthogonal in the Hilbert spa
e H, with respe
t to the inner produ
t
(h ∗ g)c =

1

πD/2

∫
e−C2

hgd~C, (74)and symmetri
 wih respe
t to any index permutation.After some straightforward algebra, the result for the equilibrium distribution 
an then be written as anin�nite series, Philippi et al., 2006b, 17
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feq =

1

πD/2

(
m

2kT0

)D/2

e−C2
0

∑

θ

aeq
θ,(rθ)

(
nd, ~U0, Θ

)
Ψθ,(r

θ
)

(
~Co

)
. (75)where the 
oe�
ients aeq

θ,(rθ) are related, respe
tively, to the f ma
ros
opi
 properties, at equilibrium: the numberdensity of parti
les, nd, the lo
al momentum, ndU0,α, the momentum �ux, Πeq
αβ , the energy �ux, eeq

αβγ and anhyper-�ux of momentum, Ξeq
αβγδ.From Eq. (68), it is easy to see that its 
orresponding dis
rete form 
an be written as,

feq
i = Wi

∑

θ

aeq
θ,(rθ)

(
n, ~U0, Θ

)
Ψθ,(r

θ
)

(
~Co,i

)
. (76)where n = ndh

D and Wi = 1
πD/2 ωie

−C2
0,i , Philippi et al., 2006b.Consider the inner produ
ts in the 
ontinuous and dis
rete spa
e, given respe
tively by,

(f ∗ g)c ≡ 1

πD/2

∫
e−C2

0fgd~C0, (77)
(f ∗ g)d ≡

∑

i

Wif
(

~Co,i

)
g

(
~Co,i

)
, (78)where Wi = 1

πD/2 ωie
−C2

0i and their indu
ed norms
‖f‖2

c ≡ 1

πD/2

∫
e−C2

0f2d~C0, (79)
‖f‖2

d ≡
∑

i

Wif
2
(

~Co,i

)
. (80)Sin
e fun
tions Ψθ,(r

θ
)

(
~Co

) are orthogonal in the 
ontinuous spa
e with respe
t to the inner produ
t Eq.(77), it 
an be shown, Philippi et al., 2006b, that the quadrature equation, Eq. (68) requires the orthogonalityof Ψθ,(r
θ
)

(
~Co,i

) and their norm preservation in the dis
rete spa
e, i.e.,
∑

i

WiΨ
2
θ,(r

θ
)

(
~Co,i

)
=

1

πD/2

∫
e−C2

0Ψ2
θ,(r

θ
)

(
~Co

)
d~Co (81)In this manner, the still unknown weights Wi and the dis
rete velo
ities ~Co,i must be 
hosen in su
h a mannerthat the orthogonality of the Hermite polynomial tensors Ψθ,(r

θ
) is assured in the dis
rete spa
e and satisfyingthe norm preservation equation, Eq. (81). In Philippi et al., 2006b, it is shown that the norm preservationequation warrants the orthogonality of Ψθ,(r

θ
)

(
~Co,i

) , with respe
t to the inner produ
t, Eq. (78), when thedis
rete velo
ity spa
e is a Bravais latti
e.The above 
on
lusion is very important be
ause it redu
es our dis
retization problem to �nd the weights Wiand the poles ~Coi satisfying, solely, the norm restri
tions, Eq. (81).With the ex
eption of a very few latti
es, Gaussian-like quadratures does not give a regular dis
rete set ~Coi.Nevertheless, if any Bravais velo
ity set {~ei}, giving a spa
e-�lling latti
e, is 
hosen, the quadrature problem
an be 
onsidered as to �nd the weights Wi and a s
aling fa
tor a su
h that ~Co,i = a~ei, satisfying Eq. (81).Considering that the poles ~ei are previously known, this quadrature method was named as quadrature withpres
ribed ab
issae, Philippi et al., 2006b.In this way, when the order of approximation N of the Hermite polynomial expansion to the MB equilibriumdistribution is 
hosen, a set Ψθ,(r
θ
), θ = 0, ..., N , is established, and the in�nite and enumerable basis of theHilbert spa
e H : cD → R, whi
h generates the solutions of the 
ontinuous Boltzmann equation, is repla
ed bya �nite set of Hermite polynomial tensors, restri
ting the solutions to N th-degree polynomials in the velo
ity

~c. The quadrature problem is, now, to sele
t a regular latti
e {~ei}, in su
h a manner that fun
tions Ψθ,(r
θ
)18
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t to the inner produ
t in the dis
rete spa
e and this 
an be a

omplishedby assuring that the norm of ea
h one of these fun
tions Ψθ,(r
θ
) is retrieved, exa
tly, in the dis
rete spa
e.The number b of the required latti
e ve
tors is proportional to the order N of the polynomial approximation,

b = b(N). In addition, we have shown, Philippi et al., 2006b, that when the quadrature problem is solved, the2θ-rank tensors given by,
Λ(r

θ
),(s

θ
) =

∑

i

WiC0,i,r0 ...C0,i,rθ
C0,i,s0 ...C0,i,sθ

, (82)are isotropi
 in the dis
rete spa
e, for θ = 1, ...N .6.1. Two-dimensional square latti
esWe restri
t our attention to two-dimensional square latti
es, in this work, although the above presentedquadrature pro
edure is general and may be used for deriving two and three-dimensional latti
es.The dimensionless lo
al velo
ity
~U0 =

~u
(

2kT0

m

)1/2
, (83)
an be s
aled for enabling to work with unitary latti
e-units. In this manner, the spatial and the time s
ales,respe
tively, h and δ, 
an be 
hosen so as to satisfy,

h

δ
=

(
2kT0

m

)1/2

, (84)and, sin
e
~nU0 =

∑

i

fi
~Coi = a

∑

i

fi~ei, (85)where ~ei are the usual latti
e ve
tors in 2D latti
es, a new lo
al velo
ity 
an be de�ned as
n~u∗ =

n~U0

a
=

∑

i

fi~ei. (86)In two dimensions, square latti
es like the D2Q9, D2Q13,..., have four dis
rete velo
ities at ea
h energy level
Co. Figure 9 summarizes some square latti
es that are being used in latti
e-Boltzmann simulation: ea
h setof four dis
rete velo
ities is superposed to the previous latti
e-ve
tors set when adding a single energy level,following the sequen
e (

0, 1, √2, 2, 2
√

2, 3, 3
√

2,...).

Figure 9: Some two-dimensional square latti
es that are usual in LBM.19
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eedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0100When N = 2 there will be 4 linearly independent equations for 4 unknowns related to the s
aling fa
tor
a, and the D2Q9 weights W0, W1,W2. This set has a unique solution leading to the widely known values
W0 = 16/36, W1 = 4/36,W2 = 1/36 and a =

√
3/2.The equilibrium distribution for the D2Q9 latti
e is, then,

feq
i,2 = Win

(
1 + 2a2u∗

αei,α + 2a2u∗
αu∗

β

(
a2ei,αei,β − 1

2δαβ

)
+

Θ
(
a2e2

i − 1
)

)
, (87)with third-order errors O(Θu∗, u∗3), with respe
t to the full MB distribution.The e�e
t of temperature on the equilibrium distribution 
an be 
learly seen from Eq. (87). In highertemperature sites, the amount of rest parti
les is redu
ed and redistributed to higher energy levels, trying tomimi
 the temperature dependen
e of the 
ontinuous MB distribution. This e�e
t is highly desirable in thermalLBE simulation. An equilibrium distribution similar to Eq.(87) is given as Eq. (18) of Shan and He, 1998.The D2Q13 and the next latti
es are also able to run se
ond-order models. In these 
ases, the number ofunknowns is greater than the number of disposable equations and several solutions will be available, satisfyingthe quadrature problem.Nevertheless, 
ontrary to Ma
Namara and Alder results (M
Namara and Alder, 1993) and to the resultsthat would be expe
ted with �tting methods, this latti
e is not able to run full third order models. Indeed, when

N = 3, it is impossible to �nd real positive values for a, W0, W1,W2, W3 satisfying all the norm restri
tions,Eq. (81) related to Ψ3,αβγ . This result is the same for the D2Q17 latti
e.Considering the D2Q21 latti
e as a next 
andidate for third order models, there will be, in this 
ase, 7unknowns a, W0, W1,W2, W3,W4, W5 for 6 norm restri
tions, after eliminating identi
al equations. Letting
a to be a free variable, the system gives a solution with real positive roots when a is inside the interval
0.659 836 ≤ a ≤ 1.16208.The values a = 0.659 836 and a = 1.16208 (in fa
t, a = 1

12

√
5
√√

193 + 25) are roots of the polynomials
W0(a) and W3(a), respe
tively. In this manner, when the value a = 1.16208 is 
hosen, W3 = 0 and the latti
eloss an energy level, giving a modi�
ation of the D2Q17 latti
e, whi
h has been named D2V17, shown in Figure10. The weights, with six signi�
ant digits, are W0 = 0.402005, W1 = 0.116155, W2 = 0.0330064, W3 = 0,
W4 = 0.0000790786, W5 = 0.000258415.

Figure 10: The D2V17 latti
e.This modi�ed square latti
e is less expensive 
onsidering 
omputer requirements and has the same propertieswhen 
ompared with the D2Q21 latti
e, i.e., it retrieves, exa
tly, all the equilibrium moments up to the 3rdorder and ii) gives isotropi
 tensors up to the 6th rank. Therefore, present method 
an be, also, 
onsideredas a tool for investigating the stru
ture of minimal velo
ity sets giving regular latti
es.The D2V17 equilibriumdistribution 
an be written as
feq

i,3 = feq
i,2 + Wia

eq
3,αβγΨ3,αβγ(i) =

Win





1 + 2a2u∗
αei,α + 2

(
a2u∗

αu∗
β

)
(a2ei,αei,β − 1

2δαβ)+

Θ
(
a2e2

i − 1
)

+ 4
3a3u∗

αu∗
βu∗

γ

[
a3ei,αei,βei,γ−

a
2 (ei,αδβγ + ei,βδαγ + ei,γδαβ)

]

+2Θa2
(
a2e2

i − 2
)
u∗

γei,γ




, (88)20
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eedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0100with fourth-order errors O(Θu∗2, u∗4).In addition to the equilibrium moments up to order 3, thermohydrodynami
s requires the 4th-order equi-librium moments < C2
0C2

0,x >eq, < C2
0C2

0,y >eqand < C2
0C0,xC0,y >eqto be retrieved, M
Namara and Alder, 1993.Sin
e these fun
tions are not orthogonal in the 
ontinuous velo
ity spa
e, a Gram-S
hmidt orthogonalizationpro
edure was used to �nd orthogonal polynomials from this set by using the previous Hermite polynomialsand the inner produ
t Eq. (77).The result was

Ψ4,1 = C2
oC2

o,x − 7

2
C2

o,x − 1

2
C2

o,y + 1, (89)
Ψ4,2 =

1

7

(
C2

o

(
7C2

o,y − C2
o,x

)
− 24C2

o,y + 6
)
, (90)

Ψ4,3 = Co,xCo,y

(
C2

o − 3
)
. (91)When we require the norm preservation of the fun
tions Ψ4,1, Ψ4,2 and Ψ4,3 this gives a system of 8independent equations for 9 unknowns. In this 
ase, a is, again, a free parameter and the solution gave realpositive weights for 0.590193 ≤ a ≤ 0.760569.Further, when a is, respe
tively, taken as 0.590193 or 0.760569 the weights W1 or W6 are null, giving twoD2V25 latti
es that retrieve the 
orre
t thermohydrodynami
s equations. These latti
es are shown in Figure11. For the �rst latti
e, 
alled D2V25(W1), a = 0.590193 and the 
al
ulated weights are W0 = 0.235184, W1 =0, W2 = 0.101 817 , W3 = 5. 921 34×10−2, W4 = 2. 004 09×10−2, W5 = 6. 795 23×10−3, W6 = 1. 143 76×10−3,

W7 = 2. 197 88× 10−3 . Latti
e D2V25(W6) has a = 0.760569 and W0 = 0.239 059 , W1 = 0.063 158 , W2 = 8.
759 57 × 10−2, W3 = 3. 118 00 × 10−2, W4 = 6. 198 96 × 10−3, W5 = 2. 020 13 × 10−3, W6 = 0, W7 = 8.
382 24× 10−5.

Figure 11: The D2V25 latti
es for thermal problems.Therefore, thermohydrodynami
 equations are 
orre
tly retrieved with the LBE based on these latti
es, butisotropy of 8th-rank tensors 
annot be assured. The equilibrium distribution for this latti
e 
an be written as
feq

i,th = feq
i,3 + Wi

[
aeq
4,1Ψ4,1(i) + aeq

4,2Ψ4,2(i) + aeq
4,3Ψ4,3(i)

]
, (92)with, nevertheless, fourth-order errors O(Θu∗2, u∗4, Θ2) with respe
t to the full MB distribution. Parameters

aeq
4,θ 
an be found by using the orhogonality properties of Ψ4,θ

(
~C0

) in the 
ontinuous spa
e, giving,
aeq
4,1 =

2

7

(
2a4u∗2

x u∗2 + Θa2
(
6u∗2

x + u∗2
)

+ 2Θ2
)
, (93)

aeq
4,2 =

1

12

(
7a4u∗4

y + a4u∗4
x + 6a4u∗2

x u∗2
y + 24a2u∗2

y Θ + 6Θ2
)
, (94)21
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aeq
4,3 =

4

3
a2u∗

xu∗
x

(
3Θ + a2u2

)
.For full fourth-order model, the norm preservation of a full set of Hermite orthogonal polynomials untilthe 4th-order is required, giving a set of 9 norm restri
tions. This system will be, only, 
losed for a latti
ewith 8 energy levels. The D2Q29 latti
e, with 8 weights W0, ...,W 7, is a natural 
andidate to be the minimalsquare latti
e to run fourth-order models in the square latti
es hierar
hy. For this latti
e, there are 9 linearlyindependent equations. This 
losed set of 9 independent equations has, nevertheless, no solution.This result was the same for the next D2Q33 latti
e, when a is let as a free parameter.Sin
e ea
h fun
tion Ψθ,(r

θ
) is a linear 
ombination of the monomials ϕ =

{
1, Cox, Coy, C2

ox, C2
oy, CoxCoy, ...

},the norm restri
tions, Eq. (81), 
an be indi�erently used on the set Ψ of orthogonal fun
tions or on set ϕof monomials. The last 
hoi
e is, in present 
ase, preferable, for identifying a symmetry over
ome in theQ-series hierar
hy of square latti
es (Figure 9). Indeed, 
onsider the fourth-order fun
tions ϕ4,1 = C2
oyC2

oxand ϕ4,2 = C3
oxCoy. These fun
tions have di�erent norms in the 
ontinuous spa
e, respe
tively, 3

4 and √
15
16 .Nevertheless, sin
e ϕ4,1 = (CoyCox)

2 and ϕ4,2 = (CoxCoy) C2
ox the only 
ontributions for their norms, in thedis
rete spa
e, 
ame from the diagonal ve
tors and are the same, be
ause, along these dire
tions, Co,iy = Co,ix.This is an important result, sin
e it means that the Q-series of square latti
es are unable to run full fourth-order LBE models.In this way, we have tried another building stru
ture for the latti
es, �lling 
ompletely the available Cartesianspa
e around ea
h site, following the sequen
e |ei| = 0, 1, √2, 2, √5, 2

√
2, 3, √10 with sequentially in
reasingvalues for |ei|.Figure 12 shows a D2V37 latti
e, 
onstru
ted in su
h a manner, with 37 velo
ity ve
tors, but 8 weights Wi.Solution of the 9 norm equations is unique and gives, when 6 signi�
ant digits are 
onsidered, a = 0.846393,

W0 = 0.233151, W1 = 0.107306, W2 = 0.0576679, W3 = 0.0142082, W4 = 0.00535305, W5 = 0.00101194,
W6 = 0.000245301, W7 = 0.000283414. This latti
e 
ame from the solution of a 
losed system with 9 linearlyindependent norm restri
tion for 9 unknowns.

Figure 12: The D2V37 latti
e.Sin
e, in the D2V37 latti
e, all the fourth-order Hermite polynomial tensors belong to the orthogonal basisof this latti
e, the equilibrium distribution 
an be written as,
22
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feq

i,4 = feq
i,3 + Wia

eq
4,αβγδΨ4,αβγδ(i) =

Win






1 + 2a2u∗
αei,α + 2

(
a2u∗

αu∗
β

)
(a2ei,αei,β − 1

2δαβ)

+Θ
(
a2e2

i − 1
)

+ 4
3a3u∗

αu∗
βu∗

γ

[
a3ei,αei,βei,γ

−a
2 (ei,αδβγ + ei,βδαγ + ei,γδαβ)

]

+2Θa2
(
a2e2

i − 2
)
u∗

γei,γ+

2
3





[
a8 (u∗

αeiα)
4 − 3a6u∗2 (u∗

αeiα)
2
+ 3

4a4u∗4
]
+

Θ




3a6 (u∗

αeiα)
2
e2

i−
3
2a4

(
D (u∗

αeiα)
2

+ 4 (u∗
αeiα)

2
+ u∗2e2

i

)
+

3
4a2u∗2 (D + 2)





+ 3
4Θ2

[
a4e4

i − 1
2a2 (D + 2) e2

i + 1
4D (D + 2)

]










. (95)
The D2V37 latti
e, with the above equilibrim distribution, 
an be 
onsidered as the minimal square latti
egiving a fourth-order approximation to the 
ontinuous Boltzmann equation, wih errors O (Θ2u∗, u∗5).The weights Wi, in general, de
rease with i and attain very small values when i is large. The smallnessof Wi for large i is expe
ted and is a 
onsequen
e of: a) the restri
tion that was imposed on the latti
e to bespa
e �lling, requiring the norm of ea
h added latti
e-ve
tor, ~ei to be, frequently, an integer multiple of thenorm of the latti
e-ve
tors forming the D2Q9 latti
e unitary-
ell, in square-latti
es; b) the required degree ofapproximation leading to polynomials with terms of O (eN

b ).7. Immis
ible �uidsFlow of immis
ible �uids is, 
lassi
ally, treated in �uid me
hani
s by 
onsidering that the transition layerhas a null thi
kness and by performing a momentum balan
e around this layer. At mi
ros
opi
 level, whentwo immis
ible �uids r and b are mixed, the long-range attra
tion between the mole
ules of ea
h �uid is themole
ular me
hanism promoting �uid segregation. Intermole
ular for
es may be of many di�erent types, in
lud-ing ele
trostati
 for
es between permanent dipoles, indu
tion for
es between permanent dipoles and indu
eddipoles, dispersion for
es between non-polar mole
ules and hydrogen bonds. In the transition region betweenthe two �uids, a mole
ule is, predominantly, subje
ted to attra
tive �elds from its own phase that a
ts as apotential barrier and gives rise to �uid-�uid interfa
ial tension. In addition, mole
ules that are found in thistransition layer are subje
t to r-b 
ollisions that try to mix the two �uids and are responsible for r-b di�u-sion. The thi
kness of the transition layer is, 
onsequently, 
ontrolled by the strength and length of long-rangepotentials and by 
ross 
ollisions, r-b.Theoreti
al di�
ulty is strongly in
reased when these two �uids intera
t with a solid surfa
e. In fa
t, theinterfa
ial energies ζrs and ζbs between �uids r and b and the surfa
e are the main ma
ros
opi
 me
hanismsgoverning interfa
e advan
ing or re
eding on a solid surfa
e. When the interfa
e advan
es or re
edes along asolid surfa
e, dynami
 e�e
ts will 
hange the 
onta
t angle θrb/s with respe
t to its equilibrium value.Due to the 
omplexity of intermole
ular for
es and 
onsidering their important 
ontribution in de�ning�uid-�uid and �uid-solid intera
tion, the latti
e Boltzmann method appear to be very suitable as a downs
alemethod that 
an improve the understanding of 
omplex physi
al phenomena that are very di�
ult to des
ribeat the hydrodynami
 s
ale.In Santos et al., 2003, the �eld mediators 
on
ept, des
ribed in dos Santos and Philippi, 2002, was extendedfor Boltzmann models of immis
ible �uids. Mediators are null-mass parti
les that mimi
 the a
tion of ele
-trostati
 for
es. They are emitted from the latti
e sites and their only a
tion is to invert the momentum oflatti
e parti
les, simulating a long-range �eld. When a site ~r 
an be 
onsidered as an attra
tive 
enter for kparti
les, k = r, b, it will emit mediators of kind k that will be propagated to neighbor sites in the propagationstep. Interferen
e of k-mediators pull ba
k to site ~r , k-parti
les moving away from ~r . In this way, followingvery simple emission and interferen
e rules, mediators try to simulate the e�e
t of long-range for
es in �uidseparation. Parti
les of kind r in the r-b interfa
e that are thrown by 
ollisions toward the b-phase will be pulledba
k to the r-phase when they found r-mediators in the same site and in the same dire
tion, after propagationstep.Gunstensen et al., 1991, Gunstensen and Rothman, 1992, are attributed to be the �rst who introdu
edimmis
ible �uids 
olor based models in the frame of the latti
e Boltzmann method. A more popular two-phase�ow model, based on a pseudo-potential fun
tion, was derived by Shan and Chen, 1993. This method waslater extended to three dimensions, Martys and Chen, 1996. A drawba
k in the above model is that it be
ome23
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ositys (say µ1/µ2 > 7), as reported in J. et al.,2002.In Santos et al., 2003, immis
ible �uids r and b are modelled by splitting BGK 
ollision term, separately
onsidering r-r and r-b 
ollisions. In this way, in 
ontrast with the previous models, vis
osity 
oe�
ients µrand µb and binary di�usivity Drb 
an be independently managed using three independent relaxation times.Interfa
ial tension is retrieved by modifying r-b 
ollision term, introdu
ing long-range for
es in the transitionlayer through the use of �eld mediators. Mediators' a
tion is restri
ted to the transition layer and ideal gasstate equation is retrieved for ea
h �uid, far from the interfa
e. In this way, we limit ourselves to an athermalmodel and no attempt to des
ribe phase transitions and their related e�e
ts will be given here.7.1. A heuristi
 BGK model for immis
ible �uidsIn Santos et al., 2003, 
onsidering two immis
ible �uids r and b, the long-range attra
tion between theparti
les of the same spe
ies is simulated by produ
ing �eld mediators on the latti
e-sites, just before thepropagation step. Considering Ri(~r, t) to be the parti
les distribution of r-parti
les in site ~r at time t and,similarly, for Bi(~r, t), mediators are 
reated just before propagation step, and propagated, following
M r

i (~r + ~eiδ, t + δ) = αM r
i (~r, t) + β

∑
j Rj(~r, t)∑

j Rj(~r, t) +
∑

j Bj(~r, t)
, (96)where α + β = 1.The �rst term in the right hand side of the above equation is, in fa
t, a re
urren
e relation, sin
e M r

i (~r, t)depends on M r
i (~r−~eiδ, t− δ) and on Kj(~r−~eiδ, t− δ) , K = R, B, for all j neighbors sites around site ~r−~eiδ,through se
ond order terms in α and β. In this way, M r

i at site ~r, will be dependent on the next neighbors
r-parti
les 
on
entration through �rst order terms, on the se
ond neighbors r-parti
les through se
ond orderterms and so on. When α = 0 (or β = 1), mediators are 
reated at site ~r, with the solely information ofthe 
on
entration of r-parti
les on next neighbors sites: mediators distribution related to the dire
tion i willbe given by the mass fra
tion of r-parti
les on site ~r − ~eiδ, at time t − δ. In this 
ase, the intera
tion length
orresponds to 1 latti
e-unit. By in
reasing α with respe
t to β, intera
tion length 
an be, arbitrarily, in
reased.Mediators are 
reated at ea
h site ~r and propagated with the unitary latti
e velo
ity ~ei. The interferen
e of�eld mediators with latti
e-parti
les is des
ribed in the following.The latti
e-Boltzmann equation for kind K parti
les, is written as

Ki(~r + ~eiδ, t + δ) − Ki(~r, t) = Ω(R0, ..., Rbm , B0, ..., Bbm) , (97)for K = R, B. The 
ollision operator Ωk
i is required to satisfy the mass and momentum preservation equations,

bm∑

i=0

Ωr
i = 0 , (98)

bm∑

i=0

Ωb
i = 0 , (99)

bm∑

i=0

ci (Ωr
i + Ωr

i ) = 0 . (100)A three-parameters BGK 
ollision term that satis�es the above restri
tions was proposed in Santos et al.,2003, written as
Ωr

i = ωr Req
i (nr, ~ur, T ) − Ri

τr
+ ωb Req

i (nr, ~vrb, T ) − Ri

τm
, (101)where

nk =

bm∑

i=0

Ki , (102)24
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~uk =

1

ρk

bm∑

i=1

Ki~ci , (103)are, respe
tively, the ma
ros
opi
 number density of parti
les and the velo
ity of 
omponent k, k = r, b. The
ω's in Eq.101 are the molar fra
tions, ωk = nk/n.The �rst term in the r.h.s. of Eq. 101 is related to the relaxation of r-parti
les distribution to an equilibriumstate given by the r-
omponent number density and momentum, 
onsidering r-r 
ollisions, only. The se
ondterm 
onsiders r-b 
ollisions and is related to the relaxation of r-parti
les to an equilibrium state given by thenumber density nr and by the momentum mb~ubmodi�ed by the a
tion of r-mediators present in the same site,

mr~vrb = mb~ub − A~̂
u

m
, (104)Constant A is to be related to interfa
ial tension. For ideal mis
ible �uids, A = 0 and this 
ollision term willdes
ribe the relaxation of r-parti
les distribution to an equilibrium state given by nr and by the momentum

mb~ub, as a 
onsequen
e of r-b 
ross 
ollisions. In immis
ible �uids, Eq. 104 means that parti
les of kind r willbe separated from b-parti
les by long-range attra
tive for
es from r-phase, represented here by −~̂
u

m.In the same way,
mb~vbr = mr~ur + A~̂

u

m
. (105)In Eqs. 104 and 105,

~̂
u

m
=

{ ~um

|~um| when ~um 6= 0

0 when u
m = 0

, (106)where mediators velo
ity at site ~x is given by
~um =

bm∑

i=1

(M r
i − M b

i )~ei , (107)pointing to the same dire
tion where r-mediators were propagated, i.e., to the b-phase.In present model, sin
e ∣∣∣~̂u
m

∣∣∣ = {0, 1}, the long-range e�e
t on the 
ross-
ollision part of Ωr
i is to relax

r-parti
les distribution to an equlibrium distribution with a ~u0 velo
ity, modi�ed, in all latti
e sites insidelatti
e-domains where r and b parti
les are simultaneously found, by a ve
tor whi
h modulus is 
onstant andequal to A, whi
h is to be related to the net value of interfa
ial tension. This is not the only 
hoi
e for satisfyingthe restri
tions on lo
al mass and momentum preservation, but the simplest one and, although this 
ould appearas a model 's restri
tion, the dire
tion of ~̂
u

m in a given site ~r will be dependent on the mediators distribution
M r

i and M b
i in that site and these distributions are dependent on the r and b parti
le distributions in theneighbors sites, at the previous time steps.8. Boundary Conditions8.1. Monophasi
 �ows inside 
apillariesConsidering a dis
rete set of parti
le velo
ities ℓ = {~ei, i = 0, ..., b} a boundary 
ondition in the LBMframework 
an be thought as a re�e
tion law,

fi+(~x∗
b , t

∗) =
∑

j

Bijfj−(~x∗
b , t

∗), (108)where ~ei+ represents a latti
e-ve
tor exiting from the solid surfa
e at the site ~x∗
b , toward the �uid phase and

~ei− a latti
e ve
tor exiting the �uid phase at the site ~x∗
b . The (b + 1) × (b + 1) re�e
tion matrix Bij is writtenin a

ordan
e with the ma
ros
opi
 property it is desired to des
ribe at the boundary.The simplest and mostly used boundary 
ondition is the boun
e-ba
k 
ondition,25
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Bij = δij , (109)giving
fi+ = fi− , (110)whi
h satis�es the adheren
e 
ondition ~u = 0 at the solid boundary.

Figure 13: Boundary 
onditions in LBM.Boun
e-ba
k 
onditions are pi
tured in Figure 13. It avoids all the 
omplexity of the des
ription s
ale relatedto �uid-solid intera
tion. At this s
ale, a 
ertain amount of adsorbed �uid mole
ules exit the surfa
e, where they,presumably, have rea
hed an equilibrium state with the solid mole
ules and is repla
ed by another amount ofin
oming �uid-mole
ules from the �uid phase. In steady-state 
onditions, these in
oming and exiting amountsof mole
ules must be identi
al. Nevertheless, at this nanometri
 s
ale, a slip in the lo
al velo
ity and a jump inthe lo
al temperature are to be expe
ted, sin
e the in
oming mole
ules do not know the equilibrium state thatwas imposed by the solid surfa
e on the exiting mole
ules that were adsorbed on it, Philippi and Brun, 1981b.Velo
ity slips and temperature jumps are dependent on the Knudsen number, i.e., on the ratio between themean free path and the length of the ma
ros
opi
 domain of interest. The Knudsen number, itself, is a fun
tionof the �uid density and Knudsen dis
ontinuities at the solid surfa
e are only expe
ted to be important, when alow-density gas �ows inside a 
apillary. In this manner, these dis
ontinuities are not expe
ted to be importantin liquid-�ows. Nevertheless, in the mostly used latti
e-BGK 
ollision-propagation s
hemes, the mean free pathis dependent on the dimensionless relaxation parameter τ used for the 
ollision term, sin
e when this parametergrows-up, 
ollisions are less-e�e
tive in 
hanging the parti
les distribution in a given site. In this manner, sin
ethe spa
e dis
retization imposes a numeri
al lower limit in τ of 1/2, the Knudsen number is not expe
ted to besmall enough, as it is required for a 
ontinuum approa
h, and O(Kn2) numeri
al e�e
ts are expe
ted to happenin latti
e-Boltzmann simulation. These numeri
al e�e
ts are instability sour
es and these sour
es are believedto be spe
ially important near the solid walls.In this way, establishing the 
orre
t boundary 
onditions in LBM is, still, an open problem and a subje
t ofintensive resear
h nowadays.In athermal problems the boun
e-ba
k 
onditions su
h as the ones pi
tured in Figure 13 are in 
urrentuse and have shown to be suitable for velo
ity non-slipping problems for several latti
es. Adequate boundary
onditions for avoiding temperature jumps are still in progress in thermal problems, when a LBE that 
orre
tlydes
ribes the internal energy balan
e equation is used.26
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ible displa
ement in 
apillariesIn immis
ible displa
ement athermal problems, boun
e-ba
k 
onditions are also in use for the parti
le dis-tributions, but the preferential wettability of one �uid on the solid wall is simulated using di�erent re�e
tionlaws for the �eld mediators (Figure 14). Wettability of a given �uid on a solid surfa
e is related to the relationbetween the 
ross adhesion for
es among the liquid mole
ules and the solid and the 
ohesive for
es that happenamong the liquid mle
ules themselves.

Figure 14: Boundary 
onditions in immis
ible displa
ement.The Young's law for liquid drops in 
onta
t with a solid surfa
e and with its vapour (or a gas) gives ameasurable parameter that quanti�es the wettability,
cos θeq =

γsg − γsl

γl
, (111)where θeq is the equilibrium 
onta
t angle, γsg is the interfa
ial free energy at the solid-vapour interfa
e redu
ingto γs when the adsorption energy 
an be negle
ted, γl is the liquid surfa
e tension and, in a

ordan
e with Fowkeslaw,

γsl = γs + γℓ −
(

2
√

γd
s γd

ℓ + 2
√

γp
sγp

ℓ

)

︸ ︷︷ ︸adhesion work , (112)where the quantity (
2
√

γd
sγd

ℓ + 2
√

γp
sγp

ℓ

) is the adhesion work, Wad.When γsg − γsl > γl, the adhesive for
es are strong and the liquid will spread as a liquid �lm on the entiresolid surfa
e. When γsg − γsl < γl, the 
ohesive for
es among the liquid mole
ules are dominant.We have γsg > γsl for a wetting liquid su
h as water on glass and γsg < γsl for a non-wetting liquid su
h asmer
ury. In e�e
t, in a

ordan
e with the Fowkes equation above,
γsg − γsl = −γℓ + 2

√
γd

s γd
ℓ + 2

√
γp

sγp
ℓ , (113)and this quantity 
an be either positive, when γℓ < 2

√
γd

s γd
ℓ + 2

√
γp

sγp
ℓ , i.e., when the liquid surfa
e tension issmaller than the mixing 
ross for
es among the liquid mole
ules and the solid surfa
e, or negative, when theliquid surfa
e tension (related to the intermole
ular for
es among the liquid mole
ules themselves) are strongerthan the for
es among liquid and solid mole
ules.Oil and water are both wetting �uids on, e.g., a glass surfa
e. Nevertheless, for water, w, the 
ross mixingfor
es with the glass mole
ules are strong giving a large adhesion work and a small γsw, when 
ompared withan oil, o, su
h as isopentano, with a small adhesion work and a large γso. When water and oil are in 
onta
twith a solid surfa
e

cos θeq =
γso − γsw

γrb
. (114)27
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e-Boltzmann s
hemes for simulating immis
ible displa
ement in 
apillaries are based on rathersimple rules, by adjusting the re�e
ted amounts of �uids r and b in su
h a maner as to retrieve the equilibrium
onta
t angle in equilibrium simulations (Figure 15). In this way, in addition to the vis
osity ratio, the onlyexperimental information that is needed in these kind of simulations are the equilibrium 
onta
t angle, θeq andthe interfa
ial tension, γrb. Further studies are ne
essary for in
luding the polar and dispersive surfa
e energiesin the model parameters.
Figure 15: Equilibrium between a liquid drop and a solid surfa
e for (a) a wetting liquid, (b) a non-wettingliquid and (
) a totally spreading liquid.9. A sample problem: 
apillary invasionThe simulation results of the 
apillary invasion of a wetting liquid, r, into a 
ylindri
 tube, under zero gravity,is shown in Figure 16. Only 
apillary for
es are 
onsidered and, in this way, the pressure in the 
apillary entran
eand exit were kept the same, the non-wetting �uid parti
les, b, that exit the numeri
al domain being reintrodu
edat the 
apillary entran
e, after they 
hange their label as wetting �uid r-parti
les. A model similar to the onethat was developed for immis
ible �uids was used. The �uid vis
osities and the interfa
ial tension are the onlyinformations required for the model, when the �uid-solid intera
tion is not 
onsidered.

Figure 16: Capillary invasionThe LBM simulation was performed without any velo
ity singularity in the triple line, sin
e the triple-lineis here 
onsidered as a transition region where the �uid-parti
les are subje
ted to ele
trostati
 for
es from thewall and from the �uid phases.In the �uid-�uid interfa
e the ele
trostati
 attra
tive for
es among, e.g., the r-parti
les and the r-phase aresimulated by deviating a 
ertain amount of r-parti
les to the r-phase in a

ordan
e with Eq. (101), in thedire
tion from where the r-mediators were emitted (Figure 16). This amount, whi
h is the same for b-parti
les,is given by the for
e parameter A, in Eq. (104), dire
tly related to the γrb interfa
ial tension (Santos et al.,2003).Boundary 
onditions are re�e
tion laws for the parti
les and the mediators su
h as the ones des
ribed in theabove se
tion. The re�e
ted amounts of r and b mediators are kept 
onstant and adjusted in a

ordan
e witha given equilibrium 
onta
t angle, θeq in stati
 
onditions.In this manner, in 
apillary invasion, the wetting �uid r-parti
les in the triple line will be simultaneouslysubje
ted to the attra
tion for
es from the r-phase and from the solid surfa
e, sin
e the in
oming mediators,after re�e
tion on the solid wall, are predominantely r-mediators. From Figure 17, it 
an be seen that thepredominan
y of the �uid adhesion to the solid surfa
e with respe
t to the 
ohesive for
es to the r-phase, willbe de
ided by the larger relative value of the horizontal proje
tion of the attra
tive for
e from the wall, withrespe
t to the atra
tive for
e from the r-phase.A Poiseuille paraboli
 velo
ity pro�le was obtained in both phases for points that are far enough from theinterfa
e and from the tube entran
e. Figure 18 shows the streamlines near the �uid-�uid interfa
e in the28
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Figure 17: The �uid-�uid interfa
e and the triple line.
ourse of the 
apillary invasion, at a symmetry plane. A strong re
ir
ulating zone, a vortex, is presented nearthe triple line. The vortex length is dependent on the strength and on the intera
tion length of the �uid-�uidand �uid-solid ele
trostati
 for
es. It belongs, indeed, to the same nanometri
 s
ale that is used for des
ribingthe triple-line itself and 
annot be a

essed by experimental visualizations.

Figure 18: Streamlines near the �uid-�uid interfa
e, showing a re
ir
ulating �ow 
lose to the triple-line.In this way, the physi
al stru
ture of this vortex is dependent on the model that was used for des
ribing the
apillary invasion pro
ess and this model 
annot be validated against experimental results, at this nanometri
s
ale. Nevertheless, Figure 19, a ma
ros
opi
 result from the present LBM simulations, shows the 
apillarynumber dependen
e of the dynami
 
onta
t angle, as
cos θd = cos θe − αCaβ (115)29
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apillary number is
Ca =

µr

γrb
uint (116)and uint is the interfa
e velo
ity. Angle θe is the equilibrium 
onta
t angle at stati
 
onditions. Eq. (115) wasveri�ed to be in 
orre
t agreement with experimental visualizations.

Figure 19: Capillary number dependen
e of the dynami
al 
onta
t angle.10. Con
lusionIn spite of its great te
hnologi
al importan
e and of the growing s
ienti�
 interest, mi
rohydrodynami
s hasstill a number of open questions to solve sin
e ma
ros
opi
 methods based on the Navier-Stokes frameworkhave revealed to be insu�
ient to solve dynami
 problems when interfa
ial for
es and surfa
e phenomena playan important role in the des
ription of the problem. Although the great development of up-s
aling methodsfrom the mole
ular to the ma
ros
opi
 s
ales based on the Boltzmann mesos
opi
 equation: a) the Boltzmannequation itself appropriated for liquids, taking the �nite volume of parti
les and long range intera
tion intoa

ount, is still under investigation; b) The dis
retization of the Boltzmann equation leading to a manageablenumeri
al method has not a unique issue when the 
omputer limitations must be 
onsidered.In this work, these several questions were dis
ussed and some main problems in 
onstru
ting a numeri
almethod based on the spatial and velo
ity dis
retization of the Boltzmann equation were presented.11. Referen
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