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Abstract. The present paper addresses the numerical optimization of geometrical parameters of non-Newtonian micro-scale viscous
pumps for biomedical devices. The objective is to maximize the mass flow rate per unit of shaft power consumed by the rotor when
an external pressure load is applied along the channel that houses the rotor. Two geometric parameters are considered in the
optimization process: (i) the height of the channel that houses the rotor (H) and (ii), the eccentricity (ε) of the rotor. Three different
micro scale viscous pump configurations were tested: a straight housed pump (I-shaped housing) and two curved housed pumps (L-
and U-shaped housings). The stress-strain constitutive law is modeled by a power-law relation. The results show that the geometric
optimization of micro scale viscous pumps is critical since the mass flow rate propelled by the rotor is highly dependent on ε and H.
Numerical simulations indicate that mass flow rate is maximized when ε ~ 0, namely when the rotor is placed at a distance of 0.05
radii from the lower wall. The results also show that micro scale viscous pumps with curved housing provide higher mass flow rate
per unit of shaft power consumed when compared with straight housed pumps. The results are presented in terms optimized
dimensions of all three configurations (i.e., Hopt and εopt) and for values of the power-law index varying between 0.5 (shear thinning
fluids) and 1.5 (shear-thickening fluids).

Keywords. Micro-Scale Viscous Pumps, Optimal Design, MEMS, Biomedical Pumps, Non-Newtonian Flow.

1. Introduction

Advances in the miniaturization of electro mechanical systems have enabled the fabrication of microsystems or
microelectromechanical systems (MEMS), which offer several advantages over conventional devices. These advantages
include superior resolution, precision and sensitivity, lower costs, and reliability due to redundancy. In biological
applications there is also the possibility of incorporating sensing, processing, and actuation nearby or on the same
substrate – see the recent reviews on MEMS Judy (2001) and Ziaie et al. (2004). Because of their physical and
engineering significance as well as the relevance of their applications, micropumps have figured prominently among the
development of MEMS.

Micropumps, broadly defined as having dimensions smaller than 100 µm, have a myriad of applications ranging
from micro total analysis systems (µTAS) Reyes et al. (2002), Verpoorte (2002) and Auroux et al. (2002), to mass
spectrometer systems and micro propulsion in space exploration Micci and Ketsdever (2000). Micro total analysis
systems or “lab on a chip”, whose primary research works aim at biological and life sciences, is expanding rapidly.
Indeed, labs on a chip have been successfully used, for instance, in the culture and handling of cells, DNA separation
and analysis, DNA sequencing, chiral separation of amino acids, antibody analysis, determination of active ingredients
in a drug, determination of the presence of explosive compounds and polymerase chain reaction – see the reviews
Reyes et al. (2002) and Verpoorte (2002). Common to all these devices is the need to pump fluid at flow rates of up to
1000 milliliter per minute through dimensions of the micro or nano scales.

Contrary to microelectronics, that succeeded in scaling down its transistors and systems to provide faster and
cheaper devices, pumping does not, as a rule, benefit from miniaturization. Actually, ordinary inertia based devices,
such as centrifugal pumps, do not work at the very low Reynolds number commonly associated with the micropumping
requirements. Instead, effective micropumps have fallen in one of the following two main categories: the positive-
displacement or reciprocating pumps and the dynamic or continuous flow pumps – see the recent reviews Nguyen
(2002), Laser and Santiago (2004) and Woias (2004).

Typically, reciprocating micropumps use pulsating surface motion to displace the fluid by pressure work. By
contrast, the physical-chemical and design principles involved in the continuous flow micropumps vary profusely. They
include ultrasonic, electrohydrodynamic, electroosmotic, magnetohydrodynamic or electrochemical actuation. These
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micropumps do function but require sophisticated fabrication processes and involves complex sealing problems – see
the referred reviews for details. Sen et al. (1996) proposed a rotating micropump, where the relatively large viscous
forces at these small scales are used to drive the fluid.

The viscous micropump combines the simplicity in design with effectiveness in pumping. Roughly speaking, the
viscous micropump consists of a cylinder asymmetrically placed inside a micro-channel. The need for the rotor
asymmetry can be understood, for instance, by considering an I-shaped micropump with no pressure load across the
channel. If the rotor is located at the center of the channel, symmetry leads to zero net flow, regardless of the direction
in which the rotor spins. However, if the symmetry is broken and the rotor is placed, say, closer to the top wall, as a
clockwise rotor spins a net flow from the right to the left is generated. In this case, the symmetry break provides a
preferential direction due to the increase in the shear between the fluid and the upper wall.

After its introduction in 1996, the viscous micropump has been the subject of a stream of publications including
Sharatchandra et al. (1997), Sharatchandra et al. (1998), DeCourtye et al. (1998), Abdelgawad et al. (2004), Gad-el-
Hak (1999), Abdelgawad et al. (2005) and da Silva et al. (2006). These authors examined various design features and
fundamentals issues associated with such micropumps, including the effects of channel height, rotor eccentricity and
angular velocity on the pump performance Sen et al. (1996), slip velocity Sharatchandra et al. (1997), thermal effects
Sharatchandra et al. (1998), transient effects Abdelgawad et al. (2004), multistage configurations Abdelgawad et al.
(2005) and power consumption and novel geometries da Silva et al. (2006). Although extensive and detailed, all
previous reports have worked with Newtonian fluids.

In the face of the above, the main objectives of the present work are twofold: to determine the optimal geometrical
parameters (i.e., channels thickness and rotor eccentricity) that result in maximum mass flow rate per unit of power
shaft consumed, for non-Newtonian fluids, and to introduce and analyize the performance, again for non-Newtonian
fluids, of our novel L- and U-shaped micropumps (da Silva et al. 2006) when compared with the traditional I-shaped
design pioneered by Sen et al. (1996). Non-Newtonian fluids abound in Nature – the most notorious example in
biomedical applications being blood. A simple non-Newtonian constitutive law is the so-called power-law model that
postulates a power-law dependence of viscosity on the strain-rate. This model provides a good approximation of the
stress-strain relationship for some biological fluids, including the whole human blood Walburn and Schneck (1976). In
the present work we investigate the micro-pump design for blood flow as well as general bio-fluids that can be
approximated by the power-law model.

The paper is organized as follows: in §2 we describe the micropump configuration and the numerical modeling.
After that, in §3 we validate our numerical results by comparing our present results with the results reported by
Sharatchandra et al. (1997) and Abdelgawad et al. (2004) for Newtonian fluids, and also with an analytical solution for
a Non-Newtonian fluid. With the validated model we proceed with the definition of the figure of merit and optimization
procedure: in §4 for blood flows and in §5 for general power-law fluids. In the last section §6 we sum up the main
findings of this work.

2. Geometrical and Numerical Modeling

Consider the three micropump configurations shown in Fig. 1, where D represents the diameter of the rotor, Lu and
Ld are the lengths of the upstream and downstream conduit channels and H is the height of the conduit channel. Due to
viscous diffusion, the clockwise-turning rotor impels the fluid from left to right against an imposed pressure difference
∆P = PH – PL.

Figure 1. Numerical domain of a viscous micro pump: (a) I-shaped channel, L-shaped channel and U-shaped channel.

Because the effectiveness of a viscous micropump is associated with the eccentricity of the rotor with respect to the
surrounding walls, we introduce a linear dimension ε that measures the distance between the lower wall and the rotor
(see Fig. 1). For all three configurations, ε = 0 means that the rotor touches the lower wall not allowing any fluid flow
between the lower wall and the rotor. If ε > 0, the rotor does not touch the lower wall and fluid is allowed to flow
between the rotor and the adjacent surfaces. Finally, ε < 0 means that the rotor is partially embedded in the lower wall.
Taking D as our length scale, the dimensionless geometrical parameters can be written as

    (H, Lu, Ld,ε)* = (H, Lu, Ld,ε)/D (1)
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The fluid is considered to be non-Newtonian, with a viscosity given by the power-law model

    1nγmη −= D (2)

where m and n are the consistency coefficient and the power law index respectively, and γD  is the shear rate, which
reads as

     TVV
��

D ∇+∇=γ (3)

Because of the slow character for the flow, no instabilities are expected and the flow is assumed steady, laminar and
incompressible. We define the following dimensionless variables

     (u, v)* = (u, v)/(ω D/2), P* = (PH − PL)/[m(ω D/2D)n) (4)

and write the dimensionless governing equations as

     0V* =⋅∇
�

,
(5)

     ])V(VPVV(Re T*****
D

����

∇+η[∇⋅∇+∇−=∇)⋅ , (6)

where ReD = ρ(ω D/2)2−n Dn/m is the Reynolds number based on the rotor angular velocity and diameter.
Three different micro scale viscous pump configurations were considered: (i) a straight or I-shaped pump, (ii) a L-

shaped pump and (iii), a U-shaped pump. The numerical domain is shown directly in Fig. 1 as the area surrounded by
the dashed lines at the inlet and outlet, and the solid lines which guide the flow from the inlet to the outlet. The area of
the rotor is not accounted for in the numerical simulations.

The flow boundary conditions are: P* = PL
* = 0 at the inlet and P* = PH

* at the exit plane, where PH
* = ∆P* − PL

*.
The pressure boundary condition at the inlet and outlet is implemented as n ⋅ T = − PL at the inlet and n ⋅ T = − PH at the
outlet, where T = σn is the stress vector and σ is the Stokes stress tensor σ = − pI + ν (∇ u + ∇ uT). In addition, the
tangential components of the velocities are set to zero (i.e., t ⋅ u = 0) at the inlet and outlet of the micropump. Non-slip
velocity conditions were used in all internal surfaces of the channel. The velocity of the rotor surface is maintained
constant at U = ω D/2 for each run. We adopted zero tangential velocities at the inlet and outlet after many numerical
tests indicated that fully developed flow conditions at the inlet and outlet were obtained for values of Lu and Ld of the
order of 4D when n = 1. However, due to the non-linear variation of the moment diffusion given by the power-law
relation of Eq. (2), in all numerical simulations starting in Fig. 4, Lu and Ld were set equal to 4D and 12D respectively.

Our numerical simulations were performed using the Finite Elements Method toolbox COMSOL Multiphysics®, v.
3.2 from COMSOL, Inc. Second and first order Lagrange P2-P1 mixed finite-elements were used. The mesh density was
exhaustively tested in order to guarantee that the results were mesh-independent (the mesh density accuracy test is
omitted for brevity). For all three configurations of Fig. 1, the optimal number of elements is between 5000 and 10000
when the objective is to calculate the average flow velocity, which are distributed unevenly through the numerical
domain (i.e., a denser mesh is applied to the surroundings of the rotor). When the computation of the group W′*/ReD

2 is
required, an even higher concentration of elements was used around the rotor, which increases the total number of
elements to over 15000 on average, depending on the channel height.

The solution was obtained with a stationary non-linear solver based on a damped Newton’s Method. The relative
error convergence criterion is the weighted Euclidian norm defined as
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where N is the number of degrees of freedom, Ei is the estimated error of a current solution vector Ui, defined as: Ei =
−f(Ui)/ f′ (Ui−1), and Wi = max( Ui , Si) are the weighted factors. The Si factor is defined as the product of a constant,
in this case 0.1, times the average of all  Uj  for all the degrees of freedom named ‘j’. The damping factor was set
initially equal to 10−4 and the convergence criterion was set equal to 10−6.

3.   Validation of the Method

The validation of the numerical code started by setting the power-law index equal to the unit (i.e., n = 1) in order to
compare the present data against previous results obtained by Sharatchandra et al. (1997) and Abdelgawad et al. (2004).
The comparison evaluated the effect of the channel height on the average fluid velocity ( u ) at the exit plane between
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the present results and the results obtained by Sharatchandra et al. (1997), considering ReD = 1, ∆P*=1, and εmod = 0.25,
where the average fluid velocity is defined as

    ,dyu(y)Hu H
0

1
∫= − (8)

and the modified eccentricity of the rotor (εmod) is defined as,

    ∗∗ ε−1−Η=ε )(5.0mod , (9)

where ε* is the dimensionless eccentricity defined in Eq. (1). A comparison, which is omitted for brevity, shows an
acceptable overall agreement between the present results and the results of Sharatchandra et al. (1997), where
differences smaller than 2% on average is observed.

Figure 2 shows the direct comparison between the average flow velocity data obtained in present study and the
results from Sharatchandra et al. (1997) and Abdelgawad et al. (2004) for an I-shaped viscous micropump versus the
group εmod/εmax, where εmax represents the design where the rotor is placed at a distance of 0.05 radii from the lower
wall. The Reynolds number (ReD) and the pressure load (∆P*) were set equal to the unit. Two values of the channel
thickness were considered: H* = 1.5 and 2.5. According to Fig. 2, a nearly prefect agreement between our results and
the results of Sharatchandra et al. (1997) is obtained throughout the whole of εmod/εmax considered.

Figure 2.  a) Validation of the numerical implementation for a Newtonian fluid.

           Figure 3. a) Validation of the channel flow fully developed velocity profile for three types of fluids: (a) shear
thinning (n = 0.5), (b) Newtonian (n = 1) and (c) shear thickening (n = 1.5). (Left frame)
b) Comparison between the analytical and numerical ratio ( *maxu / *u ) for 0.5 ≤ n ≤ 1.5. (Right frame)

In the next step, Fig. 3a, we compare the effect of the power-law index on the fluid velocity profile for the micro
pump shown in Fig.1a. The longitudinal location selected is located at 4D’s of the channel exit plane (i.e., x* = 12). The
fully developed velocity profile reads as Bird et al. (2001)
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where y* indicates the dimensionless distance measured from the center of the channel. Figure 3a shows a perfect
agreement between Eq. (10) and the numerical results for three values of n: 0.5, 1 and 1.5, which not only verifies that
the flow is fully developed before the end of the channel, but also reinforces the zero tangential components of the
velocities at the exit plane (i.e., (t ⋅ u) = 0). Finally, we reach the code validation closure by comparing the ratio u(y*=
0)/Umean between the numerical results and Eq. (10) for several values of n. Similarly to the comparison presented in
Fig. 3a, Fig. 3b depicts a perfect agreement between analytical and numerical solution. One should note that, when n =
1 (i.e., Newtonian fluid), that ratio u(y*= 0)/Umean returns the well-known value of 3/2 for a fully developed flow
between parallel plates.

4.   Blood Flow

As previously stated, the present study has two main objectives: (i) to determine the optimal geometrical
parameters (i.e., channels thickness H* and rotor eccentricity ε*) that result in maximum mass flow rate ( *m� ), and (ii),
to study the performance of our newly proposed L and U-shaped micropumps when compared with the traditional I-
shaped design pioneered by Sen et al. (1996) while working with non-Newtonian fluids. The mass flow rate per unit of
length is defined as

       ** Hum =� . (11)

In the first round of optimization (Figs. 4-6), no constraints were considered and the optimal geometric dimensions
(i.e., channels thickness *H  and rotor eccentricity ε*) were determined based on parameters such as ReD and n. In this
scenario, the optimization opportunity emerges from the fact that a micro scale viscous pump operates based on two
main conditions: (i) the need of a certain level of confinement (i.e., a finite value for H*) and (ii), the asymmetric
placement of the rotor inside the channel.

The existence of the optimum geometry can be understood by noting that, in the limit of large channel height, the
fluid average velocity tends to zero and consequently, the mass flow rate also approaches zero. In the other limit of
‘small’ values of the dimensionless channel thickness, it is clear that the flow is constricted between the rotor and the
upper wall of the pump’s channel, which also reduces the mass flow rate. Based on the above, an optimal value for the
channel height such that the mass flow rate is maximized must exist; see da Silva et al. (2006). Moreover, changing the
eccentricity and channel height strongly affects the power consumption of the micropump, leading to an optimum
design constrained to power consumption.

4.1  Optimal Design of an I-Shaped micropump

The search for the optimal geometrical configuration started with the simplest design possible, Fig. 1a. The fluid is
assumed non-Newtonian with a power-law index of n = 0.785, which according to Walburn and Schnech (1976),
presents a good fit for human blood. In this case, we have two degrees of freedom, the channel thickness H* and the
eccentricity ε*. Assuming fixed values for ε*, ReD and ∆P*, we were able to find an optimal value for the channel height
H* that maximizes the average flow velocity ( u ) and the mass flow rate ( *m� ) just by varying H*. Figure 4 shows that
the channel thickness has a strong effect on u  and *m� , which strengthens the need for optimizing geometric
parameters in a viscous micropump. Figure 4 also shows that different values of the optimal channel height ( *

optH ) are
needed to maximize u  and *m� . Also interesting is the differentiated effect of non-optimal channel height on u  and

*m� . According to Fig. 4, the selection of a channel height smaller than *
optH  is much more detrimental to u  and *m�

when compared to a channel height in which H* > *
optH .

Figure 5a shows the effect of the rotor eccentricity on the mass flow rate  and average fluid velocity for an I-shaped
pump with the following operating conditions: ReD = ∆P* = 1. Each one of the open symbols shown in Fig. 5a
represents the maximum value of *m�  (squares) and u  (circles) the can be obtained for a given value of ε*. That is
because, implicit in each symbol, is the optimization of *m�  and u  with respect to the channel thickness H*, which is
shown later in Fig. 5b. According to Fig. 5a, the maximum values of *m�  and u  are found around ε*

opt ~ 0, which
represent the maximum mass flow rate and average flow velocity optimized with respect to two degrees of freedom, ε*

and H*. Furthermore, Fig. 5a also reveals that, differently from Fig. 4, where values of H* smaller than *
optH  were more

detrimental to our two figures of merit (i.e., *m�  and u ), in Fig. 5a, the eccentricity ε* also plays a major role on *m�
when ε* ≠ ε*

opt, specially if ε* >  ε*
opt. On the other hand, Fig. 5a shows that it maybe desirable to have ε* < ε*

opt (i.e., the
rotor partially embedded in the lower wall) due to the weak effect of the negative eccentricities on the average flow
velocity.
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Figure 4.  a) Effect of the of the channel height on the average fluid velocity and mass flow rate.
 

           Figure 5.  a) Effect of the rotor eccentricity on the maximized average fluid velocity and mass flow rate for the 
viscous micropumps given in Fig. 1a. (Left frame)
b) Effect of the rotor eccentricity on the optimal channel height for the viscous micropumps. (Right 
frame)

Figure 5b shows the effect of the eccentricity ε* on the optimal channel height *
optH . According to Fig. 5b, *

optH
increases monotonically with ε*, which can be explained based on the required asymmetric placement of the rotor inside
the channel (see §4). This means that any increment in ε* is associated with an increment in *

optH  so that a certain level
of asymmetry can be sustained.

4.2  Curved Housed Micro Pumps

So far, we have demonstrated that significant improvement in terms of mass flow rate can be achieved with the
correct selection of the channel height of an I—shaped pump. Next, we attempt to improve the already optimized
micropump by aligning the housing of the pump with the rotor. As a results, two new micropump configurations are
proposed: and L-shaped pump (Fig. 1b) and a U-shaped pump (Fig. 1c). The performances of the three configurations
are presented not only in terms of maximum mass flow rate ( *maxmD ) and optimal channel height ( *

optH ), but also in
terms of the shaft power demanded by the rotor (W′*). The relevance of the shaft power demanded by the rotor
originates from the need to compare the performance of microscale pumps on similar basis (i.e., mass flow rate
generated per unit of shaft power consumed). We start by defining the rotor’s moment coefficient as

∫ θτ−= 2π
0 dM . (12)

Next, knowing that the torque per unit of length applied to rotor is T′  = M 2π R2 and that shaft power per unit of
length is W′= T ω, one can define the dimensionless shaft power per unit of length applied at the rotor as
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In order to validate our numerical code, a preliminary data obtained for the dimensionless shaft power was
compared against the numerical results obtained by Abdelgawada et al. (1997) in the steady state limit, since they
performed a transient analysis of a Newtonian fluid. One should note that Abdelgawada et al. (1997) defined the rotor
eccentricity as

)(11mod, 1−Η/2ε−=ε ∗∗ . (14)

A comparison of the dimensionless shaft power per unit of length applied at the rotor, which is omitted for brevity,
shows an acceptable overall agreement between the present results and the results of Sharatchandra et al. (1997), where
differences smaller than 2% on average is observed.

Figure 6a depicts the effect of the shape of the micropump housing on the maximized figure of merit ( *maxm� ), on
the optimal channel height ( *

optH ) and on the shaft power requirement for a blood–like fluid (i.e., n = 0.785). According
to Fig. 6a, the maximized mass flow rate, which is shown by the open bars, increases from left to the right.
Furthermore, the shaft power demanded by the rotor decreases in the same direction, which indicates that the overall
performance of micropumps (i.e., mass flow rate per unit of shaft power consumed) increases as the shape of housing
approaches the shape of rotor. The draw back of micropump with curved housings (e.g., Fig. 1b and 1c) is that they
require larger channel heights in order to operate optimally when compared with straight housed pumps (Fig. 1a). This
can be observed in Fig. 6a by noticing that *

optH  increases from the left (Fig. 1a) to the right (Fig. 1c).

            Figure 6. a) Effect of the shape of the micropump on the maximized mass flow rate, optimal channel height and
shaft power demanded for a blood-like fluid (Left frame).
b) Effect of the shape of the micropump on the shear distribution over the rotor for a blood-like fluid
(Right frame).

Figure 6b shows the shear distribution over the rotor’s surface for an I-shaped pump (solid line) and a U-shaped
pump (dashed line). One should notice that each one of the two curves is composed by four shear-distribution segments,
which are separated by open triangles with different orientations. The triangle orientation coincides with the rotor’s
surface velocity vector as indicated in the rotor shown in the lower half of the figure. For instance, one can see that the
shear distribution on the upper half on the rotor in mostly flat for and U-shaped micropump. Also, because the slow
character of the flow, a symmetric shear distribution upstream and downstream can be seem around the rotor’s center
for both types of micropump. Furthermore, it is important to observe that the integral of the shear around the rotor’s
surface represents the shaft power required by the rotor divided by ReD

2. This means that the difference in terms of shaft
power demanded shown previously in Fig. 6a between the I-shaped and the U-shaped pumps is mostly due to the
reduction of the shear around the lower half of the rotor. It is also note worthy that the alignment of the flow with the
rotor provided by the U-shaped housing is also partially responsible for reducing the total required torque required by
the rotor, since it brings the shear distribution of the upper half of rotor closer to the zero-shear ordinate when compared
with an I-shaped housing as shown in Fig. 6b.

4.3  Optimal Design of U-Shaped Housing

In this section we search for even higher levels of performance of U-shaped pumps by studying the effect of the
asymmetric placement of the rotor within micropump housing. As shown in Fig. 7a and 7b, the rotor now is free to
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move vertically ( *vε ) and horizontally ( *
hε ), where *vε  and *

hε  represent respectively the vertical and horizontal
distances between the center of the rotor and the center of the housing. These two variables can assume positive or
negative values. For instance, Fig. 7a presents a configuration where both vertical and horizontal eccentricities are
positive, and in Fig. 7b, both eccentricities are negative. Mixed combinations of positive eccentricities are also
permitted. The objective is to analyze the effect of *vε  and *

hε  on the mass flow rate. In order to reduce the number of
degrees of freedom, the total channel height in constrained at *totH = 7, which is twice as large as the optimized height of
a U-shaped micropump shown previously in Fig. 6a for the same operating conditions (ReD = ∆P* = 1 and ε* = 0.025),
where *

vε  = *
hε  = 0 (i.e., *

inopt,H = * outopt,H = * opttot,H /2 = 3.5). The fluid viscosity follow the power-law index suggested by
Walburn and Schnech (1976), where n = 0.785.

            Figure 7. a) U-shaped viscous micropump with an asymmetric rotor, εh > 0 and εv > 0 (Left frame).
b) U-shaped viscous micropump with an asymmetric rotor, εh < 0 and εv < 0 (Middle frame).
c) Effect of the vertical and horizontal eccentricity on the mass flow rate (Right frame).

Figure 7c shows a contour plot that has as *vε as ordinate and *
hε  as abscissa. The curves represent constant mass

flow rate designs given by a combination of the two degrees of freedom *vε  and *
hε . At a location *vε  = *

hε  = 0, one can
observe the maximum mass flow rate offered by a symmetrical configuration. The same value (i.e., *maxmD = 0.1885) can
be seen in Fig. 6a. Once *vε  and *

hε  are added as degrees of freedom, the iso-mass flow rate curves show that higher
levels of performance can be reached when the rotor is positioned at ≅*vε 1.72 and 5.0ε*

h −≅ . The difference in
performance between the two configurations is of the order of 30%. Also interesting is the fact that, because the total
channel height is constrained ( *

optH = 7), the maximum distance between the rotor’s surface and the curved housing of
the micropump is 3 dimensionless units, which happens when *vε  = *

hε  = 0. For instance, if *
hε  = 0, the rotor will touch

the housing when *vε  = 3. This explains why the mass flow rate decreases when  *vε   or  *
hε →  3.5, as shown in the

upper left corner of Fig. 7c.

5.   Effect of the power-law on the optimal design

Figure 8a extrapolates the results presented in Fig. 6a for a wider range of the power law index, 0.5 ≤ n ≤ 1.5.
According to Fig. 8a, the trend observed previously in Fig. 6a holds throughout the whole range of the power law index
considered. Micro scale viscous pumps with curved housing (i.e., L and U-shaped micropump) perform better (i.e.,
present higher values of *maxm� ) and at the same time, consume less shaft power than the I-shaped pump. As expected,
Fig. 8a also shows that the power-law index has a strong effect on the dimensionless shaft power and maximized mass
flow rate, since the shear rate is given by Eq. 3. Fluids with larger n have more ability to transfer momentum than a
fluid with small n, which explains why *maxm�  increases with n and at the same time why W’* decreases with n. More
important is the fact that the difference between the performances of the micro scale viscous pumps shown is Fig. 1 is
sustained throughout the range on n considered proofing the superiority of micro scale pumps with curved housing
when compared with an I-shaped pump.

Figure 8b shows the distribution of shear stress over the rotor’s surface for a U-shaped pump operating with three
different types of fluids (i.e., n = 0.5, 1 and 1.5). The symmetry of the shear distribution is due to the slow character of
the flow. More interesting is the effect of the power-law index on the shear distribution. According to Fig. 8b, the
overall shape of the shear distribution around the rotor is preserved for different values of the power-law index.
However, the whole shear distribution curve, moves towards the zero-ordinate line as n increases. This behavior
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explains the decrease in shaft power required by micro scale pumps operating with shear-thickening fluids as shown
previously in Fig 8a when compared when pumps operating with shear-thinning fluids.

             Figure 8. a) Effect of the power-law index on the optimal channel height, maximized mass flow rate and
demanded shaft power. (Left frame)
b) Effect of the shape of the power-law index on the shear distribution over the rotor of a U-shaped
micropump for a blood-like fluid (n = 0.785). (Right frame)

6.   Conclusions

In this paper we presented and evaluated three different configurations of non-Newtonian micro scale viscous
pumps for biomedical devices. The objective was to maximize the mass flow rate of a blood-like fluid per unit of shaft
power consumed by the rotor, where the fluid shear-rate was given a power-law relation. The optimal geometrical
design originated from certain geometrical conditions (§4) required to having an operational micro scale viscous pump.
First, the channel housing for the micro scale viscous pump has to provide a certain level of confinement for the rotor.
Secondly, the rotor has to be asymmetrically placed inside the channel.

The need for such requirements was verified by a preliminary parametric analysis on an I-shaped micro pump
(§4.1), which showed that both conditions are crucial for the pump functionally, and more importantly, the channel
height and the rotor eccentricity have a major effect on the mass flow rate. These finding clearly shows the relevance of
the geometric optimization of the pump’s housing. The numerical simulation also showed that slightly larger values for
the optimized channel height (Hopt) are expected when the performance of the micro viscous pump is optimized based
on the mass flow rate rather than average flow velocity. However, regardless the figure of merit (i.e., mass flow rate or
average flow velocity) maximized results are expected as ε → 0.

Next, in §4.2, two novel configurations of micro viscous pumps with curved housing (Figs. 1b and 1c) were
proposed and numerically optimized for maximal mass flow rate while operating with a blood-like type of fluid. The
results showed that pump configurations in which surrounding walls the are aligned with the rotor (i.e., Fig. 1b and 1c)
provided larger mass flow rates and required less shaft power to operate when compared with straight housed pumps
(Fig. 1a). This is an important finding that further supports the use of curved housed micro pumps in mobile or
implanted medical devices, which have limited power resources.

In §4.3 we showed that the performance of and U-shaped micro scale viscous pump could be greatly improved by
allowing the rotor to move vertically ( *vε ) as well as horizontally ( *

hε ). More specifically, it was shown that, for a fixed
value of the total channel thickness ( * opttot,H /2 = 3.5), the maximized mass flow rate can be increase by 30% if instead of
having *

hε  = *vε  = 0 (concentric configuration), we choose a non-concentric design where ≅*vε 1.72 and 5.0ε*
h −≅ .

The numerical results presented in §5 also showed that, for a power-law index between 0.5 ≤ n ≤ 1.5, micro scale
viscous pumps with curved housing provide not only larger mass flow rates, but also require less shaft power when
compared with an I-housed micro scale viscous pump.
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Nomenclature
D rotor diameter, m
H channel height, m
L channel length, m
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m consistency  coefficient, Pa sn

m� mass flow rate, kg s−1

M moment coefficient, N m−2

n power-law index
P pressure, Pa
ReD Reynolds number, (ReD= ωD2/2ν)
T torque, N m
u mean velocity, m s−1

V
�

velocity vector, m s−1

'W rotor shaft power per unit of length, N s−1

Greek Symbols
γD shear rate, s−1

ε eccentricity, m
η viscosity, kg m−1 s−1

ρ density, kg m−3

ω rotor angular velocity, (ω = 2U/D)
Subscripts
d downstream
max maximum
opt optimum
u upstream
Superscript
* dimensionless variables
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