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Abstract. This paper presents the development of a low cost computational methodology for the conceptual design optimization of 
axial-flow hydraulic turbines (propeller turbines). The methodology has been developed with a quasi-two dimensional flow model, 
employing empirical correlations for cascade losses and flow deviations. As in a previous work, the study is based on the 
conservation principles for mass and angular momentum, but now it is included the radial equilibrium equation in order to achieve 
a more realistic flow field. For reducing the number of design variables, the runner blading stagger, chord-pitch ratio and camber 
are parameterized in terms of their values at the hub, mean and tip stations. The design optimization algorithm has been coded in 
MATLAB™ language. This code searches for a basic geometry that maximizes the turbine efficiency, given the design flow rate, 
rotational speed and bounds for the design variables and also for the available head. Two optimization techniques have been 
applied: a standard sequential quadratic programming, which searches for local maximizers starting from an initial point, and a 
controlled random search algorithm, a population set-based algorithm that searches for global maximizers starting from an initial 
population. An application example of the methodology is presented and discussed for the optimization of a real turbine model, 
previously tested in a laboratory rig. The optimized solution is compared with original turbine design, showing the performance 
improvements, according to the hydrodynamic modeling. Recommendations for methodology improvements are also made. 
 
Keywords. axial-flow hydraulic turbine, loss and deviation modeling, geometry parameterization, optimization technique, design 
optimization. 

 
1. Introduction 

 
Hydraulic turbines have been designed for about two hundred of years. In the early designs, the engineer own 

experience and trial-and-error tests with models represented the main available design tools. The amount of empirical 
information was comparable with the feasible analytical methods based on theory. A fraction of this empirical 
knowledge was condensed in several design charts – used even today – which furnish guidelines for some turbine basic 
dimensions (Cordier, 1955; Schweiger and Gregori, 1989). Another portion of this knowledge has been retained by the 
engineers themselves, being transmitted, as an inheritance, to next engineer teams of the companies. 

The development of computers in the second half of twenty century made possible the use of complex numerical 
flow simulation methods for turbine analysis and design. Nowadays, 3D Euler codes and 3D viscous Navier-Stokes 
codes are already standard tools on the development of new water turbine units. Details of flow separation, loss sources, 
loss distribution in components, matching of components at design and off-design, and low pressure levels with risk of 
cavitation are now amenable to analysis with computational fluid dynamics – CFD (Drtina and Sallaberger, 1999). 

The application of these modern CFD techniques for predicting the flow through an entire turbine has brought 
further substantial improvements in its hydraulic design. Since the detailed understanding of flow phenomena is of great 
practical importance, it has a direct impact on the design, resulting in geometrical changes of existing components, the 
replacement of existing components by a completely new design and/or the use of new materials (Drtina and 
Sallaberger, 1999). 

Although 3D Navier-Stokes codes have shown most reliable results, with accurate performance predictions and 
flow details, hence decreasing the number and costs of model tests, a significant amount of computational effort has to 
be spent with grid generation and grid modification in each numerical investigation. For instance, in turbomachine 
design optimization, the context of the present work, when a geometrical modification is made by the optimization 
algorithm, the meshes must be recalculated and the flow solver – with its high computational cost – must be run again. 
This effort often prevents the integration of sophisticated Navier-Stokes simulations into the whole design procedure. In 
addition, a fast, simple and reasonable accurate analysis is still essential for the initial design phases, when the geometry 
is not yet all determined (Oh and Kim, 2001; Yoon et al., 1998). 
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Therefore it would be desirable to make available intermediate design optimization schemes – with low 
computational cost – for turbomachines. These schemes must furnish a reliable conceptual design, with a simplified but 
representative geometry for runners and stators and also the correct trends towards the optimum flow field. In the 
present work, such a methodology is proposed for axial-flow hydraulic turbines. From its results, then, one could use a 
more sophisticated CFD code to make the refinements only (Lipej, 2004; Peng et al., 2002), what would substantially 
decrease total computation time.  
 
2. Formulation of the optimization problem 
 

In this section, we describe the turbine design optimization problem. In guidelines, it consists on searching some 
runner blade and guide vane basic geometries (design variables) in order to maximize the turbine efficiency (objective 
function), given the design rotational speed and volumetric flow rate (design point optimization only). The available 
head may lay within upper and lower bounds, these being the nonlinear constraints of the problem. There are also 
lateral constraints for the design variables, defining problem feasible region. 

Formally, this can be stated as a constrained minimization problem as follows: 
 
minimize f(x) 
subject to gi(x) U 0 ,  i = 1, ..., m. 
x ∈ S 
 
x is the n-dimensional vector of design variables (xj, j = 1, ..., n). The feasible region S is defined by upper and 

lower bounds,  and  respectively, for each coordinate of x: S = {x ∈ ℜn : , j = 1, ..., n}. The 

objective function is f(x) = −η(x), where η is the turbine efficiency (single objective optimization). gi(x), i = 1, ..., m, 
are the m constraint functions, namely, g1(x) = HL – H(x) and g2(x) = H(x) – HU, where H is the turbine available head 
and HL and HU  are respectively lower and upper bounds, such that HL U H U HU. 
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Here, M is a “big” positive number. Again, the objective is to maximize η (minimize −η) with H laying in the 

interval [HL ; HU]. The choice of the penalty factor M must not drive the optimization process towards a penalty 
minimization only, missing objective function main information, i.e., the efficiency η. Also, the constraints must not be 
violated at the end of the process. Some tests have to be performed to settle suitable values for M. 

Although the evaluation of cavitation performance is a basic feature in hydraulic turbine design, the present work is 
concerned only with the turbine efficiency. Actually, the cavitation occurrence may be preliminarily avoided by 
controlling the blade incidence angles and loading distributions. By specifying some criteria like these, one may run the 
turbine efficiency optimization code with some safety against cavitation risk. Thereafter a more sophisticated blade 
design CFD technique can be used to refine the previous solution, ensuring minimum cavitation occurrence (Lipej, 
2004; Peng et al., 2002). 

 
3. Flow calculation through an axial-flow hydraulic turbine 

 
3.1. General  
 

The water turbine considered in this study is a tube type propeller turbine with non-adjustable guide vanes, as Fig. 
1. In addition, the distributor is cylindrical (non-conical) and the guide vanes are not twisted along the radius. It was 
originally designed and tested by Souza (1989), who used free vortex hypothesis and blade element theory (this is a 
classical design procedure). This design will be referred to as the initial design and will be useful for comparisons with 
the optimization results. Table 1 shows some design basic features of this turbine. 

The flow through the turbine is considered incompressible and axisymmetric. The solver is a MatLab™ code based 
on the conservation principles for mass and angular momentum. The flow losses and deviations are assessed by using 
empirical correlations from open literature (Horlock, 1973). 

In a previous work (Albuquerque et al., 2005), the meridional velocity distributions were assumed to be uniform 
along the span. This is physically satisfactory only if the hypothesis of uniform blade specific work is also attained. 
However, in the mentioned work, a blade specific work variation of about 1:5 occurred from root to tip stations, 
contradicting the initial hypothesis. Therefore, the correct radial equilibrium must be evaluated in order to achieve a 
more realistic flow field. In the present work, the velocity distributions behind the stator and behind the runner are 
calculated according to the well known radial equilibrium condition. This is a relation between meridional and 
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circumferential absolute velocity components in conformity to energy conservation and momentuum equation in the 
radial direction – radial equilibrium equation (Manzanares-Filho, 1994). 

A geometrical parameterization for reducing the number of design variables is also proposed in the present work. 

Draft tube

Flow Runner Distributor

Shaft

Figure 1. Sketch of the propeller turbine water channel. 
 

Table 1 - Turbine main features (Souza, 1989). 
 

Flow rate 0.286 m³/s 
Rotational speed 1145 rpm 

Head 4.0 m 
Design efficiency 85 % 

Power output 9.5 kW 
External diameter 280 mm 
Internal diameter 112 mm 
Number of blades 4 

Guide vanes exit angle   60° (from tangential) 
 

3.2. Blade geometry parameterization  
 
The blade profile camber lines are approximated by arcs of circumference of small curvature, which is reasonable 

for an axial hydraulic turbine runner (whose blade profiles are typically little cambered). The blade thicknesses are not 
considered in this work, since no cavitation phenomena or flow separation is evaluated by the adopted modeling. 
Actually, when the blade profiles are thin enough, the thickness does not contribute to the hydrofoil lift: in a thin, small 
cambered hydrofoil, the thickness affects only the pressure distribution, the lift being a function only of the angle of 
attack and profile camber (thin airfoil theory – Karamcheti, 1980). As our main concern is the flow deflections in the 
guide vane and runner blade cascades, considering the camber lines only is enough to the evaluation of the flow field. 

Thus the whole blade profile is defined by its stagger angle, β, chord-pitch ratio, l/t, and relative camber at mid-
chord, f/l, Fig. 2. This choice for the runner design geometries is suitable since these three quantities lead to the cascade 
necessary geometric and kinematics characteristics in an initial design stage (as incidence angle, camber angle, angle of 
attack, deviation angle, flow deflection, etc.). 
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runner geometry. Among the various possibilities of parameterization, we have chosen parabolic functions. This choice 
is reasonable to approximate the usual geometric configuration found in axial hydraulic turbine designs (Lipej, 2004). 
In addition, the initial design of Souza (1989) – that was also parameterized for the comparisons with the optimized 
solution – is reasonably reproduced by the parabolic parameterizations, Fig. 3. 

Because the guide vanes are not twisted along the radius, a single outlet angle, α2, is enough as design variable for 
the distributor geometry (Fig. 2). So, we have a total of 9 + 1 = 10 design variables. 

It must be emphasized that we are looking for a conceptual design optimization, in which the attained flow velocity 
distribution patterns are more relevant than the geometry itself. A complementary procedure could be an inverse 
cascade design optimization that would satisfy the inlet and outlet velocity profiles initially calculated. Actually, such 
approach has already been performed in more complex water turbine optimization problems (Lipej, 2004; Peng et al., 
2002). In these works, cavitation performance is also a problem objective – thus they are multiobjective optimization 
problems. As we have said before, the high computational cost in these schemes, however, is still a limitation factor to 
the design optimization course (Drtina and Sallaberger, 1999). Again, in the present work, we are looking for an 
intermediate methodology with low computational cost, being feasible to be performed in a single computer. 
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Figure 3. Parabolic parameterizations for the runner geometry of the initial design. 
 

3.3. The radial equilibrium condition 
 
Next we describe how the velocity distributions behind the distributor (stator) and behind the runner are evaluated 

in conformity to the radial equilibrium equation. The developments are referred to Figs. 4, 5, 6 and 7. The indexes h and 
t correspond respectively to hub and tip radial stations. c is the absolute velocity, w is the relative velocity and u is the 
blade velocity. α and βf are respectively the absolute and relative flow angles, measured from circumferencial direction 
as shown in Fig. 5 and 6. The indexes u and m correspond respectively to circumferential and meridional velocity 
components. For example, cm5h is the meridional component of the absolute velocity at runner exit and hub station. 

 
 3.3.1. Radial equilibrium behind the distributor 

 
Assuming steady state, incompressible absolute flow in the stator, the energy equation (fist law of thermodynamics) 

leads to: 
 

LsSS Ypp ρ=− 21                (1) 
 

where pS is the stagnation pressure, ρ is the specific mass and YLs is the mechanical energy loss per unit mass in the 
stator. 

The static pressure and absolute velocity are assumed to be constant at the distributor inlet, hence pS1 is constant 
along the span. Therefore, from the differentiation of Eq. (1), we have: 

 

dr
dY

dr
dp LsS ρ=− 2                (2) 

 

The momentuum equation in the r-direction – radial equilibrium equation – is stated as follows: 
 

r
c

dr
dp u

2
22 ρ=                (3) 
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where p is the static pressure. From Eqs. 2 and 3, the following relation between cm2 and cu2 can be derived 
(Manzanares-Filho, 1994): 
 

0
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2
2

2 =++
dr
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r
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rcd

c Lsm
m

u
u

             (4) 

 

This is the radial equilibrium condition behind the stator. If the spanwise distributions of cm2 and cu2 satisfy Eq. (4), 
these distributions are in agreement with the energy and momentuum equations. Although some simplifications have 
been made to derive Eq. (4), this relation leads to realistic trends for the flow field core in axial-flow turbomachines. 

Observe that if we assume the free vortex condition (rcu2 = constant) and neglect the effect of the loss in the radial 
equilibrium (dYLs / dr = 0), we have cm2 = constant. Inversely, it can also be demonstrated that cm2 = const. ⇒ rcu2 = 
const. The free vortex is a common design alternative and was used by Souza (1989) in the initial design. However, if 
the guide vane geometry does not furnish the free vortex at the enclosure between the stator and runner, cm2 will not be 
uniform along the span; thus, the correct radial equilibrium must be evaluated in order to achieve a realistic velocity 
distribution. Moreover, the free vortex condition is not necessarily the optimum one. 

Draft tube
Flow

RunnerDistributor

Runner Distributor

1 2 4 5

r

u

 

Figure 4. Meridional cross-section of turbine water channel.                Figure 5. Instantaneous absolute streamlines  
1: distributor inlet;   2: distributor outlet                  in a cylindrical section. 
4: runner inlet;         5: runner outlet 
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Figure 6. Velocity components at distributor cascade.    Figure 7
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The overall continuity is now imposed in order to evaluate the meridional velocity at the hub station (cm2h); Q is the 
volumetric flow rate: 

 

∫=
t

h

r

r m rdrrcQ )(2 2π                (8) 
 

π2/)(2 Qrdrrct

h

r

r m =∫                (9) 
 

π2/)(2
2 QrdrrIct

h

r

r shm =⋅+∫                 (10) 
 

Equation 10 is a nonlinear equation – with the unknown into an integration – to settle cm2h according to the overall 
continuity and radial equilibrium condition. We have chosen a standard bisection algorithm from MatLab™ (fzero 
function) to solve this equation. The integration in Eq. (10) is evaluated by using the Simpson rule. 

The evaluation of Is(r), Eq. (6), needs the previous knowledge of the velocity torque distribution, rcu2(r). However, 
the circumferential components cu2 are calculated by using the not yet determined meridional components cm2. 
Therefore an iterative scheme must be adopted. We first assume a uniform distribution to cm2. With this, some rcu2 
values can be calculated by using cascade relations in N radial stations (cascades). These values are adjusted to a 
parabolic distribution by using least-squares. The choice of a parabolic distribution, rcu2 = K1 + K2r + K3r², is indeed 
suitable for axial hydraulic turbines. This reproduces very well the typical swirl patterns (Peng et al., 2002), can 
recuperate the free vortex (an important particular case) and has given great accuracy in our problem. Thence the 
adjusted parabolic distribution is used in the evaluation of Is(r) (which is performed analytically) and then the 
meridional velocity distribution (Eq. 7) can be evaluated after solving Eq. 10 for cm2h. This new cm2 distribution is used 
now to recalculate the rcu2 values in cascades and the iterations are carried out until the flow field converges, Fig. 8. 

 NO 
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Velocity field  
at stator exit 

The velocity distributions 
converged? 

cm2 according to the 
radial equlibrium equation

and overall continuity 

   Integral Is 

 Cascade geometry, 
deviation correlation, 
parabolic adjust for rcu2 

 Initial distribution of cm2 

Figure 8. Iterative scheme for the velocity distribution evaluation behind the stator. 
 

3.3.2. Radial equilibrium behind the runner 
 
The velocity field at runner inlet is assumed to be equal the velocity field at stator exit, that has just been evaluated. 

Now, the energy equation gives: 
 

bladeLrSS YYpp ρρ ++= 54                 (11) 
 

where YLr is the mechanical energy loss per unit mass at runner and Yblade is the blade specific work, calculated 
according to the Euler work equation: 
 

)( 54 uublade ccuY −=                    (12) 
 

As we have neglected the effect of the hydraulic loss on the radial equilibrium behind the stator, the stagnation 
pressure at runner inlet is constant (see Eq. (2)): 

 

024 =−==
dr

dY
dr

dp
dr

dp LsSS ρ                 (13) 

 

The radial equilibrium equation is again stated as follows: 
 

r
c

dr
dp u

2
55 ρ=                   (14) 

 

From Eqs. 11, 12, 13 and 14, and neglecting again the effect of the mechanical loss on the radial equilibrium (Peng 
et al., 2002), an analogous development as that one for the stator leads to the following relation between cm5 and cu5: 
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This is the radial equilibrium condition behind the runner. Observe that the distribution of ucu4 is the same as that of 
ucu2, which has just been determined in the previous subsection. Again, the integration of Eq. (15) leads to the 
distribution of cm5 satisfying to the radial equilibrium along the whole span: 
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Again, the overall continuity is imposed in order to evaluate the meridional velocity at the hub station (cm5h), 
leading to a nonlinear problem analogous to that for the distributor: 

 

π2/)(2
5 QrdrrIct

h

r

r rhm =⋅+∫                 (17) 
 

Due to the same considerations made on previous subsection, an analogous iterative scheme is newly adopted for 
the evaluation of the velocity distribution behind the runner, Fig. 9. Now, the N values of rcu5 in cascades are adjusted, 
by using least-squares, to a cubic function (rcu5 = K4 + K5r + K6r² + K7r³) instead of a parabolic function. The choice of 
a cubic distribution has proved to be suitable for reproducing, with great accuracy, the typical inflections in cu5 
spanwise variation. For the runner, however, a sub relaxation scheme had to be applied for attaining convergence. Each 
time a new distribution of cm5 is calculated (Eqs. 17 and 16), leading to a new cu5 distribution in cascades (from velocity 
triangles and deviation correlation), the new values settled to cu5 are given by: 

 

old
u

cascade
u

new
u ccc 555 )1( λλ −+=                 (18) 

 

where λ is the sub relaxation factor. For starting this scheme, the first cu5 distribution is equated to zero. The sub 
relaxation factor has been settled equal to 0.10. 
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Figure 9. Iterative scheme for the velocity distributi

 
3.4. Loss and deviation correlations; turbine efficiency 

 
The empirical loss correlations used in this study in order to calcul

are summarized in Tab. (2). Further details are found in Albuquerque et
The flow deviation with regard to the cascade metal angle is assesse

(Horlock, 1973). For example, the deviation angle at stator exit, δ, is giv
 

l/22 tmvanef φααδ =−=       
 

where α2f is the flow angle, α2vane is the guide vane geometrical angle, φ
l is the profile chord, t is the spacing and m is an empirical factor. In
function of the stagger angle, α (in degrees), and the kind of camb
approximated by the linear function  m(α) = 0.21 − 0.04(90 − α)/60, for
flow deviation at the runner exit is evaluated analogously to that at s
geometry (Albuquerque et al., 2005). 

The losses are evaluated in N radial stations (cascades) and these 
least-squares. Thence, these regressions are integrated along the span 
The runner blade specific work (Eq. (12)) is integrated along the span i
From these results, we calculate the available head, H = (Pblade + PL)/(ρ
+ PL) and the overall efficiency, η = ηhηmec. All these calculations are
solver, whose flowchart is synthesized in Fig. 10. 
c  according to the m5
ial equlibrium equation
nd overall continuity
on evaluation behind the runner. 

ate the losses through an axial hydraulic turbine 
 al. (2005). 
d by using the correlation of Carter and Hughes 
en as: 

          (19) 

 is the profile camber angle (φ = α1vane – α2vane), 
 Horlock (1973), m is graphically provided as a 
er line (circular or parabolic). This graph was 
 circular camber lines adopted in this work. The 
tator exit, with the corresponding runner blade 

values are adjusted to a cubic function by using 
in order to evaluate the total hydraulic loss, PL. 
n order to calculate the total blade power, Pblade. 
gQ), the hydraulic efficiency, ηh = Pblade / (Pblade 
 performed by a MatLab™ code, this being the 
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Table 2 - The set of loss models used for axial hydraulic turbines. 
 

Loss mechanism Loss model Reference 
Guide vane profile loss  

(skin friction loss at stator) 
2/2

2cY sLs ξ=  Horlock (1973) 

Incidence loss 
(shock loss at runner inlet) 

2/2
incLinc wY λ=  

 where  λ = 0.5  to  0.7  and 

 u
cc

w
f

m

blade

m
inc −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

2

4

4

4

tantan αβ
 

Pfleiderer and 
Petermann (1979)  

Runner blade profile loss 
 (skin friction loss at runner) 

2/2
5wY rLr ξ=  Horlock (1973) 

Draft tube loss 
(diffusion and swirl losses)  

 22

2
5

2
5 u

Du
m

DmLdt
c

X
c

XY +=  

 where XDm = 0.09  to  0.12  and  XDu = 0.20  to  0.40 

Raabe (1985) 

Mechanical loss 
(external loss) 

ηmec = 0.96  to  0.99 Adopted 

   Coefficients for the profile loss (correlation of Soderberg): 
]1)/075.0975.0)(1[()/10( 1

4/15 −++= BbRe ξξ  
ε  ,  ξ0 = 0.04  to  0.06 ξξ 01053.0

01 e=
ε = α1f − α2f   or  ε = β4f − β5f   (flow deflection) 
B/b = radial/axial blade lengths (cascade aspect ratio)  
Re = ρVDh/µ ,  V = c2 or w5 , µ = dynamic viscosity 

)cos/(cos2 22 BtBtD ffh += αα  or  

)cos/(cos2 55 BtBtD ffh += ββ  

Horlock (1973) 
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Figure 10. Overall scheme of the solver code. 

 
4. The optimization algorithms 
 

Two optimization techniques have been used: a gradient based local search algorithm and a population set-based 
direct search algorithm.  

The fmincon function from MatLab™ optimization toolbox was chosen as the local search algorithm. It consists in 
a standard constrained sequential quadratic programming (SQP) with line-search. The directional derivatives are 
evaluated by finite differences and the Hessian matrix is approximated by using the BFGS formula. In section 2 we 
have already described the framing of the standard constrained minimization problem and fmincon performs such 
scheme. The two main drawbacks of this optimization method are the search for local minimizers only and the need of a 
starting point. These two features together make the success of the search very depended on the initial guess for the 
design variables. Therefore the designer must beforehand know a configuration not far from the optimum. Also, the 
attained solution, presuming the convergence of the method, may not be the global optimum. Moreover, previous 
investigations have shown that even slightly different starting points can produce distinct solutions with different values 
of efficiency.  
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To overcome these limitations, it has also been proposed the application of a global search method, namely a 
Controlled Random Search Algorithm (CRSA). Like genetic and differential evolution algorithms, CRSA is a 
population set-based algorithm, which starts from an initial population of points on the problem feasible region and then 
performs iterative substitutions of worst points by better trial points in order to make the population converging to a 
global optimizer. In CRSA, a single point is replaced per iteration. The CRSA was chosen due to its simpler 
implementation, fastness and good results reported in technical literature (Albuquerque et al., 2006). 

The main convenience of this optimization technique is that it does not need a starting guess. Instead of an initial 
point – that the designer should evaluate with some care – the method employs an initial population randomly chosen 
on the feasible region. Setting up bounds for the design variables is easier than to set up a good initial design. 
Furthermore, there is the hope of finding a global solution, even with different feasible regions. A relatively small 
number of function evaluations is also an important feature of CRSA. This is particularly important when the objective 
function demands a high computational effort – what often occurs in turbomachine optimization. 

When using CRSA, the available head constraints are imposed by means of a penalty scheme on objective function, 
as we have already described in section 2.  

 
5. Optimization results 
 

Previous investigations about the initial design of Souza (1989) were carried out with the developed solver. These 
studies have shown that, for fair comparisons, the optimization runs should be performed according to Table 3 for 
design point and head constraints and Table 4 for design variables lower and upper bounds. 

 
Table 3. Design point and head constraints. 

 

Flow rate, Q 0.288 m³/s 
Rotational speed, n 1145 rpm 

Lower head, HL 3.5 m 

Upper head, HU 3.7 m 

 
Table 4. Design variables lateral constraints. 

 

Design 
Variable 

β (°) 
 hub        mean        tip 

l/t (−)               
 hub        mean        tip 

f/l (%) 
 hub        mean        tip 

α2 (°) 

xj
L   40           25           15  1.61        1.08      0.889   0.8          0.5          0.1 50 

xj
U   55           35           25  1.70        1.20       1.00   6.0          4.0          2.0 70 

 
Running on a Pentium4™ 3.0 GHZ, the fmincon optimization courses take about two minutes only. For the CRSA 

optimizations, it is spent about fifteen minutes, which is also a reasonable time. Due to the stochastic features of CRSA, 
any CRSA solution should be taken in statistic sense. Actually, one should run several times the design optimization 
code to accept a solution. If the solver demands high computational effort and the global optimization method evaluates 
function values too many times, it would be prohibitive to perform a statistic study, or even to perform a single 
optimization run until achieving the stopping criterion. 

Table 5 shows three solutions and their respective performance prediction found by using fmincon starting from 
different initial points x0. The values marked with an asterisk correspond to an activated constraint. The first solution 
was found starting from the initial design of Souza (1989). It should be noted the distinct optima values for the guide 
vanes outlet angle, α2. This is a main concern since the distributor exit flow strongly affects the remaining runner blade 
geometry.  

 

Table 5. Comparison of three fmincon solutions. 
 

Design Variables 
and 

Resulting Quantities 

fmincon 1 
x0 = (49.3  26.2  17.4  1.61 
           1.08  0.889  0  0  0   

60) 
hub       mean       tip 

fmincon 2 
x0 = (55.0  32.0  25.0  1.61 
     1.08  0.889  0.8  0.5  0.2%  

51) 
hub       mean       tip 

fmincon 3 
x0 = (40.0  25.0  15.0  1.61 
     1.08  0.889  0.8  0.5  0.2%  

68) 
hub       mean       tip 

β (°) 49.4       28.7       18.7        55.0*      30.1      23.3 40.5       27.4       17.5 
l/t (−)        1.61*    1.08*     0.889*        1.614     1.08*     0.889*        1.61*    1.08*     0.889* 
f/l (%) 3.64       1.67       0.93         5.87      2.17        0.1* 3.34       1.22       1.19 
α2 (°) 60.7 50.5 68.9 

Blade power (W) 9218 9046 9208 
Distributor loss (W) 211 278 178 

Runner + draft tube loss (W) 1011 1040 1104 
η (%) 84.77 83.79 84.27 
H (m)                      3.70 *                      3.70 *                      3.70 * 
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Actually, the first solution shown above is the best design that has been achieved by using fmincon starting from 
various different initial points. Thus it seems that fmincon 1 is perhaps the global optimum. 

The analysis of the second solution shows that its guide vanes outlet angle (= 50.5°) is very small. This distributor 
gives too much angular momentum to the flow at runner inlet. Due to the available head upper bound (= 3.7 m), the 
runner can not extract all this angular momentum in order to produce an exit flow without swirl. Therefore, we have a 
positive swirling flow at runner exit, which leads to less blade power and a little more runner and draft tube losses than 
those of the first solution. In addition, the excessive guide vane deflection increases considerably the distributor loss 
(32%). As a final result, the efficiency of the fmincon 2 solution is 1% lower than that of fmincon 1. 

On the other hand, the third solution has a great guide vanes outlet angle (= 68.9°). In this case, the flow at runner 
inlet presents a little angular momentum. Then, in order to produce a reasonable shaft power, the runner blades deflect 
the flow in a way that the exit swirling is highly negative. This deflection leads to an increase of 10% in the runner and 
draft tube losses. Although the distributor loss is now lower than that of fmincon 1 solution, the efficiency is 0.5% 
inferior.  

The fmincon 1 solution for the distributor, α2 = 60.7°, probably leads to the optimum angular momentum at runner 
inlet. This makes possible the most efficient absorption of the flow energy by the runner blades. Actually, the flow at 
runner inlet must occur with minimum shock (which is also important to avoid cavitation risk) and the blading stagger 
and camber must be such that reasonable flow deflections and a minimum swirling exit flow take place. The adopted 
loss and deviation modeling with the geometry parameterization and the imposition of the radial equilibrium condition 
indeed allow the optimizer to searching for these correct trends in hydraulic turbine design. In addition, the original 
design of Souza (1989) is already a good solution, mainly due to the very good choice for α2 (= 60.0°, Tab. (1)). 
However, this turbine is still open to improvements in the runner geometry. 

Table (6) compares directly the initial design with the optimized one, showing the performance improvements. It is 
also shown the solution found by using the CRSA (Albuquerque et al., 2006). It must be noted the good agreement 
between the best fmincon solution (i.e., fmincon 1) and the CRSA solution. Therefore, the global optimum has 
probably been achieved and we will refer to fmincon 1 as the optimized design. 

 
Table 6. Comparison of initial design, best fmincon solution and CRSA solution.  

 

Design Variables 
and 

Resulting Quantities 

Initial design 
(Souza, 1989) 

hub       mean       tip 

fmincon 1 
(present work) 

hub       mean       tip 

CRSA solution 
  (Albuquerque et al., 2006) 

hub       mean       tip 
β (°) 49.3       26.2       17.4 49.4       28.7       18.7 49.5       29.0       18.6 
l/t (−) 1.61      1.08      0.889 1.61      1.08      0.889 1.65      1.09      0.890 
f/l (%) straight blade assumed 3.64       1.67       0.93 3.69       1.77       1.02 
α2 (°) 60.0 60.7 60.5 

Blade power (W) 8761 9218 9178 
Distributor loss (W) 215 211 213 

Runner + draft tube loss (W) 1443 1011 1011 
η (%) 80.72 84.77 84.71 
H (m) 3.70 3.70 3.70 

 
Note again that the guide vanes outlet angle is essentially the same in both designs, that is, the initial design of 

Souza (1989) for the distributor is already well optimized. The runner, however, can be improved. Figure 11 compares 
the spanwise variations of some runner blade geometry in the initial and optimized designs. The main difference is that 
the stagger angle can be a little increased along the whole span (the blades being more opened). The camber is also 
adjusted by the optimizer so that a small incidence loss at runner inlet (Fig. 15) and a little swirling flow at runner outlet 
(Figs. 13 and 14) take place. The optimized runner blading stagger and camber are represented in Fig. 12. 

In Figs. 13 and 14 we see the velocity distributions for both designs. Due to the very small difference between both 
guide vanes outlet angles, the distributions of cm2 and cu2 are very close between the initial and optimized designs. At 
runner exit, however, the swirl and meridional velocity components are different. In the initial design, we have a great 
spanwise variation in cm5; the optimized geometry produces a more uniform exit flow, decreasing the meridional 
component of the draft tube loss (Tab. (2)). While the flow exit swirl is everywhere positive in the initial design, the 
optimized solution produces a negative swirl near the hub and a positive one at the tip. This trend is in good agreement 
with flow measurements in well designed axial hydraulic turbines (Vivier, 1966).  

Figure 15 shows the spanwise variation of the specific losses. The main improvements are in the incidence and 
draft tube losses, as we have already explained. As the losses are integrated on a mass flux basis, it is also plotted the 
sum of runner and draft tube losses (∆), showing the significant decrease achieved by the optimization (=30%, Tab. (6)). 

In Fig. 16 we have the spanwise distribution of the blade specific work. In comparison with the initial design, the 
optimized solution increased the specific work along the whole span. In addition, the flow deflections by the runner, not 
shown in this work, are yet within feasible values for axial-flow hydraulic turbine blade profiles, varying from 17° at 
the hub to 3° at the tip. This is also important for avoiding cavitation risk, since the blade loading has a direct impact in 
cavitation phenomena. 
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Figure 11. Runner blading (a) stagger and (b) camber of initial design and optimized solution. 
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Figure 12. Optimized runner blade (the thicknesses are only illustrative). 
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       Figure 13. Flow velocity distributions.        Figure 14. Velocity torque distributions.  
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   Figure 15. Spanwise loss variations.         Figure 16. Spanwise blade specific work distribution. 
 

6. Conclusion 
 
The conceptual design optimization of axial-flow hydraulic turbines can be performed by using the present 

methodology. The adopted loss and deviation modeling with the geometrical parameterization and the imposition of the 
radial equilibrium condition indeed allow the optimizer to search for the correct geometrical and flow trends in axial 
hydraulic turbine design. 

Cavitation phenomena are not considered in the present work, since the main concern is the flow deflections in the 
guide vane and runner blade cascades. The simplified geometry for the runner blades, considering the profile camber 
lines only, is enough to the evaluation of the velocity field in this intermediate design approach. 

A complementary design procedure could be an inverse cascade design optimization that would satisfy the inlet and 
outlet velocity profiles initially calculated.  
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