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Abstract. In this paper an application of the Generalized Extremal Optimization (GEO) algorithm to the optimization of a heat pipe
(HP) for a space application is presented. The GEO algorithm is a generalization of the Extremal Optimization (EO) algorithm,
devised to be applied readily to a broad class of design optimization problems, regardless of the design space complexity it would
face.  It is of easy implementation, does not make use of derivatives and can be applied to either unconstrained or constrained
problems with continuous, discrete or integer variables. The GEO algorithm has been tested in a series of test functions, showing to
be competitive to other stochastic algorithms such as the Genetic Algorithm. In this work it is applied to the problem of minimizing
the mass of a HP as a function of a desirable heat transport capability and a given temperature on the condenser. The optimal
solutions were obtained for different heat loads, heat sink temperatures and three working fluids: ammonia, methanol and ethanol.
The present design application highlights the GEO features of being easily implemented and efficient on tackling optimization
problems where the objective function presents design variables with strong non-linear interactions and is subject to multiple
constraints.
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Nomenclature

d Diameter of wick wire (m)
di Internal diameter of HP (m)
do External diameter of HP (m)
dv Diameter of vapor core (m)
Fl Liquid frictional coefficient (N/W-m)
Fv Vapor frictional coefficient (N/W-m)
g Gravitational acceleration (9.81 m/s2)
K Permeability (m2)
keff Effective thermal conductivity of wick (W/K-m)
kl Thermal conductivity of liquid (W/K-m)
kt Thermal conductivity of the heat pipe wall (W/K-m)
kw Thermal conductivity of the heat pipe wick material (W/K-m)
La Length of adiabatic section (m)
Lc Length of condenser section (m)
Le Length of evaporator section (m)
Leff Effective length of HP (m)
Ltotal Total length (m)
mcont       Mass of the container (Kg)
mtotal Total mass of the HP (kg)
mwd        Mass of the dry wick (Kg)
mwl         Mass of the liquid in the wick (Kg)
Mv Mach number at vapor core
mvapor     Mass of the fluid vapor inside the HP (Kg)
N Mesh number of wick (1/m)
Pamb Ambient pressure outside the heat pipe (N/m2)
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Pc Maximum capillary pressure (N/m2)
Pg Hydrostatic pressure (N/m2)
Q Heat transported  (W)
Qb          Boiling limit (W)
Qc          Capillary limit (W)
Qe          Entrainment limit (W)
Qv          Viscous limit (W)
R Thermal resistance of the HP (K/W)
Rct Thermal resistance of the heat pipe wall at the condenser (K/W)
Rcw Thermal resistance of the heat pipe wick at the condenser (K/W)
Rev Reynolds number at vapor core
Ret Thermal resistance of the heat pipe wall at evaporator (K/W)
Rew Thermal resistance of the heat pipe wick at the evaporator (K/W)
Rv Gas constant for vapor (J/kg-mol-K)
rc Capillary radius (m)
rn Nucleation radius (m)
rh,s Hydraulic radius for wick surface pores (m)
rv Radius of vapor core (m)
Tsi Temperature on the outside surface of the condensor section (K)
Tso Temperature on the outside surface of the evaporator section (K)
Tv Temperature of saturated vapor (K)
tt Thickness of HP tube (m)
tw Thickness of HP wick (m)
uts Ultimate tensile strength of the heat pipe’s wall material
α Angle of inclination of HP (degrees)
ε Porosity
γv Specific heat ratio
λ Latent heat of vaporization (J/Kg)
µl Liquid viscosity (kg/m-sec)
µv Vapor viscosity (kg/m-sec)
ρl Density of the liquid (kg/m3)
ρt Density of the material of the HP container (kg/m3)
ρv Density of the vapor (kg/m3)
ρw Density of the material of the HP wick (kg/m3)
σ Surface tension coefficient (N/m)
τ Free adjustable parameter of the generalized extremal optimization algorithm

1. Introduction

Nature has been inspiring researchers to develop optimization tools to tackle complex problems that pose great
difficulties to traditional gradient algorithms. The natural evolution, the annealing of metals, the functioning of the brain
and even the behavior of ants, are examples of natural processes that inspired the development of such tools. Among the
optimization methods inspired by nature, Simulated Annealing (SA) (Kirkpatrick et al, 1983) and Genetic Algorithms
(GA) (Goldberg, 1989) are probably the two most used for tackling optimization problems in engineering and science.
Their robustness and ability to be easily implemented to a broad class of problems, regardless of such difficulties as the
presence of multiple local minima in the design space and the mixing of continuous and discrete variables, has made
them good tools to tackle complex problems, for example, in the aerospace field (Jilla and Miller, 2001, Schoonover et
al, 2000).  The main disadvantage of these methods is that they usually need a great number of objective function
evaluations to be effective. Hence, in problems where the calculation of the objective function is very time consuming,
these methods may become impracticable. Nevertheless, the availability of fast computing resources or the use of
hybrid techniques (Wang and Damodaran, 2001; Vicini, A. and Quagliarella, 1999), has made the power of those
algorithms available even to that kind of problems. There are today many derivatives of the SA and GAs methods,
created to give more efficiency to the proposed original algorithms, but that keep essentially their same principles.

Although algorithms such as the SA and GA are inspired by natural processes, their practical implementation to
optimization problems shares a common feature: the search for the optimal is done through a stochastic process that is
“guided” by the setting of adjustable parameters. Since the proper setting of these parameters are very important to the
performance of the algorithms, it is highly desirable that they have few of them, so that the cost of finding the best set to
a given optimization problem does not become a costly task in itself.

Recently, Boettcher and Percus (2001) have proposed a new optimization method based on a simplified model of
biological evolution developed to show the emergence of Self-Organized Criticality (SOC) in ecosystems (Bak and
Sneppen, 1993). Called Extremal Optimization (EO), it has been successfully applied to tackle hard problems in
combinatorial optimization. The EO algorithm has only one adjustable parameter, which may be an “a priori” advantage
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over the SA and GA algorithms, since they use more than one. Sousa and Ramos (2002) have proposed a generalization
of the EO method, constructed in a way that makes it easily applicable to a broad class of design optimization problems.
It was named the Generalized Extremal Optimization (GEO) algorithm. As the SA and the GA, it is a stochastic
method. It does not make use of derivatives and can be applied to nonconvex or disjoint problems. It can also deal in
principle with any kind of variable, either continuous, discrete or integer. Having been already tested on a set of test
functions commonly used to assess the performance of stochastic algorithms (Sousa and Ramos, 2002), the GEO
proved to be competitive to the GA.

In this paper we present an example of an application of the GEO method to a real design problem: The
optimization of a heat pipe (HP) for a space application. This problem pose difficulties to the GEO such as an objective
function that presents design variables with strong non-linear interactions, subject to multiple constraints, being
considered unsuitable to be solved by traditional gradient based optimization methods (Rajesh and Ravindran, 1997).
The HP is optimized in regard to its total mass, given a desirable heat transport capability and boundary conditions on
the condenser. A total of 18 constraints are taken into account, which include operational, dimensional and structural
ones.  Temperature dependent fluid properties are considered and the calculations are done for steady state conditions.
Several runs were performed under different values of transported heat flux and temperature at the condenser. Integral
optimal characteristics were obtained.

The paper is structured as follows: In Section 2 and 3 the EO and GEO methods are described, respectively. On
Section 4 the heat pipe design problem is presented, followed by the results on Section 5 and the conclusions on Section
6.

2. The Extremal Optimization Algorithm

Self-organized criticality has been used to explain the behavior of complex systems in such different areas as
geology, economy and biology (Bak, 1999). The theory of SOC states that large interactive systems evolves naturally to
a critical state where a single change in one of its elements generates “avalanches” that can reach any number of
elements on the system. The probability distribution of the sizes “s” of these avalanches is described by a power law in
the form P(s) ~ s-τ , where τ is a positive parameter. That is, smaller avalanches are more likely to occur than big ones,
but even avalanches as big as the whole system may occur with a non-negligible probability.  To show that SOC could
explain features of systems like the natural evolution, Bak and Sneepen (1993) developed a simplified model of an
ecosystem in which species are placed side by side on a line with periodic boundary conditions. To each species, a
fitness number is assigned randomly, with uniform distribution, in the range [0,1]. The least adapted species, the one
with the least fitness, is then forced to mutate, and a new random number assigned to it. The change in the fitness of the
least adapted species alters the fitness landscape of their neighbors, and to cope with that new random numbers are also
assigned to them, even if they are well adapted. After some iterations, the system evolves to a critical state where all
species have fitness above a critical threshold. However, the dynamics of the system eventually causes a number of
species to fall below the critical threshold in avalanches that can be as big as the whole system.

An optimization heuristic based on a dynamic search that embodies SOC would evolve solutions quickly,
systematically mutating the worst individuals. At the same time this approach would preserve throughout the search
process, the possibility of probing different regions of the design space (via avalanches), enabling the algorithm to
escape local optima. Inspired by the SOC theory, the basic EO algorithm was proposed as follows (Boettcher and
Percus, 2001):

1. Initialize configuration C of design variables xi at will; set Cbest = C.
2. For the current configuration C,

a) set a fitness Fi to each variable xi,
b) find j satisfying Fj ≤ Fi for all i,
c) choose C’ in a neighborhood N(C) of C so that xj must change,
d) accept C = C’  unconditionally,
e) if F(C)  <  F(Cbest) then set Cbest = C.

3. Repeat step (2) as long as desired.
4. Return Cbest and F(Cbest).

The above algorithm shows good performance on problems, such as graph partitioning, where it can choose new
configurations randomly among neighborhoods of C, while satisfying step 2c. But when applied to other types of
problems, it can lead to a deterministic search (Boettcher and Percus, 2001). To overcome this, the algorithm was
modified as follows: in step 2b the Nvar variables xi are ranked so that to the variable with the least fitness is assigned
rank 1, and to the one with the best fitness rank N. Each time the algorithm passes through step 2c a variable is chosen
to be mutated according to a probability distribution of the k ranks, given by:

 P(k) = k−τ ,   1 ≤ k ≤ Nvar                                                                                                                                 (1)
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where τ is a positive adjustable parameter. For τ → 0, the algorithm becomes a random walk, while for τ → ∞, we
have a deterministic search. The introduction of the parameter τ, allows the algorithm to choose any variable to mutate,
but privileging the ones with low fitness. This implementation of the EO method received the name τ-EO algorithm
(Boettcher and Percus, 2001), and showed superior performance to the standard implementation even in cases where the
basic EO algorithm would not lead to local minima.

As pointed out by Boettcher and Percus (2001), “a drawback of the EO method is that a general definition of fitness
for the individual variables may prove ambiguous or even impossible”. What means that for each new optimization
problem assessed, a new way to rank the design variables may have to be created and it may happen that for some cases
this may not be possible. Moreover, to our knowledge it has been applied so far to combinatorial problems with no
implementation to continuous functions. In order to make the EO method applicable to a broad class of design
optimization problems, without concern to how the fitness of the design variables would be assigned, and capable to
tackle either continuous, discrete or integer variables, a generalization of the EO, the GEO algorithm, was devised
(Sousa and Ramos, 2002). In this new algorithm, the fitness assignment is not done directly to the design variables, but
to a “population of species” that encodes the variables. Each species receives its fitness, and eventually mutates,
following general rules. The GEO algorithm is described in the next Section.

3. The Generalized Extremal Optimization Algorithm

The GEO algorithm was devised using the same logic of the evolutionary model of Bak and Sneppen (1993), but
applying the τ-EO approach to choose the species that will mutate. Following Bak and Sneppen (1993), L species are
aligned and for each species is assigned a fitness value that will determine the species that are more prone to mutate.
We can think of these species as bits that can assume the values of 0 or 1. Hence, the entire population would consist of
a single binary string. The design variables of the optimization problem are encoded in this string that would be similar
to a chromosome in a GA, but with each bit considered as a species or individual. To each species (bit) is assigned a
fitness number that is proportional to the gain (or loss) the objective function value has in mutating (flipping) the bit.
All bits are then ranked from rank 1, for the least adapted bit, to L for the best adapted. A bit is then chosen to mutate
(flip) according to the probability distribution (1). This process is repeated until a given stopping criteria is reached and
the best configuration of bits (the one that gives the best value for the objective function) found through the process is
returned.

The practical implementation of the GEO algorithm to a function optimization problem is as follows:

1. Initialize randomly a binary string of length L that encodes Nvar design variables of bit length lj (j = 1, Nvar). For
the initial configuration C of bits, calculate the objective function value V and set Cbest = C and Vbest = V.

2. For each bit i of the string, at a given iteration:
a) flip the bit (from 0 to 1 or 1 to 0) and calculate the objective function value Vi of the string configuration

Ci,
b) set the bit fitness as ∆Vi = (Vi - Vbest). It indicates the relative gain (or loss) that one has in mutating the

bit, compared to the best objective function value found so far.
c) return the bit to its original value.

3. Rank the bits according to their fitness values, from k = 1 for the least adapted bit to k = L for the best adapted.
In a minimization problem, higher values of ∆Vi will have higher ranking, and otherwise for maximization
problems. If two or more bits have the same fitness, rank them randomly.

4. Choose with equal probability a candidate bit i to mutate. Generate a random number RAN with uniform

distribution in the range [0,1]. If the mutating probability Pi(k) = k−τ of the chosen bit is equal or greater than
RAN the bit is confirmed to mutate. Otherwise, the process is repeated until a bit is confirmed to mutate.

5. For the bit i chosen to mutate set C = Ci and V = Vi.
6. If  V  <  Vbest (V  >  Vbest, for a maximization problem) then set Vbest = V and Cbest = C.
7. Repeat steps 2 to 6 until a given stopping criteria is reached.
8. Return Cbest and Vbest.

Equality and inequality constraints can be easily incorporated to the algorithm simply setting a high (for a
minimization problem) or low (for a maximization problem) fitness value to the bit that, when flipped, leads the
configuration to an unfeasible region of the design space. Side constraints are directly applied through the encoding of
the design variables. Note that the move to an infeasible region is not prohibited, since any bit has a chance to mutate
according to the P(k) distribution. Moreover, no special condition is posed for the beginning of the search process,
which can even start from an infeasible region.

A slightly different implementation of the GEO algorithm can be obtained, changing the way the bits are ranked
and mutated. Instead of ranking all the bits according to steps 2-3, we can rank them separately for each variable. In this
way the bits of each variable will have a rank ranging from 1 to lj. In step 4 one bit of each variable is chosen to be
flipped according to the probability distribution P(k). We will call this implementation hereinafter GEOvar. In the
following Section the design problem of the heat pipe is described.
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4. Heat Pipe Design Problem Description and formulation

Heat pipes are thermal devices used to transfer high amounts of heat over long distances with a minimum
temperature gradient. Its first conception date from the late-1940’s, but was from the mid-1960’s that it started to be
developed and used in engineering applications, that now ranges from oil ducts to spacecraft (Peterson, 1994).

In its basic form, the HP is a hermetically sealed tube-type container with a porous structure placed on its internal
walls and filled with a working fluid. Vapor occupies the center of the tube (vapor core) whereas liquid fills the porous
structure (wick). When operating, liquid at the evaporator side of the HP evaporates, and vapor moves through the
center of the tube to the condenser, where it condenses. At the same time, liquid flows through the wick from the
condenser to the evaporator due to the action of capillary forces. This heat-mass transfer mechanism can transport great
amounts of heat, as latent heat of vaporization, from the evaporator to the condenser with little temperature drop
between the two parts. In Figure 1 a drawing of the HP concept is shown.

Figure 1. Conceptual drawing of a conventional heat pipe

The materials of the container’s wall and wick, as well as the working fluid are chosen depending on the application
for the HP and their compatibility.  There exists also a variety of wick types available for usage. Altought many
combinations of materials and working fluid can be used, there are only two basic types of heat pipes: The Constant
Conductance Heat Pipe (CCHP) and the Variable Conductance Heat Pipe (VHCP). Details of their operating, testing
and manufacture characteristics can be found elsewhere (for example, Chi, 1976; Peterson, 1994).

The use of HP in satellites date back to the 1970’s. In fact, the early development of the HP was motivated by its
potential use on those space platforms. Most of the HPs used in satellites are of the CCHP type, using ammonia as the
working fluid and a container of Aluminium with a capillary structure formed by axial grooves on its internal wall
surface. On space vehicles, HPs are used basically to conduct heat from areas of high heat dissipation to the radiators.
Usually, a set of HPs are embedded on some part of the space vehicle, where one or more electronic equipment of high
heat dissipation are attached. They transport and spread the heat from these “hot spots” to the radiators that reject it to
space.

In any space application, one of the main concerns is to keep the total mass of the space platform as low as possible.
In this paper the problem of optimizing a CCHP to be used in the thermal control subsystem of a satellite is tackled. The
HP is optimized in regard to its total mass, given a desirable heat transport capability and boundary conditions on the
condenser. A total of 18 constraints are taken into account, which include operational, dimensional and structural
constraints.  Temperature dependent fluid properties are considered and the calculations are done for steady state
conditions. Several runs were performed under different values of transported heat flux and temperature at the
condenser.

For this problem Stainless Steel (SS 304) is used as the material of the container since it is compatible with all the
fluids used here for the analysis, that are ethanol, methanol and ammonia. The wick used is of the mesh type and also
made of SS 304. Fluid properties are dependent on the operating temperature of the heat pipe, and data from Dunn and
Reay (1976) was used to obtain interpolation curves that were used to calculate the fluid’s properties at a given
operating temperature.

The objective function to be minimized is the total mass of the HP (mtotal).  The design variables are the wick’s
mesh number (N), the diameter of the vapor core (dv), the thickness of wick (tw), the thickness of the container’s wall
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(tt), the length of the evaporator section (Le) and the length of the condenser section (Lc). The length of the adiabatic
section (La) is dependent on the application and here was fixed equal to 0.5 m.

The constraints applicable to the HP can be divided into dimensional, operating and structural. The dimensional
constraints are mainly concerned with practical aspects of manufacture and installation of the HP, such as defining
feasible minimum lengths for the evaporator and condenser section. Operational constraints are posed to assure that the
HP will operate properly for a given heat transport load (Q) and at a given sink temperature (Tsi). Finally, since the HP
is essentially a pressurized system, a structural constraint is applied so that the burst of the container is prevented.

The optimization problem can then be formulated as:

Minimize:

vaporwlwdconttotal mmmmm +++=                (2)

where,

mcont is the mass of the container: ttotaltitcont   L)t(d  tm ρπ +=  ,

mwd is the mass of the dry wick: 
wtotalwvwwd   L)1( )t(d  tm ρεπ −+=  ,

mwl is the mass of the liquid in the wick: ltotalwvwwl   L )t(d  tm ρεπ +=  and

mvapor is the mass of the fluid vapor inside the HP: 
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Because the HP is intended for a space application, the gravitational forces are not considered, and hence Pg = 0.0.

G2:  Tsomin ≤  Tso ≤ Tsomax                    (4)

where Tso is the temperature of the heat source measured on the external wall of the evaporator section. On a
practical application Tsomin and Tsomax would be, for example, the limits of the operating range for an electronic
equipment. For most electronic equipment used in space applications they are Tsomin = -10.0 oC and Tsomax = + 45.0 oC,
and these are the limits used on the present problem. The temperature Tso can be obtained from the overall thermal
balance between the evaporator section and the condenser section, in steady state conditions:
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 G3: Q ≤ Qb      (6)

where Qb is the boiling limit:   P
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Constraints G6 and G7 were put in to assure a laminar incompressible flow inside the vapor core.

G8: 0.0001≤  ε ≤  0.9999 (11)
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G10:  314 ≤ N ≤  15000 (13)

G11: 0.025⋅10-3 ≤  d ≤  1.0⋅10-3 (14)

G12: 5.0⋅10-3 ≤  dv ≤  80.0⋅10-3 (15)

G13: 0.05⋅10-3 ≤  tw ≤ 10.0⋅10-3 (16)

G14: 50.0⋅10-3 ≤  Le ≤  400.0⋅10-3 (17)
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The above 18 constraints take into account operational (G1 to G7), dimensional (G8 to G16) and structural (G17
and G18) limits to the HP being optimized here. All operational constraints, but G2, are posed to assure the proper
functioning of the HP. G2 was posed so that the temperature on the heat source would be kept inside a given desired
range, what is the primary objective of any satellite thermal control system. The dimensional limits assure that the HP
can be physically constructed and mounted, while also restrict the search for the optimal values of the design variables
to practical ranges. Finally, the structural constraints prevent designs that would lead to a burst of the tube. In the next
section the results of the optimization are presented and analyzed.

5. Results

In this paper, we are optimizing the heat pipe for a desired heat transport, given a constant temperature at the
outside surface of the condenser section Tsi. In a practical application, this would be the temperature of the radiator that
is rejecting the heat to space, and it would depend also on the external heat loads incident on the radiator, its area and
thermal optical properties. Because the present analysis is focused on the HP and intended mainly to show the features
of the GEO method, these external factors are translated into a range of constant temperatures at the condenser section.
It goes from –15.0 oC to +30.0 oC with steps of 15.0 oC. Three working fluids were used: Ethanol, methanol and
ammonia, and the heat transport range under analysis is from 25.0 W to 100.0 W.

The first decision to be made on the utilization of GEO is the number of bits used to each design variable. This
would depend on the precision one desires for each variable. For the present problem, the design parameter that
required the bigger number of bits to encode its value within the desired precision was Lc. It required 14 bits and, for the
sake of simplicity and considering that the computational cost of estimating the objective function was small, that was
the number also used for the other design variables.

Since the performance of the GEO algorithm is dependent on the parameter τ, we first made a study to determine its
best value for the HP problem. We set Tsi = 0.0 oC and Q = 25.0 W and run GEO and GEOvar for 105 function
evaluations. Fifty independent runs were made for each algorithm. The initialization of the string of bits at each run was
done randomly. The parameter τ was varied in the range 0.25 to 3.00, in steps of 0.25, and the results are shown in
Figures 2 and 3.
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From Figures 1 and 2 it can be seen that the best value of τ for GEO and GEOvar lies in the ranges 0.75-1.25 and
1.75-2.25, respectively, considering all working fluids. That is, the best results are obtained with a smaller value of τ for
GEO than for GEOvar. It was also observed that GEOvar was more efficient than the GEO on the search for the optimum.
That is, it converged on average faster to the better results than GEO. These characteristics were also observed in the
test functions results (Sousa and Ramos, 2002). It interesting to note also that the range for the search of the best τ used
for the HP problem was the same used for the test functions. In this relatively narrow range the best values of τ for all
test functions and the HP problem were found, either for the GEO or GEOvar. This may indicate a very interesting
general characteristic of the algorithm, that is to have the ideal τ to a broad class of problems confined to a relatively
narrow range, what pretty much facilitates the processing of finding its best value for a specific design problem.

For the problem being dealt here, we decided to use τ = 1.0 and τ = 2.0 for GEO and GEOvar, respectively, on all
subsequent runs for the search of the optimal HP design. On these, the stopping criteria used to halt the search for the

Figure 2. Minimum total mass of HP after
105 function evaluations as a function of τ
for GEO. Average of 50 idependent runs.

Figure 3. Minimum total mass of HP after
105 function evaluations as a function of τ
for GEOvar. Average of 50 idependent runs.
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optimal was when the number of function evaluations (NFE) reached 106. This number was defined from observation,
for the same boundary conditions used to find the “optimal” τ, that the average value of mtotal had apparently converged
close to a global minimum after that NFE. This was particularly true for the methanol and ammonia. In Figure 4, the
variation of mtotal as a function of NFE is shown for the three working fluids.
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From Figure 4, it can be seen that GEOvar is more efficient than the GEO on the search for the optimum design, for
the HP problem. Hence, it was used to obtain the results for the different combinations of heat transport and Tsi shown
on Figures 5 to 8 below. On these Figures are plotted the variation of mtotal as a function of Q, for a given Tsi. The
curves for the three working fluids are represented in each graph as solid (for the minimum value of mtotal found out of
50 runs) and dashed lines (for the average minimum value of mtotal found in 50 runs).
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Figure 4. Minimum total HP mass as a function of
NFE. Average of 50 idependent runs.
Figure 5. Total mass of HP as a function of Q,
for Tsi = -15.0 oC.
9

Figure 6. Total mass of HP as a function of Q,
for Tsi = 0.0 oC.
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From Figures 5 to 8, it can be seen that, as expected, mtotal increas
heavier HP, but with a lesser influence than Q. It can also be observe
heavier HP than when using ammonia, even on high heat loads. T
dangerous and difficult fluid to handle and an alternative slightly he
more advantageous to use.

Another interesting result, is that the gap between the absolute an
for each case, increases as Q increases, with the results for ethanol ha
load is increased, an increase in the NFE may be necessary to incr
minimum at the end of the search.

On Table 1 the values for the design variables correspondent to th
in the operational condition of Q = 25.0 W and Tsi = 0.0 oC are shown
values of the design variables found on the 50 runs are shown.

Table 1. Value of the design variables for the minimum and max
operational condition: Tsi = 0.0 oC and Q = 50.0 W.

mtotal N d 10-3 dv 10-3

min 0.050 317 0.025 9.7Ethanol
max 0.070 345 0.025 12.1
min 0.035 315 0.025 6.4Methanol
max 0.039 320 0.025 7.4
min 0.025 316 0.025 5.0Ammonia
max 0.027 314 0.025 5.0

Table 2. Range of variation on the values of the design variables for 50
and Q = 50.0 W.

mtotal N d 10-3 dv 10-3

Ethanol range 0.050-0.070 314-375 0.025-0.125 7.3-12.5 0
Methanol range 0.035-0.039 314-432 0.025-0.048 6.4-7.4 0
Ammonia range 0.025-0.027 314-343 0.025-0.033 5.0-5.3 0

It can be seen from Table 1 that the parameters that most influenc
make up the internal diameter di. This is clearly seen from the data
between the minimum and maximum Le, which does not reflect on 
design variables for the three fluids, but dv and tw, have the same valu
is due to the weight of the container, which in turn is more affected 
interesting to note that the values of N, d and tt were kept equal o
constraints. Low values for N and d allowed ε reach a very high va
feasibility for mesh type wicks. It must also be noted that, in a further
permeability K, used in the G1 constraint, should be reviewed for ad
relation for K used in this paper was elaborated by Marcus (1972) 

Figure 7. Total mass of HP as a function of Q,
for Tsi = 15.0 oC.
Figure 8. Total mass of HP as a function of Q,
for Tsi = 30.0 oC.
es as Q increases. A higher Tsi will also lead to a
d that the use o methanol does not led to a much
his is an interesting result since ammonia is a
avier but safer, and probably cheaper, would be

d average minimum found on the 50 runs, done
ving the bigger gap. This means that, as the heat
ease the probability of have finding the global

e maximum and minimum values found for mtotal

. In Table 2 the range of minimum to maximum

imum value of mtotal found in 50 runs for the

tw 10-3 Le 10-3 Lc 10-3 tt 10-3

0.22 50.0 50.0 0.3
0.21 50.1 50.2 0.3
0.21 71.9 50.3 0.3
0.21 50.0 51.3 0.3
0.08 50.7 51.1 0.3
0.09 93.7 50.0 0.3

 runs on the operational condition: Tsi = 0.0 oC

tw 10-3 Le 10-3 Lc 10-3 tt 10-3

.21-0.41 50.0-225.0 50.0-168.8 0.3-0.3

.17-0.21 50.0-93.8 50.0-57.4 0.3-0.3

.08-0.09 50.0-72.2 50.0-65.7 0.3-0.3

e the final weight of the HP are dv and tw, which
 for ammonia, where there is a great difference
mtotal. Moreover, it can be seen that most of the
e. In fact, the bigger part of the weight of the HP
by increments in di than any other variable. It is
r very close to the minimum allowable by its
lue (0.99) that is greater than the technological

 development of this work, the expression for the
equacy with porosity values closed to unity. The
by the modification of the Schmidt’s expansion
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(1966) of the Blake-Kozeny equation, initially developed for randomly packed sphere beds (Bird et al, 1960), that was
based on Kozeny’s theory, developed in the 1930’s. As was point out by Ivanovsii et al (1982), the Kozeny’s theory is
good for small values of the porosity but “… for large porosities it is necessary to take into account of the statistic
nature of the distribution of the components of the porous material” (Ivanovskii et al, 1982).

Finally, in Table 2 the range of variation of the objective function and the design variables, for the 50 runs, are
shown. Confirming the results from Table 1, it can be seen that great variations on Le and Lc, does not lead to great
variations in mtotal, as is clear from the ammonia results. From the range of variation of N and d, it can be calculated that
ε would range from 0.955 to 0.994, which is a range more appropriate to felt or foam wicks (Faghri, 1995).

6. Conclusions

In this paper the Generalized Extremal Optimization algorithm was presented and an application to a heat pipe
optimization problem shown. Inspired by the theory of Self-Organized Criticality, it is an stochastic algorithm devised
to tackle complex design optimization problems that presents such features as nonconvex design domains or presence of
different kinds of design variables. Had been already applied to a set of test functions, it showed to be competitive to the
GA (Sousa and Ramos, 2002). On the present work, it was seen that some general characteristics of the GEO method
observed for the test functions also showed up in the heat pipe optimal design problem, such as: i) the best value of τ
could be found within the same relatively narrow range for the functions and the HP problem, ii) the best value of τ for
a given problem is bigger for GEOvar than for GEO and, iii) GEO seems to be less efficient than GEOvar on the search
for the optimum. The first characteristic may indicate that the range where to search for the best τ (from 0.25 to 3.0)
may be the same for a broad class of problems. Having only one free parameter to adjust, that may vary within a narrow
range for many problems, gives the GEO method an “a priori” advantage over other popular stochastic algorithms, since
the time spent on fine tuning the algorithm to its best performance, would be greatly reduced.

Applied to a real problem, the GEO method showed to be a valuable design tool. It was easily implemented to a
highly constrained problem with non-linear interactions between the design variables and was capable to portrait many
of its features, such as to identify the more relevant design variables to the problem. One important conclusion of the
analysis done here for the HP, is that the difference in weight from a HP system filled with methanol compared with
one filled with ammonia may not be so great for a given application. Hence, considering the safety and operational
problems of manipulating ammonia, sometimes it would be preferable to use methanol instead. In a sequence of the
present work, the type of wick, the HP material and working fluid are intended to be incorporated also as design
variables. The algorithm would then, for a given application, search automatically not only for the optimal dimensions
of the HP, but also for the best combination of wick, materials and working fluid.
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