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Abstract. Fully developed mixed convection between parallel plates for steady-state laminar flow is analyzed by making use of the 
Mathematica system symbolic computation capabilities. The expressions obtained for the fully developed velocity, pressure and 
temperature distributions, are employed to examine different criteria for the definition of the relative importance of the natural and 
forced convection effects, always in terms of the Reynolds and Richardson numbers. Initially, three previously studied criteria are 
considered, namely, the ratio of wall shear stresses, the ratio of the quadratic means of the buoyancy and viscous forces terms, and 
the ratio of the quadratic means of the buoyancy and pressure forces terms. A new criterion based on the ratio of kinetic energy 
generated in the flow due to natural convection and that generated in total, due to both natural and forced effects, is also proposed. 
A closer examination of this criterion is then performed, in the attempt to establish recommendations for practical use. An 
application dealing with convection in water flow is presented for illustration.  
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1. Introduction 
 

The study of mixed convection within channels and ducts has historically received less attention than the analysis 
of pure forced or natural convective heat transfer. Nevertheless, these two extreme situations are in fact special cases of 
the more general formulation accounting for the combination of the buoyancy and imposed pressure gradient effects. In 
addition, the literature lacks a general criterion for the selection of the range of validity of these specific situations, in 
terms of the governing parameters or relevant dimensionless groups. Fully developed flow conditions were considered 
by Aung and Worku (1986) for laminar mixed convection inside parallel plates at different prescribed temperatures, and 
later employed by Padet (1997) to investigate the conditions of predominance of either the natural or forced effects in 
this fairly general situation. Padet (1997) established a criterion based on the ratio of wall shear stresses, in terms of the 
product of the Reynolds and Richardson numbers. Additional studies about fully developed mixed convection between 
two parallel plates at uniform wall temperature, uniform temperature on a wall and a uniform wall heat flux on the 
opposite wall or uniform wall heat fluxes on both walls, have also been performed by Cheng et all. (1990), A. Barletta 
and E. Zanchini (1998), Hamadah and Wirtz (1991). 

The developed Mathematica notebook here reported performs the symbolic computation of fully developed mixed 
convection between parallel plates, for steady-state laminar flow. The expressions obtained for the fully developed 
velocity, pressure and temperature distributions, are employed to examine different criteria for the definition of the 
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relative importance of the natural and forced convection effects, always in terms of the Reynolds and Richardson 
numbers. Initially, three previously studied criteria are considered, namely, the ratio of wall shear stresses, the ratio of 
the quadratic means of the buoyancy and viscous forces terms, and the ratio of the quadratic means of the buoyancy and 
pressure forces terms. A new criterion based on the ratio of kinetic energy generated in the flow due to natural 
convection and that generated in total, due to both natural and forced effects, is also proposed. A closer examination of 
this criterion is then performed, in the attempt to establish recommendations for practical use. The complete notebook is 
readily available to interested readers upon request. 
 
2. Problem Formulation 
 

We start by writing the flow and energy equations for mixed convection between two vertical parallel plates 
subjected to different wall temperatures, T1 and T2, respectively at y=0 and y=e, where e is the distance between the two 
plates, Fig. (1). The flow is considered to be two-dimensional, laminar, incompressible, and ascendant with an average 
velocity Vd, with negligible viscous dissipation. The main flow occurs thus along the longitudinal direction x, and the 
Boussinesq approximation is recalled to deal with the buoyancy term, while all the other physical properties are taken 
as constant: 
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Figure 1. Geometry and coordinates system for mixed convection analysis 
 
Now, if we seek the fully developed solution for the above system, we must replace the dependent variables in the 

equations shown above, as a function of the transversal coordinate only, starting with the continuity equation. From 
continuity, the result is that the derivative with respect to y of the fully developed transversal velocity component is 
zero. If we merge this information with the non-penetration boundary conditions, we obtain the known result that the 
transversal component is zero for fully developed flow: 
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V = cte = 0,   xö∞  (5) 
 
The momentum equations are also simplified through the same path to yield: 

 
2

1 2
2

d UT T 1 p0 g T
2 x d y

*
β ν

ρ
+ ∂⎛ ⎞

= − − +⎜ ⎟ ∂⎝ ⎠
,   xö∞               (6) 

 
Finally, the energy equation is simplified as: 

 
2
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Eq. (7) may now be solved in order to obtain the temperature field after prescribing the related boundary conditions 

T(0) = T1 and T(e) = T2: 
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3. Fully developed flow 
 

The temperature field obtained in Eq. (8) is a heat condution result. By introducing this equation into Eq. (6) and 
integrating it once, we obtain : 
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By integrating twice we can obtain the velocity field corresponding to fully developed flow in terms of the 

prescribed temperature boundary conditions: 
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The integral constants C1 and C2 can be obtained by taking into account the no-slip velocity boundary conditions , 

and the final result for the fully developed velocity field is written below: 
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We may also take from this general expression the specific contributions of the natural and the forced convection 

effects to the fully developed flow: 
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Some of the most important flow parameters can now be readily determined for future evaluations in the analysis of 

different transition criteria. The volumetric flow rate is obtained from integration of the velocity field over the cross-
sectional area, and can be simplified to yield the final expression below: 
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As expected, the flow rate is due essentially to the forced flow component, and the average flow velocity can be 

evaluated, providing the pressure gradient: 
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Now, Eq.(11) can be rewritten in terms of the average velocity Vd: 
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The velocity gradients at the two walls can be also readily determined as: 

 
- at the warm wall: 
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- at the cold wall: 
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Also, we can obtain the minimum value of Vd when the gradient at the wall y = e will be zero, and recirculation 

will start, assuming T1 > T2: 
 

( ) d
1 2

Vg T T e 6 0
12 e
β
ν

− − = ;  
( ) 2

1 2
d

g T T e
V

72
β

ν
−

=                 (21) 

 
 
The dimensionless numbers product (Richardson and Reynolds) relevant to mixed convection is then written below: 
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If we replace the mean velocity from Eq. (21) into Eq. (22), it results: 

 
Ri.Re = 288  (23) 

 
 
This number corresponds to the limit between upward flow ( Ri.Re < 288) and downward flow (Ri.Re > 288). 
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4. Transition Criteria 
 

We now examine different possible criteria for the consideration of the mixed convection phenomena. 
 
4.1. 1st Criterion - Relative shear stresses 
 

The first possibility here considered is the establishment of a criterion for the dominance of natural or forced 
convection, based on the relative magnitudes of the shear stresses (or velocity gradients) at the channel walls. First, for 
the dominance of natural convection: 
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This equation can be solved considering Eqs. (19) and (20) to result: 

 
Ri.Re ≥ 5470  (25) 

 
The same analysis can be employed to come up with a criterion for the relative importance of forced convection: 
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which provides: 

 
Ri.Re ≤ 15.2  (27) 

 
 
4.2.  2nd Criterion - Comparison of gravitational and viscous forces 
 

The second criterion here analyzed concerns the utilization of the ratio between the buoyancy and the viscous 
forces, as obtained from the above formulation for fully developed flow. Equation (6) is repeated below, explicitly 
showing the two terms to be compared: 
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The gravitational term: 
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and the viscous term: 
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If we take into account Eqs. (8), (9) and (17), these two terms can be rewritten below: 
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The comparison is now performed by taking the quadratic average of these two functions over the solution domain 

(0,e): 
 

2 2 2 21a g T
12

β ∆=  (32) 

 
2 2

2 2 2 2 d
4
V1c g T 144

12 e

ν
β ∆= +  (33) 

 
where T∆ = 1 2T T− . 
 

The ratio of the quadratic average terms can be written below: 
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which finally yields: 
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The two extreme situations provide the forced convection case (P=0) and the natural convection case (P→1): 

 
P = 0  →  Ri.Re = 0 – forced convection 
 
P → 1 → Ri.Re → ∞ – natural convection 

 
We can also assign different values for the ratio P, so as to establish a desired criterion, for instance, P=0.95 (the 

buoyancy quadratic term is 95% of the overall), and P=0.05 (buoyancy quadratic term is only 5% of the global term): 
 

P > 0.95 → Ri.Re > 505.89 – natural convection 
 
P < 0.05 → Ri.Re < 8.32      – forced convection 

 
 
4.3.  3rd Criterion - Comparison of gravitational and pressure forces 
 

The third criterion here analyzed concerns the utilization of the ratio between the buoyancy (a) and the pressure 
forces (b), from Eq. (6). If we consider Eq. (15) the pressure term becomes: 
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and the quadratic average is: 
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The comparison is now performed by taking the ratio of these two quadratic terms: 



 
Proceedings of the 10th Brazilian Congress of Thermal Sciences and Engineering -- ENCIT 2004 
Braz. Soc. of Mechanical Sciences and Engineering -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004 
 

Paper CIT04-0841 
 
 

2 2
2

2

a Ri.Re
27648b

( )Γ = =    (37) 

 
Ri.Re 166 28. Γ=   (38) 

 
The two extreme situations provide the forced convection case (Γ=0) and the natural forced convection case (Γ=∞): 
 
Γ = 0.05  → Ri.Re = 8.31 – forced convection 
 
Γ= 0.95 → Ri.Re = 157.97 – natural convection 

 
 
4.4.  4th Criterion - Comparison of the kinetic energy produced by natural and total effects 
 

The fourth criterion here analyzed concerns the utilization of the ratio between the kinetic energy produced by the 
natural convection effects and by the total flow, as obtained from the formulation above for the fully developed flow. 
The two flow components, Eqs. (12) and  (13), have been previously obtained as: 
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Therefore, the total kinetic energy produced by each flow component per unit volume is computed from: 
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and the ratio of  kinetic energy generated by natural convection effects and the total kinetic energy becomes: 
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  (39) 

 
Finally, we obtain: 
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The two extreme situations provide the forced convection case (Ke = 0) and the natural convection case (Ke = 1), 

when the energy generated by the forced flow is considered negligible. This criterion is very similar to the previous one 
analyzed (2nd criterion), but offers another physical point of view. 

We can also assign different values for the ratio Ke, so as to establish a desired criterion, for instance, Ke = 0.95 (the 
kinetic energy generated by natural convection is 95% of the overall), and Ke = 0.05 (the kinetic energy generated by 
natural convection is only 5% of the global energy in the flow): 

 
Ke = 0.95 → Ri.Re = 2318.26 
 
Ke = 0.05 → Ri.Re = 38.15 

 
In Fig. (2) we represent the variation of the dimensionless product Ri.Re as a function of Ke, from Eq. (40): 
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Figure 2. Product Ri.Re in terms of kinetic energy ration, Ke 
 

 
We may also present this function in the inverse order, with the kinetic energy ratio in terms of the product of Ri 

and Re: 
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  (41) 

 
Finally, we can see in the Fig.3 below, the region that covers the 5% to 95% level of relative importance of the 

kinetic energy generation by the buoyancy effects: 
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Figure 3. Kinetic energy ration, Ke, as a function of product Ri.Re, showing the 95% and 5% natural convection levels. 
 

 
5. Application 
 

We now consider a specific case previously consided (Padet, 1997) for mixed convection with water, provided by 
the following pertinent data: e = 2·10-2 m, Vd = 3·10-2 m/s, g = 9.81 m/s2. 

The thermophysical properties of water at 30oC are: β ≈ 4·10-4 K-1 ;   ν ≈ 8,5·10-7 m2/s. First, we raise some basic 
information about the problem: 

 

    dV 2e
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ν
= = 1411.76 

 
We can observe that the flow is laminar. The Richardson number is obtained as: 
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2
d

g T 2eRi
V
β ∆

=  = 0.174 T∆  

 
and the dimensionless numbers product becomes: 

 
Ri.Re = 245.65 T∆   (42) 

  
We then form the equation that relates the temperature difference between the two walls, Eq. (42, and the ratio of 

kinetic energy generation, Eq. (40): 
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The temperature differences that characterize the 95% and 5% levels of natural convection influence in the total 

kinetic energy are given below: 
 

Ke = 0.95 → T∆  = 9.43 oC 
 
Ke = 0.05 → T∆  = 0.15 oC 

 
The temperature difference required for the onset of recirculation at the wall y = e is also obtained below, by taking 

into account Eqs. (23) and (42): 
 

288 = 245.65 T∆ ,   T∆  = 1.17 oC 
 
 

6. Conclusions 
 

The constructed solutions and the symbolic implementation offer an analysis tool for various mixed convection 
heat transfer problems. Not only various possibilities of heating/cooling phenomena can be simulated, but several 
extensions to the present notebook may be undertaken, such as considering turbulent flow, different boundary 
conditions, other geometries, etc. Besides the potential as a teaching tool as well, this implementation can be utilized in 
the verification of other physical situations and/or different criteria for the predominance of natural/forced convection. 
 
 
7. Nomenclature 
 
a, b, c  buoyancy, pressure and viscous terms 
C1, C2 integration constants 
e distance between walls, m 
g gravity acceleration, m·s-2 
Ke

 kinetic energy ratio 
qv volumetric flow rate, m3·s-1 
p* pressure, Pa 
Ri Richardson number 
Re Reynolds number 
Ri.Re dimensionless numbers product 
T temperature, oC 
T1 hot wall temperature, oC 
T2    cold wall temperature, oC 
U fluid velocity component in x direction, m·s-1 
V fluid velocity component in y direction, m·s-1 

Vd average fluid velocity, m·s-1 
x vertical coordinate, m 
y transversal coordinate, m 
α thermal diffusivity, m2·s-1 
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β isobaric coefficient of thermal expansion of fluid, K-1 
µ dynamic viscosity of fluid, kg·m-1·s-1 
ν kinematic viscosity of fluid, m2·s-1 

ρ    fluid density, kg·m-3 
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