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5hegele�lmpt.ufs.br, 6surmas�lmpt.ufs.br, 7diogo�lmpt.ufs.brAbstrat. In mirohydrodynamis we are interested in solving �ow problems in miro geometries, e.g., in porousmedia and miro heat pipes, where the �uid �ow is frequently onditioned by surfae fores and surfae phenomena,suh as in apillary �ows, oalesene and surfae break-o�. In miro �ows, the interation fores at the �uid-�uid and �uid-solid interfaes play an important role in the desription of the �uid �ow. These fores are from amoleular origin and the translation of their e�ets to our marosopi sales is a hief problem, onsidering thatby its multisale nature these phenomena do not, frequently, have a homogeneization sale. In this work, we presenta mesosopi method based on disrete models of the Boltzmann equation, whih should provide the establishmentof a oneptual bridge between the moleular and the marosopi domains, in the study of mirohydrodynamis.keywords: Continuous Boltzmann equation, Lattie Boltzmann, disretization.1. IntrodutionThe purpose of this work is to disuss �uid mehanis problems when the spatial sale is very small andwhen the hydrodynami balane equations annot be losed by the use of simple rules. This is the ase of miro�ows, when the interation fores at the �uid-�uid and �uid-solid interfaes play an important role in theirdesription, Israelahvili, 1992.Taking into aount that these fores are from a moleular nature, the question to be plaed here is how totranslate the desription of their e�ets from the moleular sale to our marosopi sales, whih are severalorder of magnitudes larger, onsidering that by its multisale nature these phenomena, frequently, do not havea homogeneization sale.In this work we present a mesosopi method based on disrete models of the Boltzmann equation, whihhave been developed in very reent years, after 1990 and whih should provide the establishment of a oneptualbridge between the moleular and the marosopi domains.Considering the moleular haos hypothesis, Boltzmann onsidered a �uid as a mehanial system of partileswith the purpose of demonstrating the irreversibility, a ommon attribute of lassial thermodynami systemsbut a nonsense in lassial mehanis. Developed, in its origin, for monoatomi rare�ed gases the Boltzmannequation has reeived several ontributions in the ourse of the last 130 years by: i) the inlusion of �nite volumee�ets in the Enskog's kineti theory of dense gases, Enskog, 1921 ii) the onsideration of the rotational, Lifshitzand Pitaevskii, 1999, and vibrational degrees of freedom, Wang Chang and Uhlenbek, 1970, of the modelledpartiles, iii) the inlusion of eletromagneti e�ets in the study of plasmas, Tanenbaum, 1987. Reently, Heand Doolen, 2002, proposed a split of the ollision term in two parts for taking the long-range intermoleularattration fores into aount, in the kineti desription of liquids.Lattie-Boltzmann models are disrete forms of the Boltzmann equation, when in addition to the disretiza-tion of time and of the physial spae, the veloity spae is also disretized, with the peuliarity that aftereah time step and following a loal ollision proess the partiles are propagated from eah site to its nextneighbours. The number of �rst neighbours to eah site is related to the higher order of the kineti momentsthat are to be desribed, Philippi et al., 2006b.In addition to the lattie-Boltzmann ollision-propagation shemes (LBM) a number of alternative disreteveloity methods have been appearing in reent years based on �nite di�erenes, �nite volumes and, more rarely,on �nite elements numerial shemes, but the disussion of these methods is outside the sope of this work.The lattie-Boltzmann equation (LBE) was introdued by MNamara and Zanetti, 1988, replaing theBoolean variables in the disrete ollision-propagation equations by their ensemble averages. Higuera andJimenez, 1989, proposed a linearization of the ollision term derived from the Boolean models, reognizing thatthis full form was unneessarily omplex when the main purpose was to retrieve the hydrodynami equations,1



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0100with a very few relaxation parameters. Following this line of reasoning, Chen et al., 1991, suggested replaingthe ollision term by a single relaxation-time term, followed by Qian et al., 1992, and Chen et al., 1992, whointrodued a model based on the Bhatnagar-Gross and Krook (BGK) ollision term (Bhatnagar et al., 1954),retrieving the orret inompressible Navier-Stokes equations, with third-order non-physial terms in the loalspeed, u. In fat, the BGK ollision term desribes the relaxation of the distribution funtion to an equilibriumdistribution, but in the above works, this disrete equilibrium distribution was settled by writting it as a seond-order polynomial expansion in the partile-veloity ~ξi, with parameters that were adjusted to retrieve the massdensity, the loal veloity and the momentum �ux equilibrium moments, whih are neessary onditions forsatisfying the Navier-Stokes equations.In trying to desribe non-isothermal full ompressible �ows, thermal lattie-BGK shemes inluded higherorder terms in the equilibrium distribution funtion (Alexander et al., 1993, Chen et al., 1994), requiring toinrease the lattie dimensionality (Alexander et al., 1993, MNamara and Alder, 1993, Chen et al., 1994), i.e.,the number of vetors in the �nite and disrete veloity set {
~ξi, i = 0, ..., b

}, but the polynomial expansion formin the partile-veloity ~ξi, with adustable parameters, was retained, the numerial simulations being peformedon, somewhat, empirially hosen latties.In thermal problems, BGK single relaxation time ollision term restrits the models to a single Prandtlnumber. The full desription of �uids and �uid �ow requires multiple relaxation time models (MRT). A two-parameters model was introdued by He et al., 1998, using two sets of distributions for the partiles numberdensity and the thermodynami internal energy, oupled through a visous dissipation term and proposed tobe runned with a two-dimensional 9-veloities lattie. Full MRT models were �rstly introdued in the LBEframework by d'Humières, 1992, d'Humières et al., 2001, by modifying the ollision step, onsidering it to begiven by the relaxation to the equilibrium of a set of non-preserved kineti moments.Nevertheless, the presently known lattie-Boltzmann equation (LBE) has not been able to handle realistithermal and fully ompressible �ow problems with satisfation, sine the simulation of the LBE is, frequently,hampered by numerial instabilities when the loal veloity inreases, Lallemand and Luo, 2003.Considering the kineti nature of the LBE, establishing a formal link between the LBE and the ontinuousBoltzmann equation, allowing the oneptual analysis of this disrete numerial sheme, ould perhaps shedsome light on this question. Indeed, there are several features that let the lattie Boltzmann regular-lattie basedframework far away from the ontinuous Boltzmann equation, whih would be desirable to be its oneptualsupport. These features inlude the partiles model, the ollision and long-range interation models and theapproah used for the time and the veloity spae disretization.With a few exeptions, in all the above works there is no formal link onneting the LBE to the ontinuousBoltzmann equation, although the main ideas were based on the kineti theory fundamentals.He and Luo, 1997, have diretly derived the LBE from the ontinuous Boltzmann equation for some widelyknown latties by the disretization of the veloity spae, using the Gauss-Hermite and Gauss-Radau quadrature.Unhappily, exluding the above mentioned latties, the disrete veloity sets obtained by this kind of quadraturedo not generate spae-�lling latties.In a reent paper, Philippi et al., 2006b, the veloity disretization problem was onsidered as a quadratureproblem with presribed abissas, starting from the Boltzmann ontinuous equation, by requiring the disreteequilibrium distribution feq
i to have the same value of the ontinuous distribution feq when evaluated at aquadrature pole ~ci. In this manner, when the order of approximation N of a Hermite polynomial expansionto the MB equilibrium distribution is hosen, a set Ψθ,(r

θ
), θ = 0, ..., N , of Hermite polynomials is established,and the in�nite and enumerable basis of the Hilbert spae H : cD → R, is replaed by a �nite set of Hermitepolynomial tensors, restriting the solutions to N th-degree polynomials in the veloity ~c. The quadratureproblem was, then, onsidered as to selet a regular lattie {~ci}, in suh a manner that funtions Ψθ,(r

θ
) preservethe orthogonality with respet to the inner produt in the disrete spae. This was shown to be posible tobe aomplished by assuring that the norm of eah one of these funtions Ψθ,(r

θ
) is retrieved, exatly, in thedisrete spae. The number b of the required lattie vetors is proportional to the order N of the polynomialapproximation, b = b(N) and, tt was,formally, shown that the lattie dimensionality is diretly related to theorder of approximation of the disrete equilibrium distribution, with respet to the full Maxwell-Boltzmanndistribution and, onsequently, to the highest order of the kineti moments that are to be orretly desribed.In addition, it was shown that when the quadrature problem is solved, the 2θ-rank veloity tensors are isotropiin the disrete spae, for θ = 1, ...N . Similar results were, almost, simultaneously, obtained by Shan et al., 2006,although using a di�erent proedure.An important pratial result from Philippi et al., 2006b, was to show that when the spae-�lling lattiesare built taking lattie-vetors whih are integer multiples of the D2Q9 veloity vetors, i.e., the DQ hierarhy,the 4th kineti moments, important in desribing the �ow of energy, annot be orretly desribed.Although the proposed method in Philippi et al., 2006b leads to MRT ollision models, the method has impor-2



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0100tant di�erenes with respet to D 'Humières moments method. In D'Humières moments method (d'Humières,1992, d'Humières et al., 2001), dispersion equations are used as onstraints for the adjustable parameters re-lated to the short wave-length, non-hydrodynami, moments and numerial stability is assured by bu�eringthese higher frequeny moments. In Philippi et al. method (Philippi et al., 2006b), non-physial lattie e�etsand numerial instability, in the desription of higher-order hydrodynami phenomena, an be only avoided byinreasing the lattie dimensionality, required by the highest order of the kineti moment to be preserved withthe modelled LBE. The highest order of the kineti moments possible to be orretly desribed with the LBEequation is limited by the number of lattie veloities, Philippi et al., 2006b, and high-order kineti moments arenot orretly desribed when all the b-moments in a b-disrete veloities set are onsidered, as in the momentsmethod. In fat, in urrently produed works dealing with appliations of the moments method, e.g. Lallemandand Luo, 2003, the main worry is numerial stability and not the desription of non-isothermal, multiompo-nent or immisible �uids �ows, whih, e�etively, require additional relaxation parameters with respet to BGKmodels.In this work, we present the lattie-Boltzmann framework, as a disrete method with its starting point atthe Boltzmann ontinuous equation. Some important questions are disussed related with the suitability of thisframework to solve non-isothermal, multiphase physial problems in mirohydrodynamis.In fat, although the LBM an be used for solving advetion-di�usion problems, instead of the full set ofmarosopi transport equations, whih is the basis of lassial CFD methods, some questions have been shownto be important to be answered onsidering the exiting possibility that is open in building the lattie-Boltzmannframework as a real bridge onneting the moleular to the marosopi domain:i) Collision term: When the partiles are onsidered as material points without long-range interationsthe modelled �uid follows an equation of state for ideal gases, P = ndkT . In this manner the isothermalompressibility χ
T
is high and the simulation of inompressible �ows are subjeted to ompressibility e�ets,Surmas et al., 2006. In LBM, these ompressibility e�ets are usually avoided by working with small loalveloities, but this restrits the simulations to low Reynolds numbers or requires to inrease the number oflattie sites for high Reynolds number, inreasing the omputational osts and reduing LBM ompetitivenesswith respet to onventional CFD methods. Enskog's ollision term, Enskog, 1921, was derived onsidering thepartiles to be rigid spheres with a �nite volume and the equation of state was derived as P = ndkT (1 + ρbχ)where b is related to the partile volume by unity mass and χ is a orretion fator whih an be written interms of the mass density ρ, Chapman and Cowling, 1999. For liquids, the long-range attration among partileswas onsidered by He and Doolen, 2002, by splitting the ollision term in two parts, the �rst part related toshort-range interation and the seond one related to long-range interation. After some simpli�ations, thisseond part was further written in terms of a mean interpartile potential and the equation of state was derivedas a van-der-Waals like equation P = ndkT (1 + ρbχ) − aρ2.ii) Collision model. The ollision term Ω is dependent on the distribution funtion itself and, indeed, theBoltzmann equation is a non-linear integro-di�erential equation that has been shown to be too di�ult to besolved. Instead of the full ollision term, a ollision model is required leading to a non-linear partial di�erentialequation, whih an be numerially solved, Philippi et al., 2006a.iii) Veloity disretization. The distribution funtion depends on the partiles veloity and this requiresthe disretization of the veloity spae, in addition to the disretization of the physial spae. Consideringthe required auray for a given disrete sheme, the problem is how to �nd the minimal number of disreteveloities for that given auray (Philippi et al., 2006b, Philippi et al., 2006). In the present work, we dealwith the lattie Boltzmann method (LBM) in spae-�lling latties where, after eah time-step, the partiles aredisplaed from a given site to their next neighbors.iv) Boundary onditions. In LBM, the boundary ondition are re�etion laws for the partile populations,sine marosopi variables suh as veloity and temperature are not aessible as primitive variables. In ertainases, these boundary onditions an be related to veloity slips and temperature jumps that are di�ult tooverome.v) Ideal mixtures. Partiles with di�erent masses, at a given site, but with the same peuliar kinetienergy will be displaed to di�erent points after a given time step, reahing intermediate positions between twoontiguous sites and requiring the use of realloation rules that, loaly, preserve mass, momentum and energy.Interpolation shemes may be the soure of numerial instability and alternative modelling strategies may showto be neessary, Ortiz et al., 2006.vi) Non ideal mixtures and Immisible �uids. The eletrostati fores among the moleules produethe non-ideal behavior of �uids and �uid-mixtures and are at the origin of the phase separation proess, whentwo immisible �uids are put in ontat, being responsible for the interfaial tension. These fores must beonsidered and orretly modelled in LBM.Topis i), ii), iii), iv) and vi) are treated in some detail in present work.3



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-01002. Boltzmann equation as providing an alternative method for solving �uid mehanis problemsThe Boltzmann equation an be derived from Liouville's equation, Cerignani, 1969, by supposing statistialindependene for the 2-partile distribution funtion, in the limit when the number of partiles N→ ∞, with a�nite value of Nσ2, σ being related to the partiles diameter, σ → 0. It reads
∂tf + ~ξ.∇rf + ~g.∇ξf = Ω, (1)where ~r is the position, ~ξ the partiles translational veloity and ~g the aeleration due to the external fores.The partiles are onsidered as material points without long-range interation and the ollision term Ω inEq. (1) must satisfy
∫

Ωmd~ξ = 0, (2)
∫

Ωm~ξd~ξ = 0, (3)
∫

Ω
1

2
mξ2d~ξ = 0, (4)due to the preservation of mass, momentum and kineti translational energy in ollisions.In this manner when Eq. (1) is, respetively, multiplied by the mass, m, the momentum m~ξ and the energy

1
2mξ2, after some straightforward algebra, the following transport equations are obtained,

∂tρ + ∂α (ρuα) = 0, (5)
∂t (ρuα) + ∂α (ρuαuβ + Pδαβ + ταβ) = ρgα, (6)
∂t (ρe) + ∂α (ρeuα + qα) = −ταβ∂βuα − P∂αuα, (7)where ρe is the internal energy per unit volume, given, in this ase, by
ρe =

∫
f

1

2
m

(
~ξ − ~u

)2

d~ξ (8)The equilibrium solution of the Boltzmann equation, Eq. (1) is the solution of,
Ω = 0, (9)whih an be shown to be a Maxwellian distribution, feq.When this equilibrium distribution is required to satisfy
∫

feqd~ξ = nd, (10)
∫

feq~ξd~ξ = nd~u, (11)
∫

1

2
mfeq

(
~ξ − u

)2

d~ξ =
D

2
ndkT, (12)4



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0100where nd is the loal number density of the partiles with mass m, ~u is the loal veloity T , the loal thermody-nami temperature, and D, the Eulidean dimension of the physial spae, the Maxwell-Boltzmann distributionis retrieved,
feq = nd

( m

2πkT

)D/2

e
−

(~ξ−~u)2

2kT
m , (13)and the pressure P is related to the partiles number density by the ideal gas law

P = ndkT. (14)Further, a Chapman-Enskog analysis shows that in the ontinuous limit, Kn → 0, the visous stress tensoris given by
ταβ = −µ (∂βuα + ∂αuβ) + κδαβ∂αuα, (15)and the heat �ow vetor by
~q = −κ∇e. (16)In this manner, in the ontinuous limit, the Boltzmann equation, Eq. (1) gives the orret hydrodynamis forNewtonian �uids and an be used for solving advetion-di�usion problems, instead of the full set of marosopitransport equations, Eqs. (5-7), whih is the basis of lassial CFD methods.Nevertheless, as a mesosopi method we must onsider the possibility that is open in building this frameworknot as an alternative numerial method, for solving the advetion-di�usion equations, but as a real bridgeonneting the moleular to the marosopi domain.In the next setion we show some physial problems that require to downsale to be orretly understood.3. Some physial problems in mirohydrodynamisConsider a apillary- rising problem, when a liquid raises inside a apillary tube against the gravity fore,Figure 1.Let xs(r, t) be the position of the liquid surfae above the free liquid surfae and onsider the problem of�nding the position xs for any radius r at a time t. The question that we want to answer is how to �nd xs(r, t)from the solely information of the apillary tube diameter and the liquid wettability on the solid surfae - givenby the equilibrium ontat angle, in stati onditions, when a small liquid drop is put in ontat with the surfaeof the apillary tube.This problem has several simpli�ed solutions, but all these solutions are based on an equilibrium ontatangle (Luas, 1918, Stange et al., 2003, Washburn, 1921, Bosanquet, 1923) whih is supposed to be onstantduring the rising proess.Furthermore, the exat solution of this problem via the hydrodynami Eqs. (5-7) in the Stokes inompressiblelimit leads to a veloity singularity in the triple line, Dussan et al., 1991. This singularity is easy to explain,sine at the same time the triple line is responsible for the interfae advanement, it must, also, satisfy anadherene ondition of zero veloity at the solid surfae.In fat, the triple-line is not a line, but a transition region of some nanometers among the three phases (inthis ase: solid, liquid and gas) and where a liquid moleule is, simultaneously, subjeted to the intermoleularfores from the adjaent liquid moleules - responsible for the liquid surfae tension - and to the attrative foresfrom the solid surfae -related to the work of adhesion between the liquid and the solid.In this manner, the orret understanding of the apillary-rising problem requires, in priniple, the knowledgeof the �ne physial struture of the triple-line and to solve a multi-sale problem, where the sales vary fromsome nanometers to several mirometers.For understanding what happens in the triple line, some elementary knowledge of surfae physial-hemistryis needed. Surfae tension is responsible for keeping a liquid drop at the end of the overhanging branhes of athree in rainning days, Figure 2. The intermoleular fores among the liquid moleules produe a tension stateat the liquid surfae. These fores an be onsidered as eletrostati fores that depend on the moleular shape,Figure 3. Asymmetri moleules suh as the water moleule have a permanent dipole moment and attratthemselves with polar (or Keesom) fores. The intermoleular fores among symmetri, non-polar, moleules,5
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Figure 1: The triple line in apillary rising (from Stange et al., 2003)
6
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Figure 2: The surfae tension ounterats the weight of a small liquid drop.suh as the hydroarbon moleules, are due to the high frequeny �utuations of the geometrial enter oftheirs eletroni louds. These fores are alled Bond or dispersive fores. When a polar moleule is near anon-polar moleule, the dipole moment of the polar moleule is subjeted to high-frequeny �utuations due tothe eletrostati Debye indution from the non-polar moleule and this interation produes an attrative forewhih is of a dispersive nature. This ross fore is frequently weaker when ompared to the polar fores amongthe polar moleules and to the dispersive fores among idential non-polar moleules. In this manner, polar andnon-polar liquids are, in general, immisible.

Figure 3: Intermoleular fores are eletrostati fores that are dependent on the moleular shapes.Fowkes, Fowkes, 1972 has proposed an empirial relationship for the interfaial tension, σab, between a polarand a non-polar liquid, where the ross mixing fore, responsible for the interfaial tension redution, is relatedto the dispersive omponents of the surfae tensions, σa, σb, of eah �uid through a geometrial average,
σab = σa + σb − 2

√
σd

aσd
b . (17)The main idea behind Fowkes relation is displayed in Figure 4 where the ross mixing fore is, in this ase,of a pure dispersive nature.When two drops of a liquid are lose enough they will oalese. Although the main oalesene driving fore isthe result of a olletive eletrostati e�et among the liquid moleules from both drops, the oalesene proessis still an open problem, sine vapor moleules near the ontat point have theirs trajetories onstrained byan intensi�ed eletrostati �eld and, apparently, they preferentially ondense on the positions where the liquidsurfaes are losest, ontributing to the start-up of oalesene. This piture was, indeed, observed in goniometerexperiments (Figure 5), when two water drops oalesed in despite of their initial separation distane, of about0.2 mm, was muh larger than their eletrostati interation length, but further theoretial studies are neessaryfor a more thorough analysis of this omplex proess.When air displaes water inside a apilary hannel, a dynami liquid �lm forms separating the air phasefrom the solid surfae. This dynami liquid �lm has been studied by several authors inluding some famousones suh as Landau and Levih, 1942 and Bretherton, 1961. It has been shown that the average thiknessof this �lm is dependent on the interfae veloity, i.e., on the apillary number. When the air-water interfaereahs very small onstritions of a porous medium, a pressure redution in the invader phase, an give rise to7
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Figure 4: Dispersive fores try to mix water and oil.
Figure 5: Coalesene proess between two water-droplets in a goniometer. The two drops oalese after aertain time, although they were put at a distane of 0.2 mm, whih is muh larger than their eletrostatiinteration length.the growing of the �lm thikness followed by a oalesene proess, breaking o� the air phase and produing aburst of bubbles from the onstrition due to the suessive pressure deay followed by a pressure restoring aftereah oalesene proess at the onstrition. This is pitured in Figure 6.This dynamial proess an be very important in water �ooding petroleum extration, when the extrationis performed with a high apillary number or when the oil mobility is very low. In heavy oils, the presene ofsurfatants that are soluble in oil an give rise to stable emulsions.In fat, the addition of surfatants that are soluble in the hydroarbon phase will produe a polar rossmixing fore and a larger derease in the interfaial tension with respet to Eq. (17), in aordane with

σab = σa + σb − 2
√

σd
aσd

b − 2
√

σp
aσp

b . (18)Surfatant moleules suh as asphaltens an be pitured as in Figure 7(a), with a long hydroarbon tail anda polar head. These moleules will move to the water-oil interfae forming a monolayer where the moleule tailswill be oriented toward the hydroarbon phase, Figure 7(b).Even when water wets the porous surfae, when it displaes a heavy oil inside a porous medium, it is notable to produe a steady piston displaement, due to the high oil visosity and water �ngers will take form insidethe oil-phase. These �ngers are not stable and, in �owing through onstritions, they an break-up formingwater drops, in the same manner as it was pitured in Figure 3. The presene of surfatants that are solublein the oil phase, in the water-oil interfae, redues the interfaial tension making the break-up easier and thesurfatant moleules will �nish by forming a monolayer around eah water droplet, di�ulting the oaleseneof these droplets and produing a stable emulsion in the down�ow diretion, Figure 7().In onluding this setion, in spite of its great tehnologial importane and of the growing sienti� interestin mirohidrodynamis, the few physial problems that were drawn above give a sample of the great omplexitywith whih we are faed, when trying to orret understand �uid �ows, when the spatial sales are very smalland when the interfaial physis play an important role.In the next setion the Boltzmann equation is presented, onsidered as a bridge that should enable to linkthe mirosopi to the marosopi sales. 8



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0100

Figure 6: Formation of a burst of drops in a small onstrition. Courtesy of O. Amyot, Amyot, 2004.

Figure 7: Surfatants and emulsions
9



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-01004. Boltzmann equation as a bridge linking the moleular to the marosopi domainsWe �rst investigate the origins of the Boltzmann equation.Figure 8 shows a moleular dynamis simulation of a vapor ondensation proess based on an N-bodysimulation of the Newton seond law of motion. Eah one of the N partiles is subjeted to a trajetory, in thephysial spae, given by the solution of the following equations
mi

d2~xi

dt2
=

∑

j

Fij , (19)
d~xi

dt
= ~vi, (20)where ~xi is the position, ~ξi the veloity of partile i and Fij is the fore among eah i−partile and all theremaining partiles, evaluated by supposing a Lennard-Jones interation potential among the partiles, Surmas,2006. Partiles are spherial with a diameter that is given by the inversion point of the Lennard-Jones potential,where the attrative fores beome repulsive. Eah time a partile ollide with the ontainer surfae, it is re�etedbak following a speular re�etion and with only a previously established fration of the kineti energy it hadbefore the ollision, trying to reprodue a ooling proess at the walls. Attrative fores between the wallontainer and the partiles where not onsidered for avoiding ondensation at the wall surfae.

Figure 8: Moleular dynamis simulation of vapor ondensation.The initial state ~x1, ~ξ1, ...~xN , ~ξN , t = 0 was randomly set.We an see that this moleular dynamis simulation gives a good piture of what is to happen in a on-densation proess at the moleular sale, although the analysis was performed on a mehanial deterministisystem of partiles, subjeted to Newton 's seond law of motion, without any help of thermodynami oneptssuh as thermodynami energy and entropy.Nevertheless the results of suh analysis is restrited: a) to the very small moleular sales and b) to verysmall time sales, onsidering the limitations imposed by the omputer rounding-o� error.Consider, now our mehanial system of N partiles, when several di�erent initial state ~x1, ~ξ1, ...~xN , ~ξN , t = 0are possible. Suppose that the set of all possible initial states is a dense set in the phase-spae ~x1, ~ξ1, ...~xN , ~ξN .In this ase it is impossible to know where a given partile will be at a given time. Let, however,
fN

(
~x1, ~ξ1, ...~xN , ~ξN , t

)
, (21)to be the probability of �nding, at time t, dt the partile 1 at the position ~x1, d~x1 with veloity ~ξ1, d~ξ1, thepartile 2 at the position ~x2, d~x2 with veloity ~ξ2, d~ξ2 and so on, until partile N at the position ~xN , d~xNwith veloity ~ξN , d~ξN . The Liouville equation desribing the dynamial evolution of this system is given by,Cerignani, 1969,

∂tf
N +

∑

i

~ξi.∂~xi
fN +

∑

i

~χ
i
.∂~ξi

fN = 0, (22)where ~χ
i
is the fore ating on partile i, 10
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~χi = ~χe

i
+

N∑

j=1
j 6=i

~χij . (23)Fore ~χe
i
is the fore on partile i due to an external �eld and fore ~χ

ij
is the fore on partile i due to itsinteration with partile j,

~χ
ij

= − ∂Φ (xij)

∂ (~xi − ~xj)
, (24)where xij = |~xi − ~xj | and Φ is assumed to be a entral potential depending, only, on the distane betweenpartiles i and j.Conjoint probability fN an be integrated in the phase spae ~x2, ~ξ2, ...~xN , ~ξN to give the marginal probability

f1 of �nding, at time t, dt the partile 1 at the position ~x1, d~x1 with veloity ~ξ1, d~ξ1

f1
(
~x1, ~ξ1, t

)
=

∫
...

∫
fNd~x2...d~xNd~ξ2...d~ξN , (25)onsidering that the probability fN gives a too detailed desription of the system, whih is unneessarilyomplexe, sine the dynamial evolution of an arbitrary, but, single, partile an be a reliable desription of thewhole mehanial system of partiles, when these partiles annot be individually labelled.After integration, onsidering f = Nf1 the Liouville equation beomes, for large N ,

∂tf + ~ξ.∂~xf + ~χe.∂~ξf = −∂~ξ

∫ ∫
~χ

12
f 2

(
~x1, ~ξ1, ~x2, ~ξ2, t

)
d~x2d~ξ2 =

1

m
×

∂~ξ

∫ ∫
∂Φ (x12)

∂ (~x1 − ~x2)
f 2

(
~x1, ~ξ1, ~x2, ~ξ2, t

)
d~x2d~ξ2 (26)whih is a Boltzmann equation for the distribution funtion f , with a ollision term Ω. This ollision term hasbeen split in two ollision terms, He and Doolen, 2002, Ω = Ωsd + Ωld, where Ωsd is referred to short distaneinterations, |~r1 − ~r| < σ and Ωld to long range interations |~r1 − ~r| > σ.4.1. Long-range termConsider, �rst, the long-range ollision term

Ωld =
∂

∂~ξ
.

∫ ∫

|~r1−~r|>ς

1

m

∂φ (|~r1 − ~r|)
∂ (~r)

×f2
(
~r, ~ξ, ~r1, ~ξ1, t

)
d~r1d~ξ1. (27)By making the assumption that, for |~r1 − ~r| > σ, the moleular haos prevails, He and Doolen, 2002,

f2
(
~r, ~ξ, ~r1, ~ξ1

)
= f

(
~r, ~ξ, t

)
f

(
~r1, ~ξ1, t

)
= ff1, (28)one obtains,

Ωld =
1

m

∂f
(
~r, ~ξ, t

)

∂~ξ
.
∂

∂~r

∫

|~r1−~r|>σ

φ (|~r1 − ~r|)

×n (~r1, t) d~r1, (29)The integrand in the above equation is the mean �eld, i.e., the �eld exerted by the n moleules plaed at
~r1 − ~r, on the moleules at position ~r, 11
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φm (~r) =

∫

|~r1−~r|>σ

φ (|~r1 − ~r|)n (~r1, t) d~r1 (30)Cosider n (~r1, t) to vary slowly with the spatial oordinate,
n (~r1, t) = n (~r, t) + ∇n. (~r1 − ~r) +

1

2
∇∇n : [(~r1 − ~r) (~r1 − ~r)] + ..., (31)In this ase,

φm (~r) = −an − κ∇2n, (32)where
a ≡ −

∫

ẋ>σ

φ (x) d~x, (33)
κ ≡ −1

6

∫

ẋ>σ

φ (x) x2d~x, (34)beause, φ < 0.With the above hypotheses, the long-range term an thus be written as
Ωld =

1

m

∂f
(
~r, ~ξ, t

)

∂~ξ
.∇φm (~r) . (35)4.2. Short-Range termAfter some lengthy algebra, under the moleular haos hypothesis and supposing that the ollisions involveonly a pair of partiles, onsidered as material points, the short-range term ollision term an be written as(Kremer, 2005),

Ωsd =

∫ (
f

(
~r, ~ξ,, t

)
f

(
~r, ~ξ1

,
, t

)
− f

(
~r, ~ξ, t

)
f

(
~r, ~ξ1, t

))

×gbdbdǫd~ξ1. (36)This is the original Boltzmann ollision term, (Boltzmann, 1866), dedued for material points, where ~ξ, and
~ξ,
1 mean the veloities of, respetively, the target and the inident partiles that resue ~ξ and ~ξ1 after theyollide, ~g = ~ξ1 − ~ξ is the relative veloity and g = |~g|, b is an impat parameter related to the point where apartile, labeled as 1, reahs a spherial surfae of radius σ around a target partile that moves, at the instant

t, with the veloity ~ξ and ǫ is an azimuthal angle in the equatorial plane in the σ-sphere that is orthogonal to
~ξ1 − ~ξ.Enskog, Enskog, 1921, has, further, developed a ollision model more appropriate for liquids, onsideringthe partiles to have a �nite volume, sine, in a liquid the mean free path has the same order of magnitude thanthe moleular diameter and multiple ollisions are frequent, writting the ollision term as

Ωsd
Ensk =

∫ ∫ ∫ 


χ

(
r + 1

2σ~k
)

f
(
~r, ~ξ′, t

)
f

(
~r + σ~k, ~ξ′1, t

)
−

χ
(
r − 1

2σ~k
)

f
(
~r, ~ξ, t

)
f

(
~r − σ~k, ~ξ1, t

)





×σ2~g.~kd~kd~ξ1 (37)where 12
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~k = (cos θ, sin θ cos ǫ, sin θ sin ǫ) (38)

θ is a polar angle in the ollision plane,
θ = arcsin

(
b

σ

) (39)and χ is an heuristi orretion fator introdued by Enskog to take aount of the �nite volume e�ets of thepopulations f
(
~r, ~ξ′, t

) and f
(
~r + σ~k, ~ξ1

′
, t

).5. Kineti models for the ollision term in the ontinuous veloity spaeThe ollision term Ω is dependent on the distribution funtion itself and, indeed, the Boltzmann equationis a non-linear integro-di�erential equation. Instead of the full ollision term, a ollision model is requiredleading to a non-linear partial di�erential equation, whih an be numerially solved. We restrit ourselves tothe ollision terms where the partiles were onsidered without volume. The e�et of the partile volume ondisrete models, is, presently, still under investigation, He and Doolen, 2002, Surmas et al., 2006.5.1. BGK ollision modelsConsidering the partiles to be material points without volume and admitting the moleular haos hypothesis,the ollision term Ω in the Boltzmann equation, Eq. (1), was derived by Boltzmann in 1868 for binary ollisionsas Eq. (36).The above hypothesis are only rigorously true for a rare�ed gas without long-range attration among theirmoleules. In addition, moleular haos means that the post-ollisional states of any two moleules are unor-related. If these hypothesis are aepted to be true, the Boltzmann equation is a non-linear integro-di�erentialequation, whih solution gives the distribution funtion f(~r,~c, t), when the following moleular parameters areknown: a) The moleular mass, m and b) the interation potential, ξ (|~r1 − ~r|). This means that any ther-mohydrodynami problem ould, in priniple be solved, with solely these moleular informations and withappropriated boundary onditions. In fat, a Chapman-Enskog analysis of the Boltzmann equation with theollision term given by Eq. (36) shows that in the limit Kn → 0, all the thermohydrodynami equations areretrieved, with transport oe�ients that are only dependent on the loal physial state and on the abovemoleular properties.Nevertheless, numerially solving this integro-di�erential equation has revealed to be a very ompliatedtask. In addition, the full Boltzmann equation has details whih are not, apparently, important, when themain worry is to desribe the spatial and time evolution of the �rst hydrodynami moments of the distributionfuntion.In this manner, onsider replaing the ollision term by a single relaxation term
Ω =

feq − f

τ
, (40)where τ is a relaxation time.In spite of its apparent simpliity, Eq. (40) satisfy the main properties Eqs. (2-4) and the Boltzmannequation with the ollision term given by Eq. (40) satisfy the H-theorem. Further, a Chapman-Enskog analysisshows that the full set of the thermohydrodynami equations are retrieved with, nevertheless,

µ

2
=

3η

2
=

3κ

10
=

ρeτ

3
, (41)leading to a non-manageable Prandtl number, due to the linear dependene of the visosity oe�ients and thethermal ondutivity on the single relaxation parameter τ .5.2. Deriving ollision models with inreased aurayWritting the distribution f = feq + fneq, with fneq = feqφ, when f is near feq the short-range ollisionterm an be written as 13
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Ω = feqL(φ), (42)where L is a linear operator, L : ξD → ξD.For eah point ~r the perturbation φ an be developed in terms of the Hermite polynomial tensors Ψθ,(r

θ
),Philippi et al., 2006b, Shan and He, 1998,

φ =
∑

θ

aφ
θ,(r

θ
) (~x, t)Ψθ,(r

θ
)

(
~Cf

)
, (43)and oe�ients aφ

θ an be related to the marosopi moments of f . In this way, aφ
0 = 0, aφ

1,α = 0. Theoe�ient aφ
2,αβ is related to the visous stress tensor ταβ through

aφ
2,αβ =

ταβ

2P
, (44)where P = nkT is the thermodynami pressure.The peuliar kineti energy E(~x, t) = ρe is given by

ρe =

∫
f

1

2
m (~c − ~u)

2
d~c =

∫
feq 1

2
m (~c − ~u)

2
d~c. (45)In this way

∫
fneq 1

2
mC2d~C = 0, (46)or

∫
fneq 1

2
mCαCαd~C =

1

2
tr (τ) = 0. (47)In two-dimensions

τxx + τyy = 0, (48)or
aφ
2,xx + aφ

2,yy = 0. (49)For third-order moments
Sαβγ =

∫
fmcαc

β
cγd~c =

∫
feqmcαc

β
cγd~c +

∫
fneqmcαc

β
cγd~c

= Seq
αβγ + Sneq

αβγ , (50)with
Seq

αβγ = ρuαuβuγ + P (δβγuα + δαγuβ + δαβuγ) . (51)For the non-equilibrium part,
Sneq

αβγ =

∫
fneqmCαCβCγd~C + (τβγuα + ταγuβ + ταβuγ) , (52)resulting, using aφ
1,α = 0, the invariane property with respet to index permutation and Eq. (51):

P

(
2kT

m

) 1
2

aφ
3,αβγ =

Sαβγ

2
−

[
1
2ρuαuβuγ + 1

2P (δβγuα + δαγuβ + δαβuγ)
+ 1

2 (τβγuα + ταγuβ + ταβuγ)

]

≡ qαβγ . (53)When β and γ are ontrated, de�ning ǫα to be the total energy �ux along the diretion α,
P

(
2kT

m

) 1
2

aφ
3,αββ = ǫα −

[
1

2
ρu2uα + P

(
D

2
+ 1

)
uα + ταβuβ

]
= qα, (54)14



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0100where qα is the net heat �ux along the diretion α, i.e., the total energy �ux ǫα, exluding the �ow of marosopikineti energy 1
2ρu2uα, the ompression work P

(
D
2 + 1

)
uα and the visous work ταβuβ.Now, using the development, Eq. (43) ,

L(φ) =
∑

θ

aφ
θ,(rθ)L

(
Ψθ,(rθ)

)
. (55)The θ-order tensor L (

Ψθ,(rθ)

) is, itself, an element of the CD spae and an be developed in terms of the
θ-order Hermite tensors that belong to the orthogonal basis of this spae,

L
(
Ψ

θ,(rθ)

)
=

∑

(sθ)

γ
(rθ),(sθ)

Ψ
θ,(sθ)

, (56)where γ(rθ),(sθ) designate the (rθ), (sθ) omponents of 2θ-order relaxation tensors. As L is a self-adjoint operator,with non-positive eigenvalues, Cerignani, 1969,
γ

(rθ),(mθ )
=

∫
e−C2

fL
(
Ψ

θ,(rθ)

)
Ψ

θ,(mθ)
d~Cf

∫
e−C2

f

(
Ψ

θ,(mθ)

)2

d~Cf

≤ 0. (57)Using Einstein's notation
L(φ) =

∑

θ

γ
(rθ),(sθ)

aφ
θ,(rθ)Ψθ,(sθ)

, (58)where repeated indexes mean summation.Above equation is an in�nite summation on θ. When the terms above a hosen order N are diagonalised,following a Gross-Jakson proedure, Cerignani, 1969,
L(N)(φ) =

N∑

θ=0

γ
(rθ),(sθ)

aφ
θ,(rθ)Ψθ,(sθ)

− γ
N+1

∞∑

θ=N+1

δ
(rθ),(sθ )

aφ
θ,(rθ)Ψθ,(sθ)

, (59)where
δ
(rθ),(sθ)

= δr
1
s
1
....δr

θ
s

θ
. (60)In this way, using Eq. (43)

L(N)(φ) = −
[

N∑

θ=0

λ
(r

θ
),(s

θ
)
aφ

θ,(r
θ
)Ψθ,(s

θ
)

]
− γ

N+1
φ, (61)where λ

(r
θ
),(s

θ
)

= −
(
γ

(rθ),(sθ)
+ γ

N+1
δ
(rθ),(sθ)

) is positive for all rθ, sθ, sine a) λ
(r

θ
),(s

θ
)

= −γ
(rθ),(sθ )

for allo�-diagonal omponents and b) the diagonal omponents γ
(rθ),(rθ )

are negative with an absolute value that isgreater than γN+1 for all θ smaller or equal to N . Eq. (61) an be onsidered as an Nth-order kineti model tothe ollision term, with an absorption term γ
N+1

φ resulting from the diagonalization of the relaxation tensorsafter the given N . Therefore, all the moments of order higher than N are ollapsed into a single non-equilibriumterm minimizing the trunation e�ets on the �ne struture of the L-operator spetrum.Eq. (61) generates inreasing auray models to Ω when the distribution funtion f is near the Maxwell-Boltzmann equilibrium distribution, feq. Eah term in the sum, in Eq. (61), gives the relaxation to theequilibrium of seond or higher order kineti moments Mθ that are not preserved in ollisions, modulated by a
λθ relaxation tensor.5.2.1. A seond order ollision model in the two-dimensional spaeWithout any loss in the generality, we restrit ourselves to two-dimensional spaes and seond order models,with N = 2. In present setion, the isotropy of 4th rank tensors will be used to give expliit forms for theseond-order ollision model.From Eq. (61)

λ
(r

2
),(s

2
)
aφ
2,(r2)

Ψ
2,(s2)

= λ
αβγδ

aφ
2,αβΨ

2,γδ
. (62)15
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λ

αβγδ
= λµ (δαβδγδ + δαγδβδ + δαδδβγ) . (63)In this way,

λ
αβγδ

aφ
2,αβΨ

2,γδ
= λµ

[
aφ
2,ααΨ2,γγ + aφ

2,αβΨ
2,αβ

+ aφ
2,αβΨ

2,βα

]

= λµ

[
aφ
2,xx

(
C2

fx − 1
2

)
+ aφ

2,yy

(
C2

fy − 1
2

)
+

2aφ
2,xyCfxCfy

]
, (64)sine aφ

2,αα = 0. Using Eq.(44)
λ

αβγδ
aφ
2,αβΨ

2,γδ
=

λµ

P

[
τxx

(
C2

fx − 1

2

)
+ τyy

(
C2

fy − 1

2

)
+ 2τxyCfxCfy

]
, (65)or, from Eq. (48), the seond order model in two dimensions will be, �nally, written as

L(2)(φ) = −λµ

P

[
τxxC2

fx + τyyC2
fy + 2τxyCfxCfy

]
− γ

3
φ. (66)Present seond-order ontinuous kineti model is able for analyzing non-isothermal and fully ompressible�ows. The thermal ondutivity is related to γ

3
diagonalization onstant. Consideration of third-order ollisionmodels will be, only, neessary in multi-omponent systems, for orretly desribing third-order oupling: theSoret and Dufour e�ets, Philippi and Brun, 1981a.6. Veloity disretizationDisretization means to replae the entire ontinuous veloity spae cD by some disrete veloities ~ci. AChapman-Enskog analysis shows that the orret marosopi equations to be retrieved is given by assuringthat the disrete distributions feq

i satisfy:
< ϕp >eq=

∫
feq

(
~ξ
)

ϕp(~ξ)d~ξ =
∑

i

feq
i

hD
ϕp(~ξi), (67)for all {ϕp = 1, ξα, ξα ξβ , ξα ξβ ξγ , ...} of interest, where feq

(
~ξ
) is the MB distribution written in terms of thepartiles veloity ~ξ in the ontinuous spae, h is the lattie unit, i.e., the smallest physial distane between anytwo ontiguous grid points, D is the Eulidean dimension, D = 2 in the plane and D = 3 in three-dimnsionalgrids and < ϕp >eq means a marosopi equilibrium moment of ϕp.In Philippi et al., 2006b, the disretization is onsidered as a quadrature problem, i.e., the disrete distribu-tions feq

i in the right-hand side of Eq. (67) are replaed by feq
(
~ξi

), i.e., by the value of the MB distributionevaluated at the pole ~ξi, multiplied by a parameter ωi, whih means the weight to be attributed to eah veloityvetor ~ξi for satisfying the quadrature ondition, onsidering that, for eah oordinate-axis α, the lattie-speeds
ξiα form a disrete and �nite set and the ontinuous veloity spae is ontinuous and extends to in�nity.In this manner, the disretization restritions, Eq. (67) are replaed by the following quadrature equations,

< ϕp >eq=

∫
feq

(
~ξ
)

ϕp(~ξ)d~ξ

=
∑

i

ωi

(
2kT0

m

)D/2

feq
(
~ξi

)
ϕp(~ξi), (68)where the fator (

2kT0

m

)D/2 was introdued for assuring ωi to be a dimensionless, real number, sine feq
(
~ξ
) isthe number of partiles per unit volume of the veloity spae and per unit volume of the physial spae.16
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~ξ−~u

( 2kT
m )

1/2 is hosen as the integrating variable, the partile veloities result dependent on T andon ~u , Philippi et al., 2006b,
~ξi = ~u +

(
2kT

m

)1/2

~Cfi = ~ξi (T, ~u) . (69)Another hoie is the dimensionless partile veloity ~C = ~c

( 2kT
m )1/2 . In this ase, the partile veloities aretemperature dependent, Philippi et al., 2006b,

~ξi =

(
2kT

m

)1/2

~Ci = ~ξi (T ) . (70)Avoiding the ~ξi temperature dependene requires to onsider the partiles veloity ~ξ as the integratingvariable when performing the quadrature, i.e., to let c2 free from T in the exponential part e−C2of the equilibriumdistribution. This an be aomplished by writing, Philippi et al., 2006b, Shan and He, 1998,
e
− (c−u)2

2kT
m =

(
e−C2

fo

)T0
T

, (71)where T0 is a referene (and onstant) temperature and ~Cfo =
~ξ−~u

( 2kT0
m )

1/2 is a new dimensionless peuliar veloityreferred to the temperature To.When T is near T0, i.e., when the departures from thermal equilibrium are small, the above expression maybe developed in a Taylor series around T
To

= 1. Considering Θ = T
To

− 1 to be the temperature deviation, thisdevelopment gives
(
e−C2

fo

)T0
T

= e−C2
fo

[
1 + C2

foΘ +
1

2
C2

fo

(
C2

fo − 2
)
Θ2 + ...

]
, (72)whih terms are inreasing powers of C2

fo.Consider writing the MB equilibrium distribution as
feq = nd

( m

2πkT

)D/2

e−C2
f

= nd

( m

2πkT

)D/2

e−C2
fo

[
1 + C2

foΘ +
1

2
C2

fo

(
C2

fo − 2
)
Θ2 + ...

]

= nd

( m

2πkT

)D/2

e−C2
oe−U2

o+2~Uo.~Co

×
[
1 + C2

foΘ +
1

2
C2

fo

(
C2

fo − 2
)
Θ2 + ...

]
. (73)The exponential term e−U2

o+2~Uo.~Co is the generating funtion of the Hermite polynomials Ψθ,(r
θ
)

(
~Co

) in theveloity spae, where (rθ) is a sequene of indexes r1, r2, ...rθ,The Hermite tensors are orthogonal in the Hilbert spae H, with respet to the inner produt
(h ∗ g)c =

1

πD/2

∫
e−C2

hgd~C, (74)and symmetri wih respet to any index permutation.After some straightforward algebra, the result for the equilibrium distribution an then be written as anin�nite series, Philippi et al., 2006b, 17
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feq =

1

πD/2

(
m

2kT0

)D/2

e−C2
0

∑

θ

aeq
θ,(rθ)

(
nd, ~U0, Θ

)
Ψθ,(r

θ
)

(
~Co

)
. (75)where the oe�ients aeq

θ,(rθ) are related, respetively, to the f marosopi properties, at equilibrium: the numberdensity of partiles, nd, the loal momentum, ndU0,α, the momentum �ux, Πeq
αβ , the energy �ux, eeq

αβγ and anhyper-�ux of momentum, Ξeq
αβγδ.From Eq. (68), it is easy to see that its orresponding disrete form an be written as,

feq
i = Wi

∑

θ

aeq
θ,(rθ)

(
n, ~U0, Θ

)
Ψθ,(r

θ
)

(
~Co,i

)
. (76)where n = ndh

D and Wi = 1
πD/2 ωie

−C2
0,i , Philippi et al., 2006b.Consider the inner produts in the ontinuous and disrete spae, given respetively by,

(f ∗ g)c ≡ 1

πD/2

∫
e−C2

0fgd~C0, (77)
(f ∗ g)d ≡

∑

i

Wif
(

~Co,i

)
g

(
~Co,i

)
, (78)where Wi = 1

πD/2 ωie
−C2

0i and their indued norms
‖f‖2

c ≡ 1

πD/2

∫
e−C2

0f2d~C0, (79)
‖f‖2

d ≡
∑

i

Wif
2
(

~Co,i

)
. (80)Sine funtions Ψθ,(r

θ
)

(
~Co

) are orthogonal in the ontinuous spae with respet to the inner produt Eq.(77), it an be shown, Philippi et al., 2006b, that the quadrature equation, Eq. (68) requires the orthogonalityof Ψθ,(r
θ
)

(
~Co,i

) and their norm preservation in the disrete spae, i.e.,
∑

i

WiΨ
2
θ,(r

θ
)

(
~Co,i

)
=

1

πD/2

∫
e−C2

0Ψ2
θ,(r

θ
)

(
~Co

)
d~Co (81)In this manner, the still unknown weights Wi and the disrete veloities ~Co,i must be hosen in suh a mannerthat the orthogonality of the Hermite polynomial tensors Ψθ,(r

θ
) is assured in the disrete spae and satisfyingthe norm preservation equation, Eq. (81). In Philippi et al., 2006b, it is shown that the norm preservationequation warrants the orthogonality of Ψθ,(r

θ
)

(
~Co,i

) , with respet to the inner produt, Eq. (78), when thedisrete veloity spae is a Bravais lattie.The above onlusion is very important beause it redues our disretization problem to �nd the weights Wiand the poles ~Coi satisfying, solely, the norm restritions, Eq. (81).With the exeption of a very few latties, Gaussian-like quadratures does not give a regular disrete set ~Coi.Nevertheless, if any Bravais veloity set {~ei}, giving a spae-�lling lattie, is hosen, the quadrature probleman be onsidered as to �nd the weights Wi and a saling fator a suh that ~Co,i = a~ei, satisfying Eq. (81).Considering that the poles ~ei are previously known, this quadrature method was named as quadrature withpresribed abissae, Philippi et al., 2006b.In this way, when the order of approximation N of the Hermite polynomial expansion to the MB equilibriumdistribution is hosen, a set Ψθ,(r
θ
), θ = 0, ..., N , is established, and the in�nite and enumerable basis of theHilbert spae H : cD → R, whih generates the solutions of the ontinuous Boltzmann equation, is replaed bya �nite set of Hermite polynomial tensors, restriting the solutions to N th-degree polynomials in the veloity

~c. The quadrature problem is, now, to selet a regular lattie {~ei}, in suh a manner that funtions Ψθ,(r
θ
)18



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0100preserve the orthogonality with respet to the inner produt in the disrete spae and this an be aomplishedby assuring that the norm of eah one of these funtions Ψθ,(r
θ
) is retrieved, exatly, in the disrete spae.The number b of the required lattie vetors is proportional to the order N of the polynomial approximation,

b = b(N). In addition, we have shown, Philippi et al., 2006b, that when the quadrature problem is solved, the2θ-rank tensors given by,
Λ(r

θ
),(s

θ
) =

∑

i

WiC0,i,r0 ...C0,i,rθ
C0,i,s0 ...C0,i,sθ

, (82)are isotropi in the disrete spae, for θ = 1, ...N .6.1. Two-dimensional square lattiesWe restrit our attention to two-dimensional square latties, in this work, although the above presentedquadrature proedure is general and may be used for deriving two and three-dimensional latties.The dimensionless loal veloity
~U0 =

~u
(

2kT0

m

)1/2
, (83)an be saled for enabling to work with unitary lattie-units. In this manner, the spatial and the time sales,respetively, h and δ, an be hosen so as to satisfy,

h

δ
=

(
2kT0

m

)1/2

, (84)and, sine
~nU0 =

∑

i

fi
~Coi = a

∑

i

fi~ei, (85)where ~ei are the usual lattie vetors in 2D latties, a new loal veloity an be de�ned as
n~u∗ =

n~U0

a
=

∑

i

fi~ei. (86)In two dimensions, square latties like the D2Q9, D2Q13,..., have four disrete veloities at eah energy level
Co. Figure 9 summarizes some square latties that are being used in lattie-Boltzmann simulation: eah setof four disrete veloities is superposed to the previous lattie-vetors set when adding a single energy level,following the sequene (

0, 1, √2, 2, 2
√

2, 3, 3
√

2,...).

Figure 9: Some two-dimensional square latties that are usual in LBM.19



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0100When N = 2 there will be 4 linearly independent equations for 4 unknowns related to the saling fator
a, and the D2Q9 weights W0, W1,W2. This set has a unique solution leading to the widely known values
W0 = 16/36, W1 = 4/36,W2 = 1/36 and a =

√
3/2.The equilibrium distribution for the D2Q9 lattie is, then,

feq
i,2 = Win

(
1 + 2a2u∗

αei,α + 2a2u∗
αu∗

β

(
a2ei,αei,β − 1

2δαβ

)
+

Θ
(
a2e2

i − 1
)

)
, (87)with third-order errors O(Θu∗, u∗3), with respet to the full MB distribution.The e�et of temperature on the equilibrium distribution an be learly seen from Eq. (87). In highertemperature sites, the amount of rest partiles is redued and redistributed to higher energy levels, trying tomimi the temperature dependene of the ontinuous MB distribution. This e�et is highly desirable in thermalLBE simulation. An equilibrium distribution similar to Eq.(87) is given as Eq. (18) of Shan and He, 1998.The D2Q13 and the next latties are also able to run seond-order models. In these ases, the number ofunknowns is greater than the number of disposable equations and several solutions will be available, satisfyingthe quadrature problem.Nevertheless, ontrary to MaNamara and Alder results (MNamara and Alder, 1993) and to the resultsthat would be expeted with �tting methods, this lattie is not able to run full third order models. Indeed, when

N = 3, it is impossible to �nd real positive values for a, W0, W1,W2, W3 satisfying all the norm restritions,Eq. (81) related to Ψ3,αβγ . This result is the same for the D2Q17 lattie.Considering the D2Q21 lattie as a next andidate for third order models, there will be, in this ase, 7unknowns a, W0, W1,W2, W3,W4, W5 for 6 norm restritions, after eliminating idential equations. Letting
a to be a free variable, the system gives a solution with real positive roots when a is inside the interval
0.659 836 ≤ a ≤ 1.16208.The values a = 0.659 836 and a = 1.16208 (in fat, a = 1

12

√
5
√√

193 + 25) are roots of the polynomials
W0(a) and W3(a), respetively. In this manner, when the value a = 1.16208 is hosen, W3 = 0 and the lattieloss an energy level, giving a modi�ation of the D2Q17 lattie, whih has been named D2V17, shown in Figure10. The weights, with six signi�ant digits, are W0 = 0.402005, W1 = 0.116155, W2 = 0.0330064, W3 = 0,
W4 = 0.0000790786, W5 = 0.000258415.

Figure 10: The D2V17 lattie.This modi�ed square lattie is less expensive onsidering omputer requirements and has the same propertieswhen ompared with the D2Q21 lattie, i.e., it retrieves, exatly, all the equilibrium moments up to the 3rdorder and ii) gives isotropi tensors up to the 6th rank. Therefore, present method an be, also, onsideredas a tool for investigating the struture of minimal veloity sets giving regular latties.The D2V17 equilibriumdistribution an be written as
feq

i,3 = feq
i,2 + Wia

eq
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, (88)20



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0100with fourth-order errors O(Θu∗2, u∗4).In addition to the equilibrium moments up to order 3, thermohydrodynamis requires the 4th-order equi-librium moments < C2
0C2

0,x >eq, < C2
0C2

0,y >eqand < C2
0C0,xC0,y >eqto be retrieved, MNamara and Alder, 1993.Sine these funtions are not orthogonal in the ontinuous veloity spae, a Gram-Shmidt orthogonalizationproedure was used to �nd orthogonal polynomials from this set by using the previous Hermite polynomialsand the inner produt Eq. (77).The result was

Ψ4,1 = C2
oC2

o,x − 7

2
C2

o,x − 1

2
C2

o,y + 1, (89)
Ψ4,2 =

1

7

(
C2

o

(
7C2

o,y − C2
o,x

)
− 24C2

o,y + 6
)
, (90)

Ψ4,3 = Co,xCo,y

(
C2

o − 3
)
. (91)When we require the norm preservation of the funtions Ψ4,1, Ψ4,2 and Ψ4,3 this gives a system of 8independent equations for 9 unknowns. In this ase, a is, again, a free parameter and the solution gave realpositive weights for 0.590193 ≤ a ≤ 0.760569.Further, when a is, respetively, taken as 0.590193 or 0.760569 the weights W1 or W6 are null, giving twoD2V25 latties that retrieve the orret thermohydrodynamis equations. These latties are shown in Figure11. For the �rst lattie, alled D2V25(W1), a = 0.590193 and the alulated weights are W0 = 0.235184, W1 =0, W2 = 0.101 817 , W3 = 5. 921 34×10−2, W4 = 2. 004 09×10−2, W5 = 6. 795 23×10−3, W6 = 1. 143 76×10−3,

W7 = 2. 197 88× 10−3 . Lattie D2V25(W6) has a = 0.760569 and W0 = 0.239 059 , W1 = 0.063 158 , W2 = 8.
759 57 × 10−2, W3 = 3. 118 00 × 10−2, W4 = 6. 198 96 × 10−3, W5 = 2. 020 13 × 10−3, W6 = 0, W7 = 8.
382 24× 10−5.

Figure 11: The D2V25 latties for thermal problems.Therefore, thermohydrodynami equations are orretly retrieved with the LBE based on these latties, butisotropy of 8th-rank tensors annot be assured. The equilibrium distribution for this lattie an be written as
feq

i,th = feq
i,3 + Wi

[
aeq
4,1Ψ4,1(i) + aeq

4,2Ψ4,2(i) + aeq
4,3Ψ4,3(i)

]
, (92)with, nevertheless, fourth-order errors O(Θu∗2, u∗4, Θ2) with respet to the full MB distribution. Parameters

aeq
4,θ an be found by using the orhogonality properties of Ψ4,θ

(
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) in the ontinuous spae, giving,
aeq
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aeq
4,3 =

4

3
a2u∗

xu∗
x

(
3Θ + a2u2

)
.For full fourth-order model, the norm preservation of a full set of Hermite orthogonal polynomials untilthe 4th-order is required, giving a set of 9 norm restritions. This system will be, only, losed for a lattiewith 8 energy levels. The D2Q29 lattie, with 8 weights W0, ...,W 7, is a natural andidate to be the minimalsquare lattie to run fourth-order models in the square latties hierarhy. For this lattie, there are 9 linearlyindependent equations. This losed set of 9 independent equations has, nevertheless, no solution.This result was the same for the next D2Q33 lattie, when a is let as a free parameter.Sine eah funtion Ψθ,(r

θ
) is a linear ombination of the monomials ϕ =

{
1, Cox, Coy, C2

ox, C2
oy, CoxCoy, ...

},the norm restritions, Eq. (81), an be indi�erently used on the set Ψ of orthogonal funtions or on set ϕof monomials. The last hoie is, in present ase, preferable, for identifying a symmetry overome in theQ-series hierarhy of square latties (Figure 9). Indeed, onsider the fourth-order funtions ϕ4,1 = C2
oyC2

oxand ϕ4,2 = C3
oxCoy. These funtions have di�erent norms in the ontinuous spae, respetively, 3

4 and √
15
16 .Nevertheless, sine ϕ4,1 = (CoyCox)

2 and ϕ4,2 = (CoxCoy) C2
ox the only ontributions for their norms, in thedisrete spae, ame from the diagonal vetors and are the same, beause, along these diretions, Co,iy = Co,ix.This is an important result, sine it means that the Q-series of square latties are unable to run full fourth-order LBE models.In this way, we have tried another building struture for the latties, �lling ompletely the available Cartesianspae around eah site, following the sequene |ei| = 0, 1, √2, 2, √5, 2

√
2, 3, √10 with sequentially inreasingvalues for |ei|.Figure 12 shows a D2V37 lattie, onstruted in suh a manner, with 37 veloity vetors, but 8 weights Wi.Solution of the 9 norm equations is unique and gives, when 6 signi�ant digits are onsidered, a = 0.846393,

W0 = 0.233151, W1 = 0.107306, W2 = 0.0576679, W3 = 0.0142082, W4 = 0.00535305, W5 = 0.00101194,
W6 = 0.000245301, W7 = 0.000283414. This lattie ame from the solution of a losed system with 9 linearlyindependent norm restrition for 9 unknowns.

Figure 12: The D2V37 lattie.Sine, in the D2V37 lattie, all the fourth-order Hermite polynomial tensors belong to the orthogonal basisof this lattie, the equilibrium distribution an be written as,
22
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. (95)
The D2V37 lattie, with the above equilibrim distribution, an be onsidered as the minimal square lattiegiving a fourth-order approximation to the ontinuous Boltzmann equation, wih errors O (Θ2u∗, u∗5).The weights Wi, in general, derease with i and attain very small values when i is large. The smallnessof Wi for large i is expeted and is a onsequene of: a) the restrition that was imposed on the lattie to bespae �lling, requiring the norm of eah added lattie-vetor, ~ei to be, frequently, an integer multiple of thenorm of the lattie-vetors forming the D2Q9 lattie unitary-ell, in square-latties; b) the required degree ofapproximation leading to polynomials with terms of O (eN

b ).7. Immisible �uidsFlow of immisible �uids is, lassially, treated in �uid mehanis by onsidering that the transition layerhas a null thikness and by performing a momentum balane around this layer. At mirosopi level, whentwo immisible �uids r and b are mixed, the long-range attration between the moleules of eah �uid is themoleular mehanism promoting �uid segregation. Intermoleular fores may be of many di�erent types, inlud-ing eletrostati fores between permanent dipoles, indution fores between permanent dipoles and indueddipoles, dispersion fores between non-polar moleules and hydrogen bonds. In the transition region betweenthe two �uids, a moleule is, predominantly, subjeted to attrative �elds from its own phase that ats as apotential barrier and gives rise to �uid-�uid interfaial tension. In addition, moleules that are found in thistransition layer are subjet to r-b ollisions that try to mix the two �uids and are responsible for r-b di�u-sion. The thikness of the transition layer is, onsequently, ontrolled by the strength and length of long-rangepotentials and by ross ollisions, r-b.Theoretial di�ulty is strongly inreased when these two �uids interat with a solid surfae. In fat, theinterfaial energies ζrs and ζbs between �uids r and b and the surfae are the main marosopi mehanismsgoverning interfae advaning or reeding on a solid surfae. When the interfae advanes or reedes along asolid surfae, dynami e�ets will hange the ontat angle θrb/s with respet to its equilibrium value.Due to the omplexity of intermoleular fores and onsidering their important ontribution in de�ning�uid-�uid and �uid-solid interation, the lattie Boltzmann method appear to be very suitable as a downsalemethod that an improve the understanding of omplex physial phenomena that are very di�ult to desribeat the hydrodynami sale.In Santos et al., 2003, the �eld mediators onept, desribed in dos Santos and Philippi, 2002, was extendedfor Boltzmann models of immisible �uids. Mediators are null-mass partiles that mimi the ation of ele-trostati fores. They are emitted from the lattie sites and their only ation is to invert the momentum oflattie partiles, simulating a long-range �eld. When a site ~r an be onsidered as an attrative enter for kpartiles, k = r, b, it will emit mediators of kind k that will be propagated to neighbor sites in the propagationstep. Interferene of k-mediators pull bak to site ~r , k-partiles moving away from ~r . In this way, followingvery simple emission and interferene rules, mediators try to simulate the e�et of long-range fores in �uidseparation. Partiles of kind r in the r-b interfae that are thrown by ollisions toward the b-phase will be pulledbak to the r-phase when they found r-mediators in the same site and in the same diretion, after propagationstep.Gunstensen et al., 1991, Gunstensen and Rothman, 1992, are attributed to be the �rst who introduedimmisible �uids olor based models in the frame of the lattie Boltzmann method. A more popular two-phase�ow model, based on a pseudo-potential funtion, was derived by Shan and Chen, 1993. This method waslater extended to three dimensions, Martys and Chen, 1996. A drawbak in the above model is that it beome23



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0100unstable when used to simulate �uids with very di�erent visositys (say µ1/µ2 > 7), as reported in J. et al.,2002.In Santos et al., 2003, immisible �uids r and b are modelled by splitting BGK ollision term, separatelyonsidering r-r and r-b ollisions. In this way, in ontrast with the previous models, visosity oe�ients µrand µb and binary di�usivity Drb an be independently managed using three independent relaxation times.Interfaial tension is retrieved by modifying r-b ollision term, introduing long-range fores in the transitionlayer through the use of �eld mediators. Mediators' ation is restrited to the transition layer and ideal gasstate equation is retrieved for eah �uid, far from the interfae. In this way, we limit ourselves to an athermalmodel and no attempt to desribe phase transitions and their related e�ets will be given here.7.1. A heuristi BGK model for immisible �uidsIn Santos et al., 2003, onsidering two immisible �uids r and b, the long-range attration between thepartiles of the same speies is simulated by produing �eld mediators on the lattie-sites, just before thepropagation step. Considering Ri(~r, t) to be the partiles distribution of r-partiles in site ~r at time t and,similarly, for Bi(~r, t), mediators are reated just before propagation step, and propagated, following
M r

i (~r + ~eiδ, t + δ) = αM r
i (~r, t) + β

∑
j Rj(~r, t)∑

j Rj(~r, t) +
∑

j Bj(~r, t)
, (96)where α + β = 1.The �rst term in the right hand side of the above equation is, in fat, a reurrene relation, sine M r

i (~r, t)depends on M r
i (~r−~eiδ, t− δ) and on Kj(~r−~eiδ, t− δ) , K = R, B, for all j neighbors sites around site ~r−~eiδ,through seond order terms in α and β. In this way, M r

i at site ~r, will be dependent on the next neighbors
r-partiles onentration through �rst order terms, on the seond neighbors r-partiles through seond orderterms and so on. When α = 0 (or β = 1), mediators are reated at site ~r, with the solely information ofthe onentration of r-partiles on next neighbors sites: mediators distribution related to the diretion i willbe given by the mass fration of r-partiles on site ~r − ~eiδ, at time t − δ. In this ase, the interation lengthorresponds to 1 lattie-unit. By inreasing α with respet to β, interation length an be, arbitrarily, inreased.Mediators are reated at eah site ~r and propagated with the unitary lattie veloity ~ei. The interferene of�eld mediators with lattie-partiles is desribed in the following.The lattie-Boltzmann equation for kind K partiles, is written as

Ki(~r + ~eiδ, t + δ) − Ki(~r, t) = Ω(R0, ..., Rbm , B0, ..., Bbm) , (97)for K = R, B. The ollision operator Ωk
i is required to satisfy the mass and momentum preservation equations,

bm∑
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Ωr
i = 0 , (98)

bm∑

i=0

Ωb
i = 0 , (99)

bm∑

i=0

ci (Ωr
i + Ωr

i ) = 0 . (100)A three-parameters BGK ollision term that satis�es the above restritions was proposed in Santos et al.,2003, written as
Ωr

i = ωr Req
i (nr, ~ur, T ) − Ri

τr
+ ωb Req

i (nr, ~vrb, T ) − Ri

τm
, (101)where

nk =

bm∑
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Ki , (102)24
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~uk =

1

ρk

bm∑

i=1

Ki~ci , (103)are, respetively, the marosopi number density of partiles and the veloity of omponent k, k = r, b. The
ω's in Eq.101 are the molar frations, ωk = nk/n.The �rst term in the r.h.s. of Eq. 101 is related to the relaxation of r-partiles distribution to an equilibriumstate given by the r-omponent number density and momentum, onsidering r-r ollisions, only. The seondterm onsiders r-b ollisions and is related to the relaxation of r-partiles to an equilibrium state given by thenumber density nr and by the momentum mb~ubmodi�ed by the ation of r-mediators present in the same site,

mr~vrb = mb~ub − A~̂
u

m
, (104)Constant A is to be related to interfaial tension. For ideal misible �uids, A = 0 and this ollision term willdesribe the relaxation of r-partiles distribution to an equilibrium state given by nr and by the momentum

mb~ub, as a onsequene of r-b ross ollisions. In immisible �uids, Eq. 104 means that partiles of kind r willbe separated from b-partiles by long-range attrative fores from r-phase, represented here by −~̂
u

m.In the same way,
mb~vbr = mr~ur + A~̂

u

m
. (105)In Eqs. 104 and 105,

~̂
u

m
=

{ ~um

|~um| when ~um 6= 0

0 when u
m = 0

, (106)where mediators veloity at site ~x is given by
~um =

bm∑

i=1

(M r
i − M b

i )~ei , (107)pointing to the same diretion where r-mediators were propagated, i.e., to the b-phase.In present model, sine ∣∣∣~̂u
m

∣∣∣ = {0, 1}, the long-range e�et on the ross-ollision part of Ωr
i is to relax

r-partiles distribution to an equlibrium distribution with a ~u0 veloity, modi�ed, in all lattie sites insidelattie-domains where r and b partiles are simultaneously found, by a vetor whih modulus is onstant andequal to A, whih is to be related to the net value of interfaial tension. This is not the only hoie for satisfyingthe restritions on loal mass and momentum preservation, but the simplest one and, although this ould appearas a model 's restrition, the diretion of ~̂
u

m in a given site ~r will be dependent on the mediators distribution
M r

i and M b
i in that site and these distributions are dependent on the r and b partile distributions in theneighbors sites, at the previous time steps.8. Boundary Conditions8.1. Monophasi �ows inside apillariesConsidering a disrete set of partile veloities ℓ = {~ei, i = 0, ..., b} a boundary ondition in the LBMframework an be thought as a re�etion law,

fi+(~x∗
b , t

∗) =
∑

j

Bijfj−(~x∗
b , t

∗), (108)where ~ei+ represents a lattie-vetor exiting from the solid surfae at the site ~x∗
b , toward the �uid phase and

~ei− a lattie vetor exiting the �uid phase at the site ~x∗
b . The (b + 1) × (b + 1) re�etion matrix Bij is writtenin aordane with the marosopi property it is desired to desribe at the boundary.The simplest and mostly used boundary ondition is the boune-bak ondition,25
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Bij = δij , (109)giving
fi+ = fi− , (110)whih satis�es the adherene ondition ~u = 0 at the solid boundary.

Figure 13: Boundary onditions in LBM.Boune-bak onditions are pitured in Figure 13. It avoids all the omplexity of the desription sale relatedto �uid-solid interation. At this sale, a ertain amount of adsorbed �uid moleules exit the surfae, where they,presumably, have reahed an equilibrium state with the solid moleules and is replaed by another amount ofinoming �uid-moleules from the �uid phase. In steady-state onditions, these inoming and exiting amountsof moleules must be idential. Nevertheless, at this nanometri sale, a slip in the loal veloity and a jump inthe loal temperature are to be expeted, sine the inoming moleules do not know the equilibrium state thatwas imposed by the solid surfae on the exiting moleules that were adsorbed on it, Philippi and Brun, 1981b.Veloity slips and temperature jumps are dependent on the Knudsen number, i.e., on the ratio between themean free path and the length of the marosopi domain of interest. The Knudsen number, itself, is a funtionof the �uid density and Knudsen disontinuities at the solid surfae are only expeted to be important, when alow-density gas �ows inside a apillary. In this manner, these disontinuities are not expeted to be importantin liquid-�ows. Nevertheless, in the mostly used lattie-BGK ollision-propagation shemes, the mean free pathis dependent on the dimensionless relaxation parameter τ used for the ollision term, sine when this parametergrows-up, ollisions are less-e�etive in hanging the partiles distribution in a given site. In this manner, sinethe spae disretization imposes a numerial lower limit in τ of 1/2, the Knudsen number is not expeted to besmall enough, as it is required for a ontinuum approah, and O(Kn2) numerial e�ets are expeted to happenin lattie-Boltzmann simulation. These numerial e�ets are instability soures and these soures are believedto be speially important near the solid walls.In this way, establishing the orret boundary onditions in LBM is, still, an open problem and a subjet ofintensive researh nowadays.In athermal problems the boune-bak onditions suh as the ones pitured in Figure 13 are in urrentuse and have shown to be suitable for veloity non-slipping problems for several latties. Adequate boundaryonditions for avoiding temperature jumps are still in progress in thermal problems, when a LBE that orretlydesribes the internal energy balane equation is used.26



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-01008.2. Immisible displaement in apillariesIn immisible displaement athermal problems, boune-bak onditions are also in use for the partile dis-tributions, but the preferential wettability of one �uid on the solid wall is simulated using di�erent re�etionlaws for the �eld mediators (Figure 14). Wettability of a given �uid on a solid surfae is related to the relationbetween the ross adhesion fores among the liquid moleules and the solid and the ohesive fores that happenamong the liquid mleules themselves.

Figure 14: Boundary onditions in immisible displaement.The Young's law for liquid drops in ontat with a solid surfae and with its vapour (or a gas) gives ameasurable parameter that quanti�es the wettability,
cos θeq =

γsg − γsl

γl
, (111)where θeq is the equilibrium ontat angle, γsg is the interfaial free energy at the solid-vapour interfae reduingto γs when the adsorption energy an be negleted, γl is the liquid surfae tension and, in aordane with Fowkeslaw,
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) is the adhesion work, Wad.When γsg − γsl > γl, the adhesive fores are strong and the liquid will spread as a liquid �lm on the entiresolid surfae. When γsg − γsl < γl, the ohesive fores among the liquid moleules are dominant.We have γsg > γsl for a wetting liquid suh as water on glass and γsg < γsl for a non-wetting liquid suh asmerury. In e�et, in aordane with the Fowkes equation above,
γsg − γsl = −γℓ + 2

√
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s γd
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√
γp

sγp
ℓ , (113)and this quantity an be either positive, when γℓ < 2

√
γd

s γd
ℓ + 2

√
γp

sγp
ℓ , i.e., when the liquid surfae tension issmaller than the mixing ross fores among the liquid moleules and the solid surfae, or negative, when theliquid surfae tension (related to the intermoleular fores among the liquid moleules themselves) are strongerthan the fores among liquid and solid moleules.Oil and water are both wetting �uids on, e.g., a glass surfae. Nevertheless, for water, w, the ross mixingfores with the glass moleules are strong giving a large adhesion work and a small γsw, when ompared withan oil, o, suh as isopentano, with a small adhesion work and a large γso. When water and oil are in ontatwith a solid surfae

cos θeq =
γso − γsw

γrb
. (114)27



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0100Present lattie-Boltzmann shemes for simulating immisible displaement in apillaries are based on rathersimple rules, by adjusting the re�eted amounts of �uids r and b in suh a maner as to retrieve the equilibriumontat angle in equilibrium simulations (Figure 15). In this way, in addition to the visosity ratio, the onlyexperimental information that is needed in these kind of simulations are the equilibrium ontat angle, θeq andthe interfaial tension, γrb. Further studies are neessary for inluding the polar and dispersive surfae energiesin the model parameters.
Figure 15: Equilibrium between a liquid drop and a solid surfae for (a) a wetting liquid, (b) a non-wettingliquid and () a totally spreading liquid.9. A sample problem: apillary invasionThe simulation results of the apillary invasion of a wetting liquid, r, into a ylindri tube, under zero gravity,is shown in Figure 16. Only apillary fores are onsidered and, in this way, the pressure in the apillary entraneand exit were kept the same, the non-wetting �uid partiles, b, that exit the numerial domain being reintroduedat the apillary entrane, after they hange their label as wetting �uid r-partiles. A model similar to the onethat was developed for immisible �uids was used. The �uid visosities and the interfaial tension are the onlyinformations required for the model, when the �uid-solid interation is not onsidered.

Figure 16: Capillary invasionThe LBM simulation was performed without any veloity singularity in the triple line, sine the triple-lineis here onsidered as a transition region where the �uid-partiles are subjeted to eletrostati fores from thewall and from the �uid phases.In the �uid-�uid interfae the eletrostati attrative fores among, e.g., the r-partiles and the r-phase aresimulated by deviating a ertain amount of r-partiles to the r-phase in aordane with Eq. (101), in thediretion from where the r-mediators were emitted (Figure 16). This amount, whih is the same for b-partiles,is given by the fore parameter A, in Eq. (104), diretly related to the γrb interfaial tension (Santos et al.,2003).Boundary onditions are re�etion laws for the partiles and the mediators suh as the ones desribed in theabove setion. The re�eted amounts of r and b mediators are kept onstant and adjusted in aordane witha given equilibrium ontat angle, θeq in stati onditions.In this manner, in apillary invasion, the wetting �uid r-partiles in the triple line will be simultaneouslysubjeted to the attration fores from the r-phase and from the solid surfae, sine the inoming mediators,after re�etion on the solid wall, are predominantely r-mediators. From Figure 17, it an be seen that thepredominany of the �uid adhesion to the solid surfae with respet to the ohesive fores to the r-phase, willbe deided by the larger relative value of the horizontal projetion of the attrative fore from the wall, withrespet to the atrative fore from the r-phase.A Poiseuille paraboli veloity pro�le was obtained in both phases for points that are far enough from theinterfae and from the tube entrane. Figure 18 shows the streamlines near the �uid-�uid interfae in the28
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Figure 17: The �uid-�uid interfae and the triple line.ourse of the apillary invasion, at a symmetry plane. A strong reirulating zone, a vortex, is presented nearthe triple line. The vortex length is dependent on the strength and on the interation length of the �uid-�uidand �uid-solid eletrostati fores. It belongs, indeed, to the same nanometri sale that is used for desribingthe triple-line itself and annot be aessed by experimental visualizations.

Figure 18: Streamlines near the �uid-�uid interfae, showing a reirulating �ow lose to the triple-line.In this way, the physial struture of this vortex is dependent on the model that was used for desribing theapillary invasion proess and this model annot be validated against experimental results, at this nanometrisale. Nevertheless, Figure 19, a marosopi result from the present LBM simulations, shows the apillarynumber dependene of the dynami ontat angle, as
cos θd = cos θe − αCaβ (115)29
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Ca =

µr

γrb
uint (116)and uint is the interfae veloity. Angle θe is the equilibrium ontat angle at stati onditions. Eq. (115) wasveri�ed to be in orret agreement with experimental visualizations.

Figure 19: Capillary number dependene of the dynamial ontat angle.10. ConlusionIn spite of its great tehnologial importane and of the growing sienti� interest, mirohydrodynamis hasstill a number of open questions to solve sine marosopi methods based on the Navier-Stokes frameworkhave revealed to be insu�ient to solve dynami problems when interfaial fores and surfae phenomena playan important role in the desription of the problem. Although the great development of up-saling methodsfrom the moleular to the marosopi sales based on the Boltzmann mesosopi equation: a) the Boltzmannequation itself appropriated for liquids, taking the �nite volume of partiles and long range interation intoaount, is still under investigation; b) The disretization of the Boltzmann equation leading to a manageablenumerial method has not a unique issue when the omputer limitations must be onsidered.In this work, these several questions were disussed and some main problems in onstruting a numerialmethod based on the spatial and veloity disretization of the Boltzmann equation were presented.11. ReferenesAlexander, F. J., Chen, S., and Sterling, J. D., 1993, Lattie Boltzmann Thermohydrodynamis, �Phys. Rev.E�, Vol. 47, No. 4, pp. R2249.Amyot, O., 2004, �Contribution à l' étude des é oulements diphasiques à travers un ontat rugueux�, PhDthesis, University of Poitiers.Bhatnagar, P., Gross, E., and Krook, M., 1954, A Model for Collision Proesses in Gases. I. Small AmplitudeProesses in Charged and Neutral One-Component Systems, �Phys. Rev.�, Vol. 94, pp. 511.Boltzmann, L., 1866, Über die Mehanishe Bedeutung des Zweiten Hauptsatzes der Wärmetheorie, �WienerBerihte�, Vol. 53, pp. 195�220.Bosanquet, C., 1923, �Phils. Mag. ser.�, Vol. 6.Bretherton, F. P., 1961, The Motion Of Long Bubbles In Tubes, �Journal Of Fluid Mehanis�, Vol. 10, pp.166�188.Cerignani, C., 1969, �Mathematial Methods in Kineti Theory�, Mamillan, London, �rst edition.30
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