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Abstract. One of the most challenging problems in several industries is the correct simulation of mold filling. The modeling and
simulation of mold filling must include a method to capture the interface formed between the inlet fluid and the fluid that was initially
in the mold. A commonly used front-capturing method in an Eulerian mesh is the volume-of-fluid (VOF) method. Due to the
hyperbolic nature of VOF advection equation, its solution usually suffers from numerical diffusion and/or dispersion and high-order
numerical schemes have to be employed in the discretization of the convective terms, such as the TVD (Total Variation Diminishing)
schemes with dimensional splitting. The present contribution explores the usage of RCM (Random Choice Method) for the solution of
the VOF color-function equation during mold filling with recirculating flows. It was shown that it is able to generate a solution
without numerical diffusion of the front position. The Navier-Stokes equations in rectangular cavities have been solved by a finite-
volume method using the SIMPLER algorithm, without considering surface tension effects at the interface. Filling simulations using
the TVD and RCM methods are compared. The RCM was able to generate diffusion-free results, sharply defining the interface, even
when topological changes (generation of droplets) occur due to the recirculating flow. However, due to its statistical characteristic,
front behavior may vary between different simulation runs for the same problem, leading to an uncertainty in front position. This was
numerically shown to be equivalent to a numerical diffusion for a 1-D problem.
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1. INTRODUCTION

Several different industrial processes include a filling step of some kind of cavity (thermoplastic injection molding,
reaction injection molding, casting of metal pieces, food extrusion processes,...). The design of these cavities involves a
very expensive trial and error procedure in order to avoid filling problems, like heterogeneity in the final piece or air
entrapment. This is specially true in the polymer industry. Due to this fact, during the last two decades many researchers
have been developing computational methods that allows the simulation of cavity filling what shortens the expensive
empirical stage. One of the most challenging problem in constructing a successful simulator is to capture and track the
interface formed between the inlet fluid and the fluid that was initially inside the cavity.

One way of capturing the moving interface between two immiscible fluids is to solve the fluid flow equations for
both fluids on the same Eulerian mesh. The two fluids are modeled as a single continuum with property jumps at the
interface. The interface propagation is then obtained through the solution of a transient scalar advection equation in the
Eulerian mesh. Such solution is prone to suffer from numerical diffusion and dispersion problems, which are inherent to
the numerical solution of hyperbolic equations by any discretization scheme when there exist discontinuities in the
solution. A fluid-fluid interface is a contact discontinuity, and its resolution demands additional care. In this paper, two
numerical solutions to this problem are presented and compared: the usage of a high order TVD-scheme developed by
Chakravarthy and Osher (1984) and the usage of a RCM-scheme (Random Choice Method) adapted from Toro (1999).
Both schemes use dimensional splitting.

TVD methods are one of the most significant achievements in the development of numerical methods for partial
differential equations in the last 20 years or so, althouth the premilinary ideas can be traced as far back as 1959, with the
pioneering work of Godunov and continued later by van Leer. In 1965, Glimm introduced the RCM and Colella (1982)
contributed to develop and increase the knownledge of the method, considering its advantages and limitations.

In this work, the TVD and RCM performances for cavity filling simulation were compared for both non-
recirculating and recirculating flows. In the filling, it was assumed that both fluids had  the  same  properties.  Thus,  the
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pressure and velocity fields could be firstly obtained for  the steady-state flow throughout any cavity and then used to
the filling simulation using both methods. This eliminates any flow field disturbance that would rise in a filling
simulation for unsteady fluid flow. These steady-state flow solutions were obtained by solving the transient mass and
momentum conservation equations using a finite-volume method and the SIMPLER algorithm until the steady-state
flow was reached to a given tolerance. The surface tension effects at the interface were not included in the analysis.

2. FLUID DYNAMICS EQUATIONS

The 2D-cartesian mass and momentum conservation equations for a Newtonian fluid, with constant density and
viscosity, used in the flow simulation through 2D-cavities are presented below in a dimensionless form.
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and t is the time, x and y are the spatial coordinates, ρ is the density, µ is the viscosity, ν is the kinematic viscosity, u is
the velocity component in x direction, v is the velocity component in y direction, p is the pressure, gi is the body force
in i direction, Din is the inlet width and vmed is the mean inlet velocity. The subscript ref refers to the inlet fluid
properties.

After applying a finite-volume discretization on a staggered grid using the power-law scheme, the steady-state
solution has been achieved using the SIMPLER scheme (Patankar, 1980). The numerical code has been tested against
benchmark results for the backward facing step flow (Gartling, 1990) with good agreement (Fontes et al., 1999).

The numerical results were integrated using a mixed (relative and absolute) tolerance of 10-6 for the velocity
components and 10-5 for the pressure values. A mixed tolerance smaller than 10-4 for all the variables in every control
volume between two consecutive times was the criterion used to assume that the steady state was achieved.

3. VOF-TVD SCHEME

The Volume-of-Fluid (VOF) method is a interface capturing method (Hirt and Nichols, 1981; Ferziger and Pèric,
1997). The fluids on both sides of the interface are marked by either massless particles or an indicator (color) function.
In the VOF method the advection of the color function F, given by Equation (10) in dimensionless form, has to be
solved. The F field values are stored at in the staggered finite-volume grid similarly to the pressure field.
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As commented above, U and V are known form the steady-sate solution. The simulated physical situation
corresponds to the steady flow of a fluid through the cavity that suddenly becomes colored and starts to displace the
non-colored one. Obviously, if the physical properties remains the same, so do the velocity and the pressure fields. For a
given volume, F is equal to 0 when the volume has no colored fluid, but it is equal to 1 when the volume is completely
filled with the colored fluid. The interface has F-values between 0 and 1.

Typical problems associated to the solutions of hyperbolic equations like Equation (10) (numerical diffusion and
dispersion) are reduced by the use of a Total Variation Diminishing (TVD) scheme. A good summary of TVD schemes
is given by Sweby (1984) and Toro (1999). A numerical method is TVD if Equation (11) is valid for scalar conservation
laws, where ξ is the transported variable and TV(ξ) is its total variation.

( ) ( )n1n TVTV ξ≤ξ + ,   where        ( ) ∑ −ξ−ξ=ξ
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Chakravarthy and Osher (1984) described one-dimensional second and third-order accurate TVD schemes with low
truncation error. These schemes were used to solve advective equations, like Equation (10). Goodman and LeVeque
(1985) have proved that there is no multidimensional TVD scheme, but Chakravarthy and Osher (1984) have shown
that numerical results achieved using their scheme are extremely good. Based on its simplicity and good results, the
Chakravarthy and Osher (1984) third-order scheme has been used in the present work. In order to try to keep the TVD
characteristics of the 1-D scheme, a dimensional splitting was applied during the numerical solution of Equation (10).
Therefore, the explicit discretized form of Equation (10), with dimensional splitting, is given by Equations (12) and
(13), where 2/2/1 τ∆=τ∆ . The splitting algorithm, in accordance to Toro (1999), is described below.

(i) For each time step ∆τ, integrate first in X direction up to ∆τ1/2 using Equation (12).
(ii) Then, using F1/2, integrate in the Y direction up to ∆τ by Equation (12), determining F.
(iii) In order to achieve second order accuracy for every-other time step, invert the X and Y integrations in the next
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The F-fluxes at the faces of the volumes are determined using the upwind-TVD scheme. For example, for east face,
for each j line, the flux is given by Eqs. (14) to (21). In these equations the index P means position )j,i( , E
position )j,1i( + , e position )j,21i( + , ee position )j,23i( + , w position. When γ equals 1/3 and β equals 4 these
equations correspond to a third-order upwind scheme. Equation (14) represents the flux given for the Engquist-Osher
first-order scheme (Osher and Chakravarthy, 1984). The minmod function is defined by Equation (19) and it is used to
define the limited fluxes given in Equations (17) and (18). The fluxes for the other faces are obtained by obvious
changes of subscripts.
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Osher and Chakravarthy (1984) prove that their scheme is stable only for Courant number, given by Equation (22)
for both X and Y directions, equal or less than 0.4.
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Boundary conditions for this equation are obvious: the cells outside the mold inlet are considered to be completely
filled with color fluid (F = 1), all cells outside the mold at the outlet are considered to be completely filled with
colorless fluid (F = 0) and there is no F flux at the other boundaries. In the beginning of the filling process, the mold is
filled with colorless fluid (F = 0).

4. VOF-RCM SCHEME

Glimm (1965) introduced the Random Choice Method but it was Colella (1982) who really developed this
numerical method, discussing its advantages and limitations. Essentially, the RCM is applicable to scalar problems in
any number of dimensions without loosing its capability of keeping the perfect resolution of contact discontinuities,
with no diffusion or dispersion. As F, in Equation (10) is a scalar variable, RCM perfectly matches the necessities of the
VOF method. Silva and Lage (2001) show a 1-D successful application of this scheme.

RCM chooses randomly among possible solutions of local Riemann problems, associated to the dimensional
splitting of Equation (10). The method used in this work is one given by Toro (1999) for a staggered grid in which a
local 1-D Riemann problem is solved twice for each direction at each integration step: once between τn and τn+1/2 and
once between τn+1/2 and τn+1. It is exactly because RCM solves the local Riemann problem that it does not present
numerical diffusion. RCM stability is also dependent on the local Courant number, given by Equation (22). For the
RCM used in this work, both Courant numbers have to be equal or less than 1.

The Riemann local problem for Equation (10) uses the local states (FL and FR) around the interface between two
control volume. The exact solution of the 1-D local Riemann problem is shown in Fig.(1-a). It consists in a single
contact discontinuity propagation from the origin with velocity u and inclination λ = 1/u. Naturally, the solution values
are equal to FL on the left of the straight line with inclination λ = 1/u and equal to FR on the right of it.

                     
                                       (a)                                                                                          (b)

Fig. 1: (a) The local 1-D Riemann problem; (b) Riemann problem applied to volume i.

In order to explain this method, lets consider its application to the integration of the F value in a given 1-D volume i
of a uniform mesh in the X direction, as illustrated in Fig.(1-b), for a time step ∆τ. First the local 1-D Riemann
problems are solved at both volume interfaces in the first half time step, 2n

2/1
n τ∆=τ∆ . At interface ( )21i − , the

discontinuity propagates a distance 2XCXd 21i,X21i ∆⋅+= +−  during 2/1
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to the right interface using the same random number θn to obtain 21n
21iF̂ +

+ . Then, another random number is generated,
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θn+1, and a similar procedure is applied to obtain the solution at the volume i itself at the end of the time interval, 1n
iF + .

Thus, two new random numbers are generated for each time step and for each direction. The complete algorithm is
described in the following.

(i) Solve the Riemann problems ( )n
i

n
1i F,FRP −  and ( )n

1i
n
i F,FRP +  to find the solutions  21n

21iF̂ +
−  and 21n
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+ ;

(ii) For the first half time step 2/1
nτ∆ , random sample these solutions based on random number nθ :
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21n
21i F,FRP +

+
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−  to find the solution 1n
iF̂ + ;

(iv) For the second half time step 2/1
nτ∆ , random sample this solution based on a new random number 1n+θ :

( )n1n
i

1n
i F̂F θ= ++ .

The same dimensional splitting applied to the VOF-TVD scheme is applied for the VOF-RCM scheme which uses
twice the 1-D scheme just described. As RCM is intrinsically a statistical scheme, front behavior may vary between
simulations runs for the same problem, what introduces some uncertainty about the actual position of the fluid interface.
Due to this statistical nature, this uncertainty in the fluid interface decreases as the grid is refined. This occurs because
more random numbers are generate to obtain the solution at a given time due to Courant number limitations. The
random number generator used was the IMSL DRNUN subroutine that uses the generalized feedback shift register
(GFSR) method.

5. UNIDIMENSIONALS TESTS

In order to verify the TVD and RCM implementations, a one dimensional test which tracks the movement of a
square pulse was used. The simulations were carried out in an uniform grid, using TVD in Fig.(2) and RCM in Fig.(3).
Wave positions and shapes are verified after 1.5 s, 3.5 s and 8 s. The agreement with the analytical solution is
remarkable if the stability range of Courant number is respected.

(a)        (b) (c)
Fig. 2: Square pulse propagation in an uniform grid with constant velocity u = 0.1 m/s for different grids and Cournat
numbers. The three profiles have exact positions at x =1.5, 3.5 and 8.0 m.

Fig. (2-a) shows that the use of coarse grids originates some numerical diffusion in the TVD solution. It was
verified that a pulse propagation with a coarse grid deteriorates as the Courant decreases. When the grid is refined for
the same Courant number (Fig. 2-b) or the Courant number is increased for the same grid (Fig. 2-c), this numerical
diffusion vanishes.

Fig. (3) shows that all RCM results perfectly resolves the contact discontinuity of the interface. However,
comparing Figs. (3-a) and (3-b) it is clear that some inaccuracy exists in the propagated pulse position for coarse grids.
This results from errors in the pulse propagation velocity from the random character of the method. For the finer grid
(Fig. 3-b), these errors basically disappear because of the large increase in the quantity of random numbers used to
obtain the solution due to the Courant number limitation.

These errors in the position of the contact discontinuities are equivalent to numerical diffusion. This can be seen
from Fig. (3-c) that shows the mean results of one hundred simulations of the pulse tracking in the coarse grid with
different seeds in the random number generator. The behavior of the shape of the propagated pulse is similar to that is
usually achieve in a single simulation when a diffusive scheme is used. In other words, the uncertainty in the positions
of the discontinuities is numerically equivalent to the numerical diffusion of a low-order scheme.
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  (a)        (b) (c)
Fig. 3: Square pulse propagation in an uniform grid with constant velocity u = 0.1 m/s: (a) and (b) show the results for
one simulation where the exact positions of the beginning of the propagated pulses are x =1.5, 3.5 and 8.0 m; (c) shows
the mean of 100 simulation results where the exact positions of the beginning of the propagated pulses are x = 2, 4, 6
and 8.0 m.

6. TWO-DIMENSIONAL SIMULATION OF CAVITY FILLING

In order to compare the performance of the TVD and RCM methods associated to VOF scheme without any
perturbation in the flow field, we decided to study the cavity filling using the steady-state flow solution. Two 2-D
cavities are used, as shown in Fig.(4-a) and (4-b). Dimensions of the used mold cavity were LY = 20 cm and LX = 30.3
cm. The dimensions of the Backward Facing Step (BFS) cavity were 0.1 m × 3.0 m.

In a cavity like Fig. (4-a), called from now on mold cavity, a non-recirculating flow with low Reynolds number
16.0Re =  was analyzed. The entry and exit widths of the mold are LX1.0DD outin ⋅== . Velocity profile at the entry

is parabolic with mean velocity equal to 0.031 m/s ( 031,0vmed = m/s) and the same velocity profile is applied to the
exit. Other walls are considered impenetrable and non-slip conditions are imposed near to all walls. The flow in the BFS
cavity, Fig (4-b), with 400Re = , presents the typical recirculating flow with two opposing vortices. Velocity profile at
the inlet is also parabolic, but the mean velocity is equal to 1 m/s. Due to the dimensions of this cavity ( LX30LY ⋅= )
it is possible to apply continuity conditions for the velocities and the pressure at its outlet (Gartling, 1990). The inlet
width is LX5.0Din ⋅=  and the width of the exit is LX itself. Impenetrable walls and non-slip conditions are also
imposed to the others walls of this cavity. Simulations take place using a 200 × 200 grid for the mold cavity, and a 200
× 500 grid for the BFS cavity. A time step of 10-3 s was adequate for all TVD simulations and the BFS-RCM
simulations. However, the mold-RCM simulations needed a larger time step (10-1s) due to a loss of accuracy of the
RCM for low Courant numbers that is explained in the next section (see the remarks concerning Fig. 9).

Fig.4 – Two-dimensional cavities: (a) rectangular mold. (b) backward facing step.

As mentioned in Section 2, a power-law scheme is used. The grid Peclet number is defined by Equation (23), where
ζ is the grid length in the considered direction (X or Y).
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It is well known that power-law schemes allow numeric diffusion when the grid Peclet number exceeds 10 and the
flow is oblique in relation to the grid (Patankar, 1980). In fact, in the BFS simulations, between the recirculating zones,
there are very high Peclet numbers as 50 or 60. However, this phenomena do not invalidate this work conclusions
because this paper goal is to compare two surface tracking methods under the same fluidynamic conditions.
Furthermore, as commented in Section 2, velocity and pressure profiles have been successfully tested against Gartling’s
benchmark.

7. SIMULATION RESULTS

Fig. (5) and (6) compare the results achieved with the VOF-TVD scheme and the VOF-RCM scheme, respectively,
for the non-recirculating flow inside the mold cavity. The filling patterns are very similar, but a remarkable difference
has to be pointed out: as the filling continues the TVD scheme looses the interface sharpness due to a growing diffusion
effect, while the RCM scheme does not show any diffusion. It can be noticed that the TVD solution shows the interface
deeper inside the cavity than the RCM solution, although the same amount of fluid has entered the mold in both cases.
Observing the behavior of the solutions near the bottom wall, it becomes clear that this difference may be explained by
the diffusive characteristic of the two-dimensional “TVD” scheme, which pushes the incoming fluid towards the top
wall, letting the other fluid remain in the region close to the bottom wall. Due to its statistical characteristic, RCM
shows an interface with small fluctuations, which tend to disappears as the filling continues.

(a)                                                   (b)                                                  (c)
Fig.5 – Mold filling using VOF-TVD scheme with LX = 0.2 m (∆x =10-3 m): (a) after 10 s; (b) 40 s; (c) 70 s.

(a)                                                   (b)                                                  (c)
Fig.6 – Mold filling using VOF-RCM scheme with LX = 0.2 m (∆x =10-3 m): (a) after 10 s; (b) 40 s; (c) 70 s.
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Fig. (7) and (8) show the simulation results in the BFS cavity. It is important to notice that the VOF-RCM and
VOF-TVD methods show very similar results for the filling of this cavity. However, specifically at the vortex regions,
the VOF-RCM method is capable of describing the droplets that are pulled away from the colored fluid by the rotating
colorless fluid. The VOF-TVD scheme was incapable of describing this process. Furthermore, it suffers from intense
numerical diffusion in these regions, what can be seen in Figs. (7-b), (7-c) and (7-d).

(a)                                         (b)                                        (c)                                        (d)
Fig.7 –  BFS Cavity filling using VOF-TVD scheme (∆x = 5.10-4 m): (a) after 0.5 s; (b) 3.5 s; (c) 6.5 s; (d) 9.5 s.

(a)                                         (b)                                        (c)                                        (d)
Fig.8 –  BFS Cavity filling using VOF-RCM scheme (∆x = 5.10-4 m): (a) after 0.5 s; (b) 3.5 s; (c) 6.5 s; (d) 9.5 s.

It is important to point out that Courant number restrictions remain in these two-dimensional simulations. As a
matter of fact, Fig. (9-b) shows that the VOF-RCM scheme is unable to track the interface when Courant numbers were
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less than 3101 −⋅ . It produces unrealistic results. On the other hand, VOF-TVD scheme (Fig. 9-a) does not show the
same problem and tracks perfectly the interface.

It is important to enhance that all the simulations described above show an error in mass conservation less than 5%,
except for the simulations using VOF-RCM scheme shown in Fig. (9-b).

Although the VOF-RCM scheme resolves perfectly the interface, it must be pointed out that with different seeds in
the random number generator, different simulated results were obtained, even though their overall filling patterns are
similar to each other. Thus, both VOF-TVD and VOF-RCM schemes seem to be adequate to describe the overall
picture of the filling pattern in the mold and the BFS cavities.

           

(a)                                                                                             (b)
Fig.9 – Low Courant number mold filling: comparison between VOF-TVD (a) and VOF-RCM (b) performances.

8. CONCLUSIONS

It was shown that the VOF-RCM scheme is able to generate diffusion-free results, sharply defining the interface,
even when topological changes (droplet generation) occur due to the presence of intense recirculating flow. However,
the statistical nature of RCM demands fine grids in order to simulate correctly the interface position. On the other hand,
the VOF-TVD scheme suffers from some numerical diffusion but is less sensitive to low Courant numbers than the
VOF-RCM scheme. It is important to realize that the front positions indicated by RCM method may vary between
different simulations due its statistical nature. It was shown that these uncertainties are equivalent to numerical
diffusion.
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