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Abstract. The thermal model of an electronic circuit board with installed heat dissipating components is presented as a two-
dimension steady-state heat conduction problem with multiple sources distributed on a rectangular region. The corresponding 
energy equation includes a source term as well as a temperature-dependent term to account for linear heat transfer in z-direction. 
Boundary conditions are of first type with unique temperature along the perimeter. The integral-transform technique was applied to 
obtain closed-form integral solution. Assuming that all dissipated components have a rectangular contact area with the plate, 
multiple integrals for each dissipated sub-region are easily found. A temperature map over the plate is calculated from the closed 
expression with triple sums of series with respect to each coordinate and each source. The error was evaluated by the estimation of 
truncated terms values. A generalization of this solution is discussed. The solution was applied to find the temperature distribution 
over the electronic Driver Plate of the CEP block of the CIMEX Brazilian experiment planned to fly onboard a Space Shuttle 
mission as a Get Away Special payload. 
 
Keywords. Temperature distribution, hot spot, integral transform, circuit board  

 
1. Introduction  
 

The general trend in electronic devices development and production is minimization together with simultaneous 
increase of dissipated power density. It emphasizes the importance of an accurate thermal analysis throughout the 
design process. The circuit printed plate is a basic element of many electronic devices, and a correct prediction 
temperature map over it will provide evaluation of temperature of each component as well as its junction. 

In equipment for Space application, these plates are often assembled in packages where these plates are fitted over 
the perimeter to a structural frame having a good thermal contact to a base plate. The later yields a thermo-mechanical 
interface to a surface whose temperature is maintained by onboard thermal control sub-system. The frame structure 
provides a thermal conductive path from dissipated components to the interface acting here as a heat sink. External 
surfaces of the package box are usually covered with multi-layer insulation to block the external radiative flux extremes 
at Space conditions. Before launch, as well as during assembling and testing phases, the electronic equipment is 
submitted to many functional tests. Under such tests, the convective portion of heat transfer contributes to the cooling of 
electronic plates and, finally, overall temperatures of the components usually are more favorable that under vacuum 
condition. 

Extracted from this brief depiction, the problem under investigation is the following: prediction of steady-state 
temperature distribution over a plate with multiple spot-type heat dissipations under Dirichlet (1st type) boundary 
conditions over the perimeter and with additional heat removal by convection in orthogonal direction. 

A straightforward approach can be a numerical simulation with a fine grid capable to fit all multiple dissipated 
components of different dimensions. Finite differences, finite elements or boundary elements techniques can be applied. 
An alternative approach is the creation of an analytical model of temperature distribution. The analytical approach 
versus numerical one can give a closed-form expression, which is simple to use in engineering practice and is ready to 
imbedded in a higher-level analyzer. Beside that, the analytical solution can give more valuable information on 
peculiarities of the plate thermal design and can give the proper physical insight into interaction of different parameters.  

Haque et al, in 1999 used a Fourier series method to obtaining steady-state temperature mapping over the power 
electronic building block processor. The method, in spite of being analytical, is realized by the TAMS-A software, 
developed by Ellison in 1990. 

Green’s Function technique (Beck, 1992) is very suitable for transient problems, whereas for steady-state problems 
the integral transformations seem more adequate. Pesare at al (2001) found an analytical model for 3-D package under 
several assumptions. A 2-D Fourier transform was applied to simplify the initial equation to the second-order ordinary 
differential equation. Temperature dependence of thermal conductivity was shifted to the boundary conditions by 
Kirchoff transformation and then the 1st order Taylor expansion was applied to the inverse transform. Spatially 
distributed heat loads from components were approximated as a set of elementary point sources.  
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Culham et al in 2000 utilized the Fourier series technique for Laplace statement of heat equation under uniform 
boundary conditions to obtain a temperature distribution throughout a multi-layer electronic package with rectangular 
geometries. Package-board and layer-layer interfaces were considered. 

Shukla in 2001 developed the 3-D thermal model of a circuit board with discrete surface heat sources by integral 
transform technique. The solution was compared to the numerical one obtained from the finite element method. 

The present work continues the efforts to quest the analytical solutions for the temperature map over plates with 
multiple sources, staying within limits of a 2-D type model. An emphasis is made upon clarity of utilization, seeking of 
a simple procedure for evaluation of convection contribution and obtaining analytical expression for the upper error 
limit introduced by series truncation. The integral transform technique, developed and generalized by Özisik (1980), 
Mikhailov (1984) and Cotta (1993), was taken as a baseline for this study rather than Fourier series methods. 

 
 
2. Analytical solution in 2-D domain 
 

The main assumptions made are the following. First, electronic components have a good thermal contact with the 
base plate. Second, thermal conductivity along the plate area is homogeneous. Third, the heat transfer coefficient for 
convective heat exchange in orthogonal direction is uniform over the whole area of the plate. Forth, temperatures on 
boundaries over perimeter of the plate are prescribed and uniform. Fifth, spot heat sources, representing electronic 
components, have rectangular shape. 

Under these assumptions, the heat equation can be expressed in vector form in the following way 
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Where q(r) is the distributed density of heat loads from components (W/m2)  
 
When rewriting the equations in rectangular coordinates with respect to a new variable 
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Where  
 

0TTT −=∆ ∞∞  (4) 
 
Note, that the last equation has homogeneous boundary conditions of 1st type. 
 
Assuming the related multidimensional Sturm-Liouville problem is separable in the associated independent 

variables, i.e.  
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the corresponding pair of auxiliary eigenvalue problems can be written as 
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under homogeneous Dirichlet conditions. 
 
The integral-transform pair (Ozisik, 1980) is expressed as 
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The normalization integrals  
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For the homogeneous BC of 1st type, all eigen components are known (Ozisik, 1980) 
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Where a and b are the dimensions of the plate in x and y directions correspondently; m and n – integer numbers.  
 
Thus, the inversion  
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provides the base for closed analytical expression for the temperature distribution. 
 
In spite of the alternative approach, suggested by Mikhailov et al in 1984 for multi-dimension problems, it could 

give only one infinite sum in this case, the straight approach, that involves double sums, was selected instead due to its 
symmetry, clarity and simplicity of integrating out the rectangular heat spot sub-domains. 

 
Let multiply the Eq. (3) by XmYn and integrate over the area of the plate A: 
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The first two terms can be evaluated by making use of the Green’s theorem in its particular case of homogeneous 

boundary conditions 
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Let multiply (Eq.6), expressed for each eigenvalue, by ∆T, Y then X and integrate over the same region: 
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Combining, one obtains 
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Now, the original heat equation can be re-written for the transformed temperature difference 
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It is a simple algebraic linear equation with regard to the transformed variable. 
 
Let perform the integration of rest source terms. The integral of eigenfunction is 
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Density distribution function is assumed to be discrete and homogeneous over its rectangular region. For each j-th 

heat load with coordinates (ξ1j, ζ1j) for its left bottom corner and (ξ2j, ζ2j) for its right upper corner, the density is 
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and  
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The integral over J heat sources is 
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Now, the integral transform for temperature difference can be written 
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Finally, the 2-D solution is the following 
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It yields the temperature map over a plate as a closed analytical function of all design parameters. 
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3. Convection and conduction contributions 
 

The contribution of convection and conduction portions of heat transfer can be acquired from the obtained solution 
for each electronic component as well as for the entire plate. The convection portion can be obtained by integration over 
the surface of interest. The conduction portion can be defined through integration of thermal gradients along a closed 
contour. These calculations provide additional means for estimation of truncation errors in term of heat flux values 
through verification of overall balance 

By selecting this contour fitted to the bounds of j-th heat source, the conductive portion (in W) can be defined as a 
sum of fluxes for each of the four sides: 
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The convection portion is obtained by integration over the appropriate surface: 
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The relative error in terms of heat flux for each electronic component is defined as 
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The solution re-written in the compact form is: 
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where 
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Using this function and performing differentiation-integration by Eq. (22), one can obtaine 
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Or, using the previously defined function Ω, Eq.(19), the final expression is  
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The overall balance of conduction portion over the whole plate gives a similar result 
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The corresponding convection portions are the following: 
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The relative error in terms of heat flux for the whole plate is defined as 
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A separate evaluation of the contribution of different mechanisms of heat transfer to the overall heat balance gives 

the designer an important information about how to evaluate the efficiency of adopted means of thermal control. 
 
 

4. Error supremum 
 

Now we will estimate the residue of the series to obtain (conservative) upper limit of the error due to series 
truncation. Expression for the error of truncation is the following 
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and (M-1) and (N-1) – number of terms in corresponding finite series. 
 
For relatively large M and N the estimation of the supreme of Φ can be accomplished by setting terms of nominator 

to their maximum and the terms of denominator to their minimum: 
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Taking into account that max(Sin())=1, it is possible to obtain 
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Now the double sum can be evaluated 
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where a – largest board side size and r=a/b. 
 
As soon as r≥1, a conservative estimation can be obtained, using the geometric inequality 
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Now the sum of double infinite series can be expressed via Euler Gamma functions 
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The presented Euler Gamma functions are incorporated in the Mathematica package, Wolfram, 1991, or can be 

easily coded in accordance with Press, 1992. 
The final expression for the truncation error is the following: 
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This is a very important result, clearly showing how design parameters can have an influence the introducing error 

because of series truncation. 
Some values of the function γ are presented in the table 
 

Table 1. Values of the function γ 
 

M 5 10 20 (10) 20 30 50 100 
N 5 10 10 (20) 20 30 50 100 
γ 0.024 0.0055 0.0027 0.0013 0.00057 0.00020 0.000051 
 
For typical values k=5 W/m/K, δ=0.001 m, hz=5 W/m2/K, ∆Tz=10 K, J=10, Sum(qj)=20000 W/m2, a=0.2 m: 
 
supδ*≈13800*γ; it means that for N=M=100 we have δ*<0.7 K. 
 
Note, that it is a very conservative estimation. If we suppose for example, that electronic components cover less 

than 25% of whole electronic board area (i.e. sup(Ωmn)=1 instead 4), the estimation of error for this case will be δ*<0.18 
K. 
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5. Results 
 

The model was used for temperature mapping of the electronic board of the DC/DC converter of the CIMEX 
experiment CEP block. The board has 6 dissipated elements with good thermal contact to base surface. Figure 1 shows 
contour lines for natural ambient condition of ground testing with heat exchange in z-direction, and for vacuum 
condition. Maximal temperature differences above base frame temperature T0 for first case was obtained 33.9 K, 
whereas for second case was 37.7 K  

 

  
 
Figure 1. Maximal dissipation: With (left) and without (right) convection cooling. 
 
 

  
 
 
Figure 2. Combined conduction and convection cooling: Minimal dissipation (left) and maximal dissipation (right). 
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Figure 2 shows contours for two extreme cases of heat dissipation (cold and hot cases) under combined conduction and 
convection cooling. 
 

 
 
 
 
Figure 3. 3-D view for the temperature surface of the board for the case of minimal dissipations. 
 
The last figure shows 3-D view in the case of minimum heat load. Contour lines are plotted in a 2 K interval. The 
dissipations and coordinates of electronic components are presented in the following table 
 
Table 2. Input data for the dissipation components of the DC/DC board. 

 
n/n x1 [mm] x2 [mm] y1 [mm] y2 [mm] Qmin [W] Qmax[W] 
1 46.5 78.4 40 110.1 2.8 2.8 
2 94 126 40 110.1 1.5 8.9 
3 141.5 173.5 40 110.1 3.5 3.5 
4 46.5 78.4 169.9 240 1.5 2.8 
5 94 126 169.9 240 3.1 3.1 
6 141.5 173.5 169.9 240 0 0 

 
The general input data, used in all of these calculations, were the following: board size is 220x280 mm, k=60 W/m/K, 
δ=0.0016 m, hz=0 or 5 W/m2/K, ∆Tz=0 K 
 
 
6. Conclusions 
 
The developed analytical model provides a relatively simple and clear tool for 2D temperature mapping of circuit 
boards with electronic components having a good thermal contact to the base plate. Convection cooling is also taken 
into account. As soon as the exact analytical expression for the upper limit of truncation error is available, the obtained 
solution can be used as a benchmark for the evaluation of numeric solution of such problems. 
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