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Abstract. In this work we present the GILTT method for the solution of the transient two-dimensional advection-

diffusion equation incorporating the plume rise effect (warm source)  using the approach proposed by Briggs (1975). A 

correct estimation of buoyant plume rise is one of the basic  requirements for the determination of ground-level 

concentrations of airborne pollutant emitted by industrial stacks. This improvement turns out a more operative model. 

To investigate the performances of the model with the plume rise effect, we report numerical simulations of the ground-

leve centerline concentrations compared with the observed concentrations measured during the Kinkaid experiment. 
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1. Introduction 
 

Eulerian approach for modelling the statistical properties of the concentrations of contaminants in a turbulent flow 

as the Planetary Boundary Layer (PBL) is widely used in the field of air pollution studies. Despite well known limits, 

the K-closure is largely used in several atmospheric conditions because it describes the diffusive transport in an 

Eulerian framework where almost all measurements are Eulerian in character, it produces results that agree with 

experimental data as well as any more complex model, and it is not computationally expensive as higher order closures 

are.  

The advection-diffusion equation has been widely applied in operational atmospheric dispersion models to predict 

ground-level concentrations due to low and tall stacks emissions. Analytical solutions of equations are of fundamental 

importance in understanding and describing physical phenomena, since they are able to take into account all the 

parameters of a problem, and investigate their influence. 

In the last years (Tirabassi, 2003) special attention has been devoted to the task of searching analytical solutions for 

the advection-diffusion equation. Recently, the Generalized Integral Laplace Transform Technique (GILTT method) 

has been applied for the simulation of pollutant dispersion in the atmosphere by solving analytically the two-

dimensional diffusion-advection equation assuming non-homogeneous conditions. (Moreira et al., 2006). We applied 

the above approach in this paper. The main steps of this method comprehend: reduction of the time-dependent problem 

to a stationary by the applications of the Laplace transform technique, construction of an auxiliary Sturm-Liouville 

problem associated to the stationary problem, expansion of the contaminant concentration in a series in terms of the 

obtained eigenfunctions, replacement of this expansion in the original problem. Finally, taking moment, we come out 

with a set of ordinary differential equations which are then solved analytically by the Laplace transform technique. The 

time-dependent concentration is obtained by inverting numerically the solution of the stationary problem by the 

Gaussian quadrature scheme.  

In this work we step forward incorporating the plume rise effect (warm source) in the model using the approach 

proposed by Briggs (1975). A correct estimation of buoyant plume rise is one of the basic requirements for the determination 

of ground-level concentrations of airborne pollutant emitted by actual industrial stacks. This improvement turns out a more 

operative model. To investigate the influence of the plume rise effect, we report numerical simulations of the ground-
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level crosswind integrated centerline concentrations compared with the observed concentrations measured during the 

Kinkaid experiment (Hanna and Paine, 1989).  
To reach this goal, we outline the paper as follows: in section 2, we report the derivation of the GILTT solution for 

the transient two-dimensional advection-diffusion equation. In section 3 the turbulent parameterisations assumed in this 

work are presented. In section 4, the plume rise approach is presented. The numerical results attained by the analytical 

method are reported as well the comparison with experimental data are presented in section 5, and finally in section 6, 

the conclusions. 

 

2. The GILTT method 
 

Let us consider the crosswind integrated time dependent advection-diffusion equation with advection in the x 

direction (as usual, the along-wind diffusion is neglected because considered little in respect to the advection): 
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where c  denotes the crosswind integrated concentration, 
zK  is the vertical eddy diffusivity and U is the component 

longitudinal of the wind speed.  Equation (1) is subjected to the boundary conditions of zero flux at the ground and 

PBL top, and a source with emission rate Q  at height 
sH : 
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and also assume that at the beginning of the pollutant releasing the dispersion region is not polluted, we mean: 

    

 00, =)c(x,z                            at  t = 0 ,                                                                                                                     (1c) 

 

where h  is the PBL height. In the sequel we consider that 
zK , the wind speed U  depend only on the variable z.  

Using the Laplace Transform technique, transforming t into s and c into C, we have:  
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Now we are in position to solve the stationary problem (2) by the GILTT approach. Firstly, we expand the 

pollutant concentration in the series: 
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a associated Sturm-Liouville problem.  Following the procedure addopted in Wortmann et al. (2005) and Moreira et al. 

(2005), we replace the above ansatz in Eq. (2) and by taking moments we get: 
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Rewriting Eq. (4) in matrix fashion, we obtain: 

 

0),(),( =+′ rxFYrxY  ,                                                                                                                      (5) 
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where ),( rxY  is the column vector whose components are ),( rxci
 and the matrix F  is defined like EBF

1−= .  The 

matrices B and E  are respectively given by: 
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The transformed problem represented by the Eq. (5) is solved by the Laplace Transform technique and 

diagonalization and his solution is (Wortmann et al., 2005; Moreira et al., 2005): 
 

ξ).,(.),( rxGXrxY =   ,                                                                                                           (7) 

 

where ξ  is the integration constant vector, G  is the diagonal matrix with elements have the form 
xd ie

−
,  X  is the 

eigenfunction matrix and 
id  are the eigenvalues of the matrix F . Therefore, the transformed solution given by Eq. (3) 

is well determined.  

Finally, the time dependent concentration is obtained by inverting numerically the transformed concentration 

),,( rzxC  by a Gaussian Quadrature scheme: 

 

∑∑
==

=
N

i

i

k

ik

M
k z

t

P
xcA

t

P
tzxc

01k

)(),(),,( ζ                                                                                                                (8) 

 

where
kA  and 

kP  are the weights and roots of the Gaussian quadrature integration scheme and are tabulated in the book 

by Stroud and Secrest (1966). 

It is important to recall that the solution of problem (1) given by equation (8), is analytical, in the sense that no 

approximation is made along its derivation, except for the Laplace numerical inversion and round-off error. Regarding 

the issue of Laplace numerical inversion, it is important to mention, that this approach is exact if the transformed 

function is a polynomial of degree 2M-1 in the 1/s variable. Furthermore, we must point out that we specialize this 

application, without loss of generality for an eddy diffusivity coeficient depending only on the z variable. 

 

3. Turbulent Parameterizations 

 
In the atmospheric diffusion problems the choice of a turbulent parameterization represents a fundamental decision 

for the pollutants dispersion modeling. From a physical point of view the turbulence parameterization is an 

approximation to the nature in the sense that we are putting in mathematical models an approximated relation that in 

principle can be used as a surrogate for the natural true unknown term. The reliability of each model strongly depends 

on the way as turbulent parameters are calculated and related to the current understanding of the PBL (Mangia et al., 

2002). 

The lateral dispersion parameter σy is important to calculate the concentration in the ground-level centerline 

concentration: 
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where in this study the ground-level cross-wind integrated concentration in the Eq. (9) is calculated employing the 

GILTT model ( Eq. (8)).   

The lateral dispersion parameter σy  for a CBL derived by Degrazia et al. (1998) presents the following form: 
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where X  is a nondimensional distance (
iUzxwX *= ), *w  is the convective velocity scale and iz  is the top of the PBL.  

The Eq. (10) contain the unknown function ψ , the molecular dissipation of turbulent velocity is a leading 

destruction terms in equations for the budget of second-order moments, and according Hφjstrup (1982), has the form: 
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where L is the length of Monin-Obukhov. 

In terms of the convective scaling parameters the vertical eddy diffusivity can be formulated as (Degrazia et al., 

1997): 
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The wind speed profile used has been parameterized following the similarity theory of Monin-Obukhov and 

“OML” model (Berkowicz et al., 1986): 
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where [ ]ib zLz 1.0,min= , and 
mΨ  is a stability function given by (Paulson, 1970). 

Thus, in this study we introduce the vertical eddy diffusivity (Eq. (12)) and wind profile (Eq. (13) and (14)) in the 

GILTT model (Eq. (8)) to calculate the ground-level crosswind integrated concentration. Finally, these crosswind 

integrated concentration and the lateral dispersion parameter (Eq. (10)) will be introduced into Eq. (9) to simulate the 

ground-level centerline concentrations of buoyant emissions released from an elevated continuous source point in an 

unstable PBL. 

 

4. Plume rise 

 

A correct estimation of buoyant plume rise is one of the basic requirements for the determination of ground level 

concentrations of airborne pollutant emitted by industrial stacks. In fact, maximum ground level concentration is roughly 

inversely proportional to the square of the final height he’. For this reason, in many simple dispersion models, stack gases 

are assumed to be emitted from a virtual source located at height he along the vertical above the stack. The effective 

plume height he (elevation of plume centerline relative to ground level) results from the sum of stack height 
sH and 

plume rise h∆ :  

 

hHh se ∆+=  .                                                                                                                                                           (15) 

 

Some formula provide the plume rise as a function of the distance, but most of them provide a constant value (final 

plume rise) that the plume reaches at a large downwind distance. These formula contain height depending atmospheric 

variables normally specified at the stack outlet height. 

Several studies and review works have provided semiempirical formula for evaluating h∆  (e.g., Briggs, 1975; 

Stern, 1976; Hanna et al., 1982; and many others). Others researchers have provided more complex and comprehensive 

descriptions of several physical interactions between the plume and the ambient air (e.g., Golay, 1982; Netterville, 

1990). Relevant and exhaustive review papers on the plume rise subject can be found in the literature, for instance, 

Briggs (1975) and Weil (1988). In this work, we are utilizing the formula of Briggs (1975) applied by Moreira (2000). 

Briggs (1975) made a distinction between neutral and unstable conditions accounting for the effects of ambient 

turbulence on the plume rise. While self-generated turbulence affects the entrainment process near the source, ambient 

turbulence (with both small and large scale eddies) becomes important further downwind. Small scale eddies, are 

responsible for the increase of the plume growth rate beyond that given by self-induced turbulence. The breakup model 

(Briggs, 1975; Weil, 1988) assumes that plume rise finishes when ambient turbulence “breaks up” the self-generated 

structure of the plume, causing a vigorous mixing, and, consequently, gradually loses buoyancy and momentum and 

eventually level off. Thus, this process leads to an asymptotic rise. According to Briggs, the plume breakup occurs when 

the ambient rate of dissipation of turbulent kinetic energy, εa, exceeds the one of the plume ε. Large scale eddies 
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(updrafts and downdrafts in the convective boundary layer (CBL)) may transport plume segments up and down, thereby 

dispersing the plume by vertical meandering and pushing some of them to the surface. When this happens, the time 

averaged ground level concentration is more dependent on how many times, during the averaging period, the plume 

touches the ground than on the height of the asymptotic rise. As a consequence, in the CBL case, the leading parameter 

is assumed to be the surface sensible heat flux, which plays the major role in the development of updrafts and 

downdrafts. 

In strong convection ( 10>Lzi
) the model “breaks up” has a final behavior given for: 
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where the rate of ambient dissipation is assumed to be 0.1
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where Vi and Ti are the vertical velocity and temperature, respectively, in the exit of the chimney, Ta is the ambient 

temperature, g the acceleration of the gravity and ri  is the radius of the source. The model defines a “touchdown” for 

moderate convective conditions predicts the behavior of the plume for:  
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where wd is the medium speed of the downdrafts, considered as *4.0 wwd = . The resulting equation is iteratively 

solved for ∆h. In neutral stability, the “breaks up” model predicts the following behavior:  
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In this work, the penetration of the plume is not considered due to the boundary conditions of the K-model. Then, if 

the plume is completely prey, Weil (1979) suggests that the restriction geometric limit for ∆h is: 

 

)(62.0 si Hzh −=∆  .                                                                                                                                                  (20) 

 

In certain cases, Briggs (1975) recommends to use the formulae that provides the minimum plume rise; this result 

is “the most conservative”, since it gives rise to the maximum values of concentration expected at the ground, thus 

limiting the risk of a possible underestimation. Then, the formulas can be summarized as it proceeds: 

 

 ∆h = min(Eqs. 16, 18, 19, 20)  .                                                                                                                              (21) 

 

 

5. Experimental data and Results 
 

The performance of the GILTT model has been evaluated against experimental ground level concentration using 

experimental data from dispersion experiments carried out in Kinkaid, Ilinois, USA. The Kincaid field campaign 

(Bowne and Londergan, 1981) concerns an elevated release in a flat farmland with some lakes. During the experiment, 

SF  was released from 187 tall stacks and recorded on a network consisting of roughly 200 samplers positioned in arcs 

from 0.5 to 50 km downwind of the source. The data set includes the meteorological parameters as friction velocity, 

Obukhov-Monin length and height of boundary layer. The measured concentration levels is frequently irregular, with 

high and low concentrations occurring intermittently along same arc, moreover there are frequent gaps in the 

monitoring arcs. For the above reasons a variable has been assigned as a quality factor in order to indicate the degree of 

readability of data (Olesen, 1995). The quality indicator (from 0 to 3) has been assigned. Here, only the data with 

quality factor 3 were considered.   A complete description of the experiment is found in the work of Hanna and Paine 

(1989) relatively only convective condition (for 10>Lzi
). The meteorological parameters were derived using 
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preprocessing methods. Observed mixing heights were determined by interpretation of radiosonde data. The distributed 

dataset contains hourly mean values of concentrations and meteorological data. The time dependence in the model was 

evaluated with hourly average concentration (time resolution of 10 min) in the sampling period. 

Figure 1 shows the observed and predicted scatter diagram of ground-level centerline concentrations using the 

GILTT model for the Kinkaid experiment. In this respect, it is important to note that the GILTT model reproduce fairly 

well the observed concentration.   

 

 

Figure 1. Observed (Co) and predicted (Cp) crosswind ground-level integrated concentration scatter diagram for the 

GILTT model. Dotted lines indicate a factor of two. 

 

The datasets were applied subsequently to the following statistical indices (Hanna, 1989): 

NMSE (normalized mean square error) = 
popo CCCC

2)( − , 

FA2 = fraction of data (%) for 2)/(5.0 ≤≤ op CC  

R (correlation coefficient) = 
poppoo CCCC σσ−− )(( , 

FB (fractional bias) = )(5.0 popo CCCC +− , 

FS (fractional standard deviations) = )(5.0)( popo σσσσ +−  

where subscripts o and p refer to observed and predicted quantities, respectively, σ  the standard deviation and an 

overbar indicates an average. 

The results of the statistical indices for the GILTT model are compared with those obtained from  a Gaussian 

model (Moreira et al., 2004) and are shown in Tab. 1. The statistical indices point out that a good agreement is obtained 

between the Gaussian and GILTT model, although the statistical indices indicate that the GILTT reproduces more 

adequately the observed ground-level centerline concentrations (in particular fit the Kinkaid data set, where data are 

more numerous and difficult to be model by dispersion models).  

 

Table 1. Results of statistical indices used to evaluate the model performance. 

Model NMSE R FA2 FB FS 

GILTT 0.40 0.69 0.75 0.05 -0.22 

Gaussian 0.54 0.61 0.74 0.33 0.20 

 

 

6. Conclusion 
 

In this work we present numerical simulations of pollutants diffusion released from a buoyant source, by the 

GILTT model. In the model we consider the dispersion parameters and eddy diffusivities described in terms of the 

energy-containing eddies.  

The statistical analysis of the results shows a good agreement between the results of the proposed approach 

with the experimental data of the Kinkaid experiment and the Gaussian results. We promptly realize also that the 

GILTT might yield better results than Gaussian (that shows good results either) approach. Bearing in mind that in 

Gaussian model the turbulence is assumed homogeneous and constant dispersion parameters, we are confident that 
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this fact explains the better performance of the GILTT model. Indeed, in the GILTT approach we consider the 

parameterization derived by Degrazia et al. (1997, 1998) for nonhomogeneous turbulence having a dependence on 

the vertical distance z. Now, we would like to stress that from above discussion, the GILTT model is a robust 

method, under computational point of view, to simulate the pollutant dispersion in the PBL. This argument is 

reinforced by the comparable computation effort between the GILTT and Gaussian solutions besides their 

analytical features. Finally, we will focus our future attention in the solution of the GILTT incorporating simple 

chemical pollutant reactions as source term, in order to make this solution an operational model to air quality 

simulation. 
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