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Abstract. Regional wastewater treatment systems are widely applied in urban regions, due to economic scale it 
provides. Since there is a large number of effluent discharges as well as potential sites for the location of treatment 
facilities, traditional engineering techniques can handle just a few of the possibilities of locating such facilities, 
sometimes missing the optimal facilities location, in terms of budget minimization. Traditional optimization techniques 
have been applied to this engineering problem, such as linear or non linear programming. This paper shows some initial 
results of applying simulated annealing, a metaheuristic derived from statistical mechanics, as an optimization tool for 
locating wastewater treatment facilities. The results show the potential possibilities of using such technique with near 
optimal results in a reasonable computer time. 
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1. Introduction 

 
One of the main environmental problems in less developed countries is the lack of adequate urban sewerage and 

sewage treatment, leading to poor water quality in rivers near urban and metropolitan areas. In Brazil, since such 
sewage works have not been built in the past decades, the estimated budget to cover the sanitary deficit is as high as 
R$150 billions until 2015. 

Since the end of the Planasa (Brazilian’s National Plan for Sanitary Works) in the late seventies, the country still 
doesn’t have an institutional and financial arrangement for handling such a huge problem. Some bills have been 
discussed in the Congress, and sooner or later, the country will have to find an adequate framework for the problem. 
Independently of the political model to be chosen, the financial challenge will have to take into account least cost 
optimal regional solutions. 

Economies of scale are an important characteristic of regional sewage works and engineers must seek a proper 
design of such regional works. Traditional engineering techniques are not adequate, since they can handle only a few 
alternatives. Instead, it is necessary to apply optimization procedures to facilitate the study of a large number of 
alternatives. The problem is that the objective function and the restraints lead to non linear equations. Real world 
problems contain hundreds of restraints that are very difficult ant time consuming to be solved by traditional 
optimization techniques such as Non Linear Programming. 

This paper presents the formulation of the problem and its solution by use of simulated annealing (SA). SA is a 
metaheurístic technique that has been applied in the water resources field in the last years, with promising results. SA 
algorithm is presented and an application is showed and compared with traditional optimization results. A sensivity 
analysis of SA parameters is also presented. 

 

2. Literature Review 
 

Optimization models begun to be applied to regional water quality problems in the mid 1960s. Examples of such 
early models are Deininger (1965), Kerri (1966) and ReVelle, Loucks and Lynn (1967), all of them using Linear 
Programming. These first studies were applied to individual sewage treatment plants, and seek the minimum treatment 
efficiency in each plant to meet effluent standards or water quality objectives. Other optimization models have been 
widely used. Dynamic Programming was applied by Liebman and Lynn (1966), Converse (1972) and Rossmann 
(1978). Ecker (1975) and McNamara (1976) used Geometric Programming. Integer programming, with the decision to 
build or not a sewage treatment plant, has been widely used: Chang, Chen e Yang (1997), Chang, Brill, Jr. e Hopkins 
(1982) and Zhu and ReVelle (1988). Due to non-linearities of the problem, Non Linear Programming has also been 
extensively used: Nakamura e Brill, Jr. (1979), Ong (1983) and Carmichael e Strzepek (2000). These later studies deal 
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with regional treatment plants, where the objective is the size and location of the plants, some of them linked with a 
water quality simulation model to study water characteristics such as Dissolved Oxygen and Biological Oxygen 
Demand. 
 

Recently the so-called metaheuristics models have been applied to solve complicated models such as the one here 
described. Burn and Yulanti (2001) applied a genetic algorithm to solve a multiobjective location model for sewage 
treatment plants. Mujumdar and Vemula (2004) also applied genetic algorithm along with fuzzy sets to study multiple 
and conflicting objectives, with the variables treated as fuzzy ones. Cunha and Ribeiro (2004) used a tabu search 
algorithm for water network optimization. The same problem was solved by simulated annealing by Cunha and Souza 
(1999). The same metaheurístic has been used for siting and sizing regional sewage treatment plants: Souza et al. (2002) 
developed a model based on optimization by annealing, coupled with a GIS interface. The model was further developed 
by Cunha et al. (2004), incorporating water quality constraints.  
 

3. Simulated Annealing 
 

Simulated annealing algorithms can guarantee the near optimum global solution of any function, including 
discontinuous and non convex functions. Its main advantage is its characteristic of using a descent strategy that allows 
ascent probabilistic movements, thus avoiding being trapped in local optima. The concept was first introduced by 
Metropolis et al. (1953) and an algorithm was independently developed by Kirkpatrick et al. (1983) and Cerny (1985) to 
solve the traveling salesman problem.  

The algorithm is based on the physical process of annealing. According to Cunha and Souza (1999), in this process, 
temperature is raised allowing mobility to the molecules. Then a cooling slow schedule is applied, when the molecules 
will end forming a crystalline structure. The high mobility of the molecules at a high initial temperature allows them to 
reach different states. Following an adequate cooling scheme the molecules will arrive at a minimum energy state and 
an ordered crystalline configuration. The Metropolis algorithm generates a sequence of states. If the energy of the initial 

state is Ei, then a perturbation mechanism is applied, generating an energy Ej in this second state. If Ei – Ej ≤ 0, then j 
will be the second state. Otherwise, j can still be accepted as the next state according to a probability p given by: p = 

exp(Ei – Ej)/kβt, where kβ is the constant of Boltzmann and t is the temperature of the process. 
 

Aarts and Korst (1989) prove that the simulated annealing algorithm, formulated as a sequence of homogenous and 
finite length Markov chains converges in probability to the set of optimal solutions. In other words, asymptotically the 
algorithm finds an optimal solution with probability one. This result is achieved only after an infinite number of 
transitions, so that, in practical applications, one must resort to an approximation of the asymptotic convergence. 
 

The algorithm can be described by the following steps: 
 
(i)    choose an initial configuration 
(ii)   test the viability of the initial configuration 
(iii)  set an initial temperature and a cooling schedule 
(iv)   for j = 1 to number of cooling states repeat (v) to (ix) 
(v)    generate a perturbation in the initial configuration to generate a candidate solution 
(vi)   test the viability of the candidate solution 
(vii)  if E2 < E1, the candidate solution is accepted 
(viii) if E2 > E1, the Metropolis criterion is tested; if p > 0, the candidate solution is accept 
(ix)   repeat steps (v) to (viii) until number of simulations < maximum number of simulations or  

number of successes < maximum number of successes 
 

The algorithm has the following parameters: 
 
a) a the initial temperature of the process, representing the probability of accepting a transition from the initial 

configuration to  a candidate solution with an higher energy; 
b) n1 the number of iterations in the same temperature, even if there is no gain in the optimal state of the 

configuration; 
c) r cooling factor, representing the rate of temperature decreasing; 
d) n2 number of steps of temperature decreasing, performed without improvement in the optimum, before 

stopping the algorithm. 

 
The values for initial temperature were used according to Press et al. (1992). In this paper n2 was substituted by a 

maximum number of total iterations, nmax. The literature reports that n1 and nmax should be linked to the number of 
variables of the Objective Function. The study below presented uses n1 and nmax equal to 10 and 100 times the number 
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of variables, respectively. For the cooling factor r, Kirkpatrick et al. (1983) suggest a constant factor between 0.8 and 
0.99, which were also used here. 
 
 

3.1 Initial and candidate solutions 
 

The initial solution was obtained through random sampling. For each one of the components of the variables 
vector, in an independent manner, uniformly distributed values are generated, within its respective validity limits. Then 
the restrictions are verified, repeating the process until reaching a viable random solution. 

The Metropolis algorithm can be used for generating a set of points in a space with X variables with a 

distributed density function )(XXf . A sequence of points ,...,, 10 XX  is generated, representing a random walk moving 

through the X space. The rules by which this random walk is made are as follows: 
 

- Consider that the random way is on point nX . 

- An iterative process is applied for generating the Xn+1 point. The new point can be randomly chosen over the surface 

of a hypersphere with a small radiusδ, around the Xn  point. The methods used for the random variables generation are 

presented in the appendix.    

- A sampled point X t , is accepted, considering the following ratio:  
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- If r>1, then the point tX  is accepted ( 1+nX = tX ), while if r<1, the point tX  is accepted with probability r. In this 

procedure r is compared to r an uniformly distributed number u, in the interval [0,1], tX  being accepted if u<r. When 

the point tX  is not accepted, the random way keeps on point nX  ( 1+nX = nX ). 

- By using the same procedure the 2+nX  point is generated.  

-  

The value of δ should be chosen in such a way that 1/3 to 1/2 of the generated configurations are accepted; in other way, 
the method becomes less efficient. (Koonin e Meredith, 1990). If there is a large number of rejected configurations, this 

means that the value of δ is too large; in other way, if δ is too small, then one will have a large number of accepted 
configurations, but the explored region will be small. The best choice to the initial point 0X  lies where the probability 

distribution is at a maximum.            
 

4. Model application and results 
 

The simulated annealing algorithm was applied to a hypothetical regional sewage treatment plant location problem, 
formulated by Deinenger and Su (1971) and also applied by Ong (1983). Given a set of seven communities located 
along a river and its tributary, there are seven potential sites available for the construction of wastewater treatment 
plants. The objective is to find the size and location of wastewater treatment plants and the interconnecting conveyance 
system which will minimize the total construction cost. The problem is depicted in Fig. 1. 

The objective function has the following mathematical formulation: 
 

 Min ∑ ∑ ∑++
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 Subject to: 
  a) Flow balance at each source node 
    
  b) Upper and lower bound constraints 
 
Where: 
 
Yi: amount of wastewater carried by the i-th section of conveyance (in the direction from upstream to downstream). 
Considered as dependent variable; 
Zi: amount of wastewater carried by the i-th section of conveyance (in the direction from downstream to upstream); 
Considered as dependent variable; 



CIT06-0675 

Xi: amount of wastewater to be treated at plant i. Considered as independent variable; 
CPi(Yi), CPi(Zi): cost of piping (gravity sewer or forcemain) as a function of Yi or Zi; 
Si: amount of wastewater generated at source i (Yi, Zi, Xi and Si are used in the flow balance at each source node); 
XUi, YUi, ZUi: maximum amount of flow at the treatment plants and the conveyances; these are the upper and lower 
bound constraints. 
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Figure 1 – River, sewerage and treatment plants system 

 
 

The objective function has the following mathematical formulation: 
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 Subject to: 
  a) Flow balance at each source node 
    
  b) Upper and lower bound constraints 
 
Where: 
 
Yi: amount of wastewater carried by the i-th section of conveyance (in the direction from upstream to downstream). 
Considered as dependent variable; 
Zi: amount of wastewater carried by the i-th section of conveyance (in the direction from downstream to upstream); 
Considered as dependent variable; 
Xi: amount of wastewater to be treated at plant i. Considered as independent variable; 
CPi(Yi), CPi(Zi): cost of piping (gravity sewer or forcemain) as a function of Yi or Zi; 
Si: amount of wastewater generated at source i (Yi, Zi, Xi and Si are used in the flow balance at each source node); 
XUi, YUi, ZUi: maximum amount of flow at the treatment plants and the conveyances; these are the upper and lower 
bound constraints. 
 

The cost functions, either for the wastewater conveyance or for the treatment plants are of the type: 
 
CT =  (a – b*Xi)*Xi                 (3) 
 
Where a and b are coefficients of the equation.         
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Table (1) presents the SA results, compared to the results found by Ong (1983), by means of a heuristic technique 

called Random Polyhedron Search (RPS). The optimal solution calls for a single regional treatment plant located at site 
6. The parameters’ values for the lowest Objective Function value are: dx1=0.0090, fat=0.902 and t1=0.43. 
 
Table 1. Results of the regional treatment plant location problem 

 
Objective 
Function 
(US$106) 

X1 (mgd) X2 X3 X4 X5 X6 X7 

Simulated 
Annealing 

2.734 0.0 0.0 0.0 0.0 0.0 6.6 0.0 

RPS 
heuristic 

2.730 0.0 0.0 0.0 0.0 0.0 6.6 0.0 

 

 

5. Sensivity Analysis 
 
 A sensivity analysis was performed, verifying the results of the Objective Function, with varying values of the 
cooling factor (fat), the initial temperature (t1) and the change of the radius of the hypersphere, when looking for a 
candidate solution (dx). In all simulations, the number of steps to decrease the temperature was 100. The results are 
shown in Tab. (2). Lower temperatures resulted in most of the minimum values for the Objective Function. Also, lower 
values of the cooling factor led to better values of the Objective Function, showing that a slower cooling can find near 
optimal results. When t1 and dx are maintained fixed, changing the values of fat gives higher changes in fmin in 
comparison with fixing fat and dx and changing the values of t1. Changing dx, with fixed values of fat and t1, gives 
small variations to the value of fmin. In other words, the model is less sensible to dx and t1 variations, and a more 
sensible to the cooling factor fat.  
 Table 3 shows the results for the mean value of the Objective Function (fmed), its Coefficient of Variation (cv) 
and the ratio between the number of simulations of accepted solutions in the Metropolis algorithm and the total number 
of simulations (pac). The same variations for the parameters were used as above. The values for the Coefficient of 
Variation were all less than 0.30, showing a smooth surface of the Objective Function. The values of the ration pac 
were not higher than 10%, showing that the range of simulated temperatures was quite near the optimal final 
temperature. 

 

6. Conclusions 

 
 Simulated Annealing seems to be a promising optimization tool for the regional planning of wastewater 
treatment plants, as was already shown by Cunha et al. (2004). Such problems have nonlinear objective functions and 
constraints, being difficult ones to be solved by traditional non linear programming. Further investigations are needed to 
get a good knowledge of the parameters’ behavior. The authors are also studying the addition of other constraints such 
as water quality constraints and budget considerations. The Simulated Annealing algorithm, maybe coupled with 
Dynamic Programming seems to be an adequate tool for the dynamic schedule of such engineering works. 
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Table 2. Objective Function Values for Different Cooling Schedules (fat and t1) and Hypersphere Radius (dx1) 

 

 fmin dx1 = 0.0090   fmin dx1=0.0096   

fat/t1 0.35 0.37 0.39 0.41 0.43 0.45 fat/t1 0.35 0.37 0.39 0.41 0.43 0.45 

0.890 2.827 2.964 3.064 2.955 3.119 2,783  0.890 2.781 3.148 2.959 2.990 3.262 3.039  

0.894 2.791 3.130 3.029 2.940 2.932  2,790 0.894 2.983 3.188 2.908 2.810 2.810  2.907 

0.898 2.951 2.921 2.813 2.922 2.962  3,196 0.898 3.279 2.836 2.838 2.858 3.016  2.993 

0.902 2.846 2.860 3.191 2.828 2.734  2,966 0.902 3.122 2.817 2.963 2.742 2.921  2.768 

0.906 2.915 2.870 3.203 2.836 2.909  2,814 0.906 2.830 2.924 2.830 3.292 2.959  2.913 

0.910 2.951 2.901 2.737 2.974 3.187  2,739 0.910 2.940 2.808 2.829 2.795 2.937  2.899 

 

 

Table 2. Objective Function Values for Different Cooling Schedules (fat and t1) and Hypersphere Radius (dx1) (Cont.) 

   fmin dx1=0.0102        fmin dx1=0.0108     

fat/t1 0.35 0.37 0.39 0.41 0.43 0.45 fat/t1 0.35 0.37 0.39 0.41 0.43 0.45 

0.890 2.760 2.971 2.908 3.006 2.765  2,740 0.890 2.882 2.954 2.839 2.973 3.056 3.002  

0.894 2.791 3.260 3.056 3.124 2.748  2,737 0.894 2.820 2.947 2.972 2.840 2.822  2.921 

0.898 2.804 2.903 2.916 2.916 2.909  2,826 0.898 2.776 3.003 2.984 3.248 3.265  2.965 

0.902 2.908 2.909 2.829 2.872 2.797  2,991 0.902 3.039 2.758 2.776 2.954 2.919  3.327 

0.906 2.992 2.983 2.814 2.867 2.910  2,989 0.906 3.432 2.867 2.737 2.768 2.911  3.187 

0.910 2.915 2.915 2.888 2.803 3.065  2,935 0.910 3.278 2.910 2.826 3.014 2.849  2.961 

 

 
Table 2. Objective Function Values for Different Cooling Schedules (fat and t1) and Hypersphere Radius (dx1) (Cont.) 

 

   fmin dx1=0.0114       fmin dx1=0.0120     

fat/t1 0.35 0.37 0.39 0.41 0.43 0.45 fat/t1 0.35 0.37 0.39 0.41 0.43 0.45 

0.890 2.948 3.203 2.921 2.911 2.771 2,851 0.890 2.836 2.910 2.884 2.796 2.938 2.774 

0.894 3.199 3.049 2.767 2.789 3.001 2,919 0.894 2.833 2.851 2.775 2.786 2.911 2.911 

0.898 2.777 2.786 2.910 2.920 2.911 2,924 0.898 2.748 2.874 2.829 2.919 3.009 3.281 

0.902 2.991 2.852 2.750 2.932 2.989 2,810 0.902 3.188 2.742 2.948 2.744 2.740 2.915 

0.906 2.918 2.798 2.929 2.789 2.940 2,924 0.906 3.057 2.781 2.921 3.057 2.757 2.914 

0.910 2.737 2.817 2.740 2.995 2.756 2,953 0.910 3.188 2.976 2.803 2.925 2.911 2.758 
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Table 3. Numerical statistics for Different Cooling Schedules (fat and t1) and Hypersphere Radius (dx1) 

dx1 = 0.0090                  

fat1/t1 0,35 0,37 0,39 0,41 0,43 0.45 

 fmed cv pac Fmed cv pac fmed cv pac fmed cv pac fmed cv pac fmed cv pac 

0,890 4,6984 0,21 0,0681 4,0753 0,21 0,0714 4,4535 0,23 0,0829 5.2288 027 0,0765 4,9735 0,19 0,0657 4,686 0,22 0,0775 

0,894 4,6829 0,23 0,0673 4,4424 0,22 0,0766 5,3171 0,22 0,0660 4.6654 0,26 0,0688 4,4400 0,22 0,0845 4,9206 0,26 0,0672 

0,898 3,9496 0,15 0,0795 4,6459 0,21 0,0891 4,9494 0,28 0,0710 4.2105 0,18 0,0838 4,8231 0,25 0,0853 4,3262 0,20 0,0932 

0,902 4,8763 0,24 0,0768 4,8066 0,21 0,0963 4,0992 0,18 0,0919 4.5930 0,27 0,0775 4,7847 0,24 0,0818 4,8984 0,24 0,0769 

0,906 4,7196 0,23 0,0985 5,1365 0,23 0,0873 5,1278 0,25 0,0994 4.7537 0,25 0,0824 4,0357 0,16 0,1053 4,2161 0,12 0,0849 

0,910 4,5884 0,27 0,0965 4,9983 025 0,0856 4,3211 0,28 0,0881 4.0987 0,15 0,1070 4,6472 0,22 0,1138 3,8025 0,16 0,0931 

 
Table 3. Numerical statistics for Different Cooling Schedules (fat and t1) and Hypersphere Radius (dx1) (cont.) 

dx1 = 0.0096                  

fat1/t1 0,35 0,37 0,39 0,41 0,43 0.45 

 fmed cv pac Fmed cv pac fmed cv pac fmed cv pac fmed cv pac fmed cv pac 

0,890 4,2482 0,21 0,06 4,9998 0,26 0,081 4,3243 0,18 0,0663 5,2288 0,27 0,0765 4,585 0,25 0,0828 4,6517 0,23 0,081 

0,894 4,6683 0,18 0,0747 4,7626 0,26 0,0808 5,0872 0,25 0,0779 4,179 0,19 0,0762 4,4747 0,26 0,072 4,8899 0,28 0,0799 

0,898 4,5541 0,19 0,0899 4,7751 0,24 0,0758 4,9271 0,25 0,0769 4,1083 0,15 0,0735 4,9021 0,25 0,0689 4,8023 0,25 0,0962 

0,902 4,2946 0,23 0,0914 4,5997 0,21 0,0769 4,2511 0,21 0,0894 4,6152 0,27 0,0740 4,5465 0,19 0,0915 5,1714 0,25 0,0779 

0,906 5,1428 0,28 0,0808 4,6553 0,25 0,0100 4,558 0,22 0,081 5,0013 0,25 0,1035 4,9839 0,26 0,0776 3,7793 0,14 0,0964 

0,910 4,7151 0,25 0,1096 4,1704 0,15 0,0965 4,1693 0,20 0,0826 4,7023 0,23 0,0857 4,4489 0,18 0,0929 4,3738 0,20 0,0865 

 
Table 3. Numerical statistics for Different Cooling Schedules (fat and t1) and Hypersphere Radius (dx1) (cont.) 

dx1=0.0102                  

fat1/t1 0,35 0,37 0,39 0,41 0,43 0.45 

 fmed cv pac Fmed cv pac fmed cv pac fmed cv pac fmed cv pac fmed cv pac 

0,890 4,6946 0,27 0,0703 4,9787 0,26 0,0769 5,0406 0,24 0,0709 4,6129 0,27 0,0757 4,4995 0,26 0,0624 4,7796 0,28 0,061 

0,894 4,8417 0,27 0,0838 4,8011 0,2 0,0805 4,8226 0,26 0,087 4,7128 0,22 0,0758 4,7163 0,26 0,0656 4,6976 0,25 0,0679 

0,898 4,5358 0,21 0,0657 4,2 0,2 0,0645 4,2866 0,21 0,0802 4,1849 0,20 0,0810 4,2315 0,19 0,0846 4,7963 0,2 0,0785 

0,902 4,4274 0,19 0,0686 3,9124 0,22 0,0824 4,2413 0,17 0,0813 3,91 0,19 0,095 4,6948 0,29 0,0776 5,2847 0,25 0,0895 

0,906 4,4778 0,16 0,0863 4,773 0,24 0,0907 4,0179 0,19 0,0794 4,6708 0,26 0,0797 4,6194 0,29 0,0925 4,0143 0,11 0,0102 

0,910 4,6268 0,25 0,0957 4,0217 0,17 0,0961 4,4477 0,24 0,0820 5,3266 0,26 0,0889 4,4761 0,27 0,1134 5,4277 0,27 0,0905 
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Table 3. Numerical statistics for Different Cooling Schedules (fat and t1) and Hypersphere Radius (dx1) (cont.) 

dx1=0.0108                   

fat1/t1 0,35 0,37 0,39 0,41 0,43 0.45 

 fmed cv pac Fmed cv pac fmed cv pac fmed cv pac fmed cv pac fmed cv pac 

0,890 3,8563 0,20 0,0574 4,7255 0,24 0,0702 3,8322 0,13 0,0612 4,3298 0,21 0,07 4,697 0,24 0,0825 4,1786 0,18 0,0728 

0,894 4,0405 0,20 0,06 4,8005 0,21 0,0763 3,7605 0,14 0,0738 4,6306 0,29 0,0637 4,0574 0,21 0,0665 4,4701 0,23 0,0786 

0,898 4,3944 0,23 0,0632 3,6065 0,11 0,0738 5,1434 0,26 0,0798 4,0973 0,13 0,0895 5,4481 0,27 0,0871 4,3637 0,22 0,0826 

0,902 3,8994 0,11 0,0846 4,3782 0,28 0,0673 4,2801 0,18 0,0759 4,6001 0,25 0,0852 4,8334 0,21 0,076 4,1649 0,17 0,0941 

0,906 4,7545 0,24 0,0921 4,8376 0,22 0,0873 3,8506 0,15 0,078 4,3896 0,18 0,0901 4,3235 0,24 0,0925 4,551 0,24 0,01 

0,910 4,8189 0,27 9,7229 3,6806 0,15 0,0925 4,2434 0,17 0,0794 4,1607 0,23 0,0954 4,3153 0,2 0,0893 4,4925 0,2 0,01 

 
Table 3. Numerical statistics for Different Cooling Schedules (fat and t1) and Hypersphere Radius (dx1) (cont.) 

dx1=0.0114                  

fat1/t1 0,35 0,37 0,39 0,41 0,43 0,45 

 fmed Cv pac Fmed cv pac fmed cv pac fmed cv pac fmed cv pac fmed cv pac 

0,890 4,2674 0,24 0,0708 4,1821 0,17 0,0712 4,2603 0,26 0,0668 4,2341 0,18 0,0733 5,0169 0,22 0,0632 4,2427 0,23 0,063 

0,894 4,325 0,19 0,0734 4,6924 0,28 0,0582 3,9223 0,22 0,0608 5,0213 0,24 0,059 4,8369 0,25 0,075 5,1462 0,27 0,0788 

0,898 4,8927 0,28 0,0666 4,4996 0,27 0,066 4,4487 0,22 0,0775 3,5198 0,12 0,0768 4,4805 0,23 0,0791 4,4652 0,22 0,0904 

0,902 4,0178 0,23 0,0803 4,1179 0,15 0,0734 5,1263 0,26 0,0709 4,7889 0,28 0,0811 4,4735 0,22 0,086 4,7425 0,24 0,0767 

0,906 4,6535 0,30 0,0811 4,6031 0,24 0,0731 4,1462 0,18 0,0966 4,3897 0,29 0,0723 4,488 0,19 0,1032 4,5883 0,27 0,0998 

0,910 3,8285 0,13 0,0748 4,2079 0,18 0,0748 3,7662 0,15 0,08 4,6385 0,25 0,1022 3,9312 0,22 0,0842 4,4446 0,24 0,0961 

 
Table 3. Numerical statistics for Different Cooling Schedules (fat and t1) and Hypersphere Radius (dx1) (cont.) 

dx1=0.0120                  

fat1/t1 0,35 0,37 0,39 0,41 0,43 0.45 

 fmed Cv pac Fmed cv pac fmed cv pac fmed cv pac fmed cv pac fmed cv pac 

0,890 3,7888 0,0993 0,0569 4,4334 0,26 0,0664 4,841 0,25 0,0604 4,6189 0,28 0,0585 4,6781 0,24 0,0673 5,1359 0,27 0,0609 

0,894 4,0840 0,26 0,0575 5,1534 0,31 0,0584 3,8635 0,18 0,0631 5,0213 0,24 0,059 4,8369 0,25 0,075 4,2603 0,24 0,0732 

0,898 4,736 0,30 0,0628 4,6709 0,25 0,0633 4,3236 0,24 0,0614 5,0302 0,25 0,0744 4,2543 0,14 0,0814 4,044 0,12 0,0893 

0,902 4,2644 0,21 0,0815 4,3841 0,24 0,0691 4,1997 0,17 0,0925 3,8135 0,19 0,0694 4,0508 0,22 0,0685 4,6819 0,28 0,0851 

0,906 4,7067 0,24 0,0943 3,6528 0,15 0,0747 3,7339 0,18 0,0853 4,2191 0,24 0,103 4,9973 0,28 0,0732 4,6427 0,25 0,0896 

0,910 4,7729 0,21 0,096 3,8123 0,13 0,0886 4,7311 0,21 0,0845 4,4041 0,22 0,0944 4,3239 0,21 0,0937 3,791 0,12 0,0842 
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APENDIX- Random Functions generation 
 
The joint distribution function of n normal, random and independent variables, N(0,1), is defined by: 
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The function (A1) has the property of having a constant density over the surface of the hyperspheres, with the following 
form: 
  

 222
1 ... rzz n =++ .           (A2)

      
Using the distribution function defined in (A1), by means of a transformation of variables, one can derive a method for 
generating random vectors randomly distributed in the hypersphere surface, with a unit radius. (Alagar, 1976). Applying 
a polar transformation to (A1), results in (Kendall, 1961): 
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(A3) was found by aplying the following spheric polar transformation to the variable Z. 
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with: 
 

 1sencos 0 == nθθ , πθ 20 1 <≤ , and πθ ≤≤ i0   for i=2,...,n−1. 

 
Applying the transformation (A.4) to the function (A.38) and making r=1, one obtains: 
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Integrating the function A3, in relation to the variable r, from 0 to +∞, it is verified that the result equals the expression 
(A5), that represents the distribution function of the random vectors over the hypersphere surface, with unit radius and n 
dimensions.  
Generating n normal unitary Z random variables, the vector: 
 

 r/ZX = ,                        (A.6) 

 
is uniformly distributed over the hypersphere surface with dimension n and unitary radius. 
 
The method proposed by Box and Muller in 1958 (Hammersley and Handscomb, 1979), can be used for the generation 
of normal random variables: 
 

 vux  2 cos)ln  2( 2/1
1 π−=     and   vux  2sen  )ln  2( 2/1

2 π−= ,      (A7) 

 
with u and  v as uniform random numbers between  0 and 1. 
 
Press and others (1992) present a version of this generator where it’s not necessary to calculate the sine and cosine 
functions. Considering u' e v' as uniform random numbers in the interval [-1,1], the following relation can be defined: 
 

 22 '' vuu += ,    with  u<1,                                                       (A.8) 
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 vuu  2 cos' 2/1 π=         and        vuv  2sen ' 2/1 π= .                                  (A.9) 

 
It can be shown that: 
 

 4/),( ),( ,, ππ =′′= ′′ vufvuf VUVU ,     and                     (A.8) 

 

 1]1[/),()1|,( ,, =<=< UPvufuvuf VUVU .                                  (A.9) 

 
arriving at the following expressions: 
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