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Abstract. The usefulness of the graphical representation of the thermodynamical laws is widely recognized. In this paper the Bejan-
Bucher diagram is used in conjunction with a new graphical technique, which allows the deduction of the efficiency of an endo-
reversible Carnot engine at maximum power conditions, using simple geometrical considerations. The present approach, unlike
others available in the literature, may be directly applied to a Curzon-Ahlborn engine with different thermal resistances connecting
to its thermal reservoirs.
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1. Introduction

In the past quarter of century, since the publication of the memorable paper of Curzon and Ahlborn (1975), the
interest in the subject of endoreversible thermodynamics have been continuously growing; Hoffmann et al. (1997) have
made a thorough review of the subject, presenting 170 references from both physicists and engineers. As an example of
this interest tools have been developed that allow the graphical representation of the obtained results, namely of the so-
called Curzon-Ahlborn efficiency.

In a reversible Carnot engine the heat exchanges between the working fluid and the cold and hot thermal reservoirs
take place without any temperature difference; consequently they are infinitely slow. In the case of an endoreversible
engine it is supposed that the internal reversibility exists, but the heat exchanges take place across a finite temperature
difference, and across a finite thermal resistance, between the heat reservoirs and the working fluid.

The Novikov model of an endoreversible engine (model I) only considers a finite thermal resistance between the
working fluid and the high temperature reservoir. The Curzon-Ahlborn model considers thermal resistances in both
connections with the high and low temperature reservoirs. In the simpler case these thermal resistances may be assumed
equal (model II), but in the more complex one (model III) they are different. For these kind of engines the thermal
efficiency at maximum power conditions is usually known as the Curzon-Ahlborn efficiency; however, according to
Bejan (1994), this result was previously derived by Novikov (1957) when analyzing the performance of nuclear power
plants. Again in the context of nuclear power engineering, Chambadal (1957) arrived to this result considering a
reversible engine receiving heat from a variable temperature hot stream, through a heat exchanger with an infinite heat-
transfer area. El-Wakil (1962) also reported these results.

In all these cases, the performance of the power plant at maximum power output conditions is represented by

TH

TL
1CA −=η (1)

where TH and TL are the maximum and minimum temperatures of the available heat reservoirs and ηCA is the Curzon-
Ahlborn efficiency, also known as the Curzon-Ahlborn-Novikov efficiency and Novikov-Chambadal-Curzon-Ahlborn
efficiency. But it was with the paper of Curzon and Ahlborn that began an increasing interest in endoreversible thermal
devices: engines, refrigerators and heat pumps, solar thermal and photo-voltaic engines, chemical engines, absorption
refrigerators and in staged and combined systems (cf. Hoffmann at al., 1997; Boji�, 1997; Sun et al. 1997; Sahin and
Kodal, 1999; Kodal et al., 2000; Chen et al., 2001; Zheng et al., 2002). For their results Novikov, Chambadal, Curzon
and Ahlborn have been recognized by some as the founders of Finite Time Thermodynamics (cf. Denton, 2002).
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Graphical derivations of the Curzon-Ahlborn results may be obtained using the Bejan-Bucher diagram, as stated by
Yan and Chen (1990, 1992) and, more recently, by Chen and Andresen (1999). These authors considered models I and
II. They assume that the developed graphical technique could be extended to model III using the concept of an
equivalent temperature (Yan and Chen, 1992), but they do not present the corresponding modified diagram. Using a
slightly modified Bejan-Bucher diagram, described in section 2, this paper presents a different diagrammatic
construction that, using simple geometrical principles described in section 3, allows the graphical derivation of the
Curzon-Ahlborn results for all the three above-referred models and of the thermodymamical laws describing this kind
of engines. It is shown that the proposed formulation allows a straightforward extension to model III engines.

2. The Bejan-Bucher diagram

A diagram allowing the graphical representation of the first and second law of Thermodynamics for the case of
reversible and irreversible engines was presented by Bejan (1977, 1982). Later it was introduced independently by
Bucher (1986), for the case of the reversible Carnot engine and Wallingford (1989) extended the use of the Bucher
diagram to the case of irreversible engines. The Bejan-Bucher diagram may also be used to represent the operation of
refrigerators and heat pumps (Bejan 1977, 1982; Wallingford, 1989) and other type of reversible and irreversible
thermodynamical processes (Bucher, 1993). According to Bejan (1996b), who refers it as the temperature-energy
interaction (T-E) diagram, it was previously introduced in the Russian literature by Brodianskii (1973). Chen and
Andresen (1999) point out that the diagram should be referred as Bejan diagram.

An example of the use of the diagram, for the case of a thermal engine, may be found in Fig. (1). The vertical line
corresponds to the temperature scale and values corresponding to T=0, T=TH and T=TL are marked; the temperatures
of the high-temperature reservoir and of the low-temperature one are TH and TL, respectively. A thermal engine
operating between TH and TL, receives a given heat flow QH from the high-temperature reservoir, rejects QL to the
low-temperature reservoir while producing work W.

TH

TL

0

QH

QL W

QL,rev W,rev

Wlost,L

ααααL

ααααH

Er Ei

Figure 1. The Bejan-Bucher diagram illustrates energy conservation and entropy generation in a heat engine.

Figure 1 represents a reversible engine, ‘Er’, and an irreversible one, ‘Ei’. Conservation of energy is illustrated
simply by adding the arrows representing the energy fluxes. Entropy generation, Sgen, can be represented by the
difference tan(αL)–tan(αH); in the case of the reversible engine the entropy generation is zero. The lost of available
work, according to the Gouy-Stodola theorem, is directly proportional to Sgen and to the reference temperature. This is
also shown in Fig. 1: the lost of available work, represented at temperature TL, increases with the temperature.

3. A simple geometrical argument

In the present approach, it will be shown that the maximization of the power output of an endoreversible engine
corresponds to the maximization of a rectangular area in the Bejan-Bucher diagram; more precisely it corresponds to the
maximization of a rectangle inscribed in a triangle. This can be achieved finding another inscribed rectangle with the
same area, as illustrated in Fig. 2.

The dimensions of rectangles R1r and R2r, which have the same area, are related through: L2r = Lr – L1r and
h2 = h – h1. Similar relations may be written for the case of rectangles R1l and R2l and also for R1 and R2, where
R1 = R1r + R1l and R2 = R2r + R2l. Setting h1 = h2, or L1r = L2r immediately leads to a rectangle with maximum area.
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Figure 2. Illustration of the method used to obtain different inscribed rectangles with the same area.

4. Using the Bejan-Bucher diagram to derive the Curzon-Ahlborn efficiency: a new approach

An endoreversible Carnot engine is considered to be internally reversible. The existing irreversibilities are only
external: associated with the heat exchange from the high-temperature reservoir, across a finite thermal resistance RH, to
the high-end temperature of the engine THE, and from the low-end temperature of the engine, TLE, to the low-
temperature reservoir, through the thermal resistance RL. Temperatures of the thermal reservoirs are TH and TL as in
Fig. 3, a simple scheme adapted from Chen and Andresen (1999).

TH

TL

W

RH

RL

THE

TLE

Figure 3. Schematic diagram of the Curzon-Ahlborn model of an endoreversible Carnot engine, from Chen and
Andresen (1999).

The heat exchanges, which are considered to obey to the Newton law, may be written as

HE )/RTH(THQH −= , LE TL)/R(TLQL −= (2)

and applying the first and second laws of Thermodynamics to the Carnot engine, the following relations are obtained,

)/THTL(1QH,W EE−=ηη= , EE QL/TLQH/TH = (3)

In the following development the three above-mentioned cases will be considered: model I (RH≠0, RL=0), model II
(RH=RL≠0) and model III (RH≠RL≠0). In order to simplify the graphical representation, the Newton law may be written
in a slightly different form

ÄTRQQ'ÄT/R,Q =×=⇒= (4)

where Q' has dimensions of temperature and the thermal resistance R, used as a scaling variable, will be defined later
for each of the three above referred cases; with this artifice Q'max=TH–TL is an evident maximum for Q', simplifying
the implementation of the diagram. Branco et al. (2002) proposed a new thermodynamical diagram based on a further
development of a similar approach.

4.1. The Novikov model (RH    ≠≠≠≠0, RL=0)

In the case of the Novikov model the more evident choice for the scaling variable is R=RH. If THE=TH then QH=0
and consequently the power output is zero; in the other limit, when THE=TL then QH is maximum but, from Eq. (3), the
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power output is again zero. Somewhere between these limits there is a value of THE, which maximizes W. It can be
graphically found using a slightly modified Bejan-Bucher diagram (Fig. 4a). To improve readability the same labels
were used on the vertical left and right axis. Labels on the left axis are identified with the superscript ‘l’ whereas labels
on the right one are signalized with the superscript ‘r’. In the vertical axis temperatures T=0, T=TL and T=TH are
marked and horizontal lines passing through each of these points are drawn. The horizontal axis represents values of Q',
and from the choice of the scaling variable R, the line representing Eq. (4), line ‘THl-TLr’, has an inclination of 45º. The
right vertical axis passes through ‘TLr’, and points ‘0’ and ‘THr’ are also marked. At an arbitrary temperature THA point
‘A’ is marked on the diagram on the intersection of the line defining THA with the line defining the heat transfer law. At
this temperature QH' corresponds to the segment ‘THA

l-A’. The construction proceeds in the usual way: the reversible
Carnot engine is represented by line ‘A-0’, which intersects TL at point ‘B’; vertical auxiliary lines passing through
points ‘A’ and ‘B’ are also drawn and points ‘C’, ‘D’, ‘E’ and ‘F’ defined. As in the non-modified Bejan-Bucher
diagram segments ‘TLl-B’ and ‘B-F’ represent the heat flow rejected at TL and the work delivery; but, in the present
case and according to Eq. (4), these segments correspond to QL' and W'. Since the segment ‘B-F’ represents W' the
hatched area [B,D,E,F] represents the product TL×W', and the maximization of W' may be achieved by maximizing this
area.
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Figure 4. Diagram representing the Novikov engine (model I): (a) geometrical construction used to derive the
performance at maximum output; (b) optimized engine for the same conditions used in (a).

From the observation of the diagram it is evident that the hatched rectangles [B,D,E,F] and [TLl,B,C,THA
l] have the

same area; its maximization is relatively simple. Line ‘G-H’, parallel to the line representing the heat transfer law, is
drawn through ‘C’; now the maximization problem is the maximization of rectangle [TLl,B,C,THA

l], inscribed in trian-
gle [TLl,I,G]. According to the geometrical results referred in section 3, the high-end temperature THa of another engine
producing the same work can be easily marked on the diagram. The relation between THa and THA can be expressed
mathematically as

lll
aA TH,TLG,TH = (5)

where

B,TLC,THG,TH AA
lll ==  and TLTHTH,TL aa −=ll (6)

On the other hand, considering similarity of triangles [0, A, THA
l] and [0, B, TLl] and applying the Thales theorem

results in the following equation
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)TH(TH
TH

TL
B,TLA,TH

TH

TL
B,TL

TH0,

A,TH

TL0,

B,TL
A

A
A

AA

A −=⇔=⇔= lll

l

l

l

l

(7)

and combining Eqs. (5-7) leads to

)TH(TH
TH

TL
TLTH A

A
a −=− (8)

The rectangle of maximum area is obtained when THA=THa=THCA, hence

THTLTHCA ×= (9)

and the efficiency of the Novikov engine may be immediately found. The obtained result is, as expected, the Curzon-
Ahlborn efficiency

TH

TL
1

TH

TL
1

CA
CA −=−=η (10)

Figure (4b) shows the geometrical construction used to represent the diagram corresponding to the Novikov engine
with maximum power output; the key point is the consideration that segment ‘0-x’ represents (TL×TH)1/2: point ‘x’ is
obtained intersecting a circumference with diameter ‘0-THl’ and the line ‘TLl-TLr’ (Henderson, 1996). An arc with
center in ‘0’ and radius ‘0-x’ defines the optimum temperature THE,opt=THCA.

4.2. The Curzon-Ahlborn model with RH=RL≠≠≠≠0

In the case of the Curzon-Ahlborn model with equal high and low end resistances (Curzon and Ahlborn, 1975;
Rubin, 1979), the sum of these resistances, R=RH+RL may be used as the scaling variable; with this choice the
maximum heat flow from/to the thermal reservoirs will be QH'max=QL'max=2(TH–TL). As a result the heat transfer
laws are represented by lines with slopes ±1/2.
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Figure 5. Diagram representing the Curzon-Ahlborn engine (model II): (a) geometrical construction used to derive the
performance at maximum output; (b) optimized engine for the same conditions used in (a).
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In the diagram of Fig. (5a) temperatures T=0, TL and TH are marked in the right vertical axis and, at a distance
equal to (TH–TL), a second vertical axis is drawn. Temperature TM=1/2(TL+TH) is also marked in the diagram; the
heat transfer laws are lines ‘THl-TMr’ and ‘TLl-TMr’. A high-end temperature of the engine THA is arbitrarily chosen
and point ‘A’ marked at the intersection with line ‘THl-TMr’. The line ‘A-0’ represents the reversible part of the engine
and point ‘B’, at the intersection with line ‘TLl-TMr’, defines the low-end temperature TLA. Auxiliary vertical lines
passing through points ‘A’ and ‘B’ define points ‘C’ through ‘I’, and a horizontal line passing through point ‘I’ defines
points ‘J’ and ‘K’. Segments ‘TLA

l-B’ and ‘B-H’ represent the heat rejected to the low temperature reservoir and the
delivered work. Auxiliary slanted lines passing through points ‘C’ and ‘J’ and parallel to ‘THl-TMr’ and ‘TLl-TMr’ are
also drawn.

As before, the maximization of the work may be achieved maximizing the product W'×TL represented by the
rectangle [D,E,F,G] area, which equals the rectangle [J,C,THA

l,K] area. As in section 4.1 the high-end temperature THa

of another engine delivering the same power must verify the following condition

llll
aA TH,TML,TH = (11)

Considering the slope of line ‘Ll-Lr’ and the definition of TM, the above equation may be written as

2

TLTH
TH

2

B,TL
TH,TML,TH a

A
aA

+−=⇔=
l

llll (12)

On the other hand, applying the Thales theorem to triangle [0,A,THA
l], while bearing in mind that the slope of lines

‘Ll-Lr’ and ‘Ml-Mr’ is ±1/2, leads to the equation

THTH2

THTL
TL

TL

TL)2(TL

TH

)TH2(TH

TL0,

B,TL

TH0,

A,TH

A

A
A

A

A

A

A

A

A

A

A

−
×=⇔−=−⇔=

l

l

l

l

(13)

which may be combined with Eq. (12) to obtain

2

TLTH
THTL

TH2TH

THTL

2

TLTH
THTLTL

2

B,TL
a

A

A
aA

A +−=−
−

×⇔+−=−=
l

(14)

When THa=THA the product W'×TL is maximum; hence the optimum temperature, THE,opt=THCA, is

2

THTLTH
THCA

×+= (15)

and the thermal efficiency of the engine is

TH

TL
1

THTH2

TL
1

TH

TL
1

CACA

CA
CA −=

−
−=−=η (16)

The engine delivering maximum power is represented in the diagram of Fig. (5b), where THCA is marked right in
the middle of the segment ‘y-THl’; the length of segment ‘0-y’ is (TL×TH)1/2, and was drawn through the same
geometrical construction used in Fig. (4b).

4.3. The Curzon-Ahlborn model with RH≠≠≠≠RL≠≠≠≠0

As mentioned in the introduction, the graphical representation of endoreversible engines at maximum power output,
in the conditions described in the two previous subsections, has been accomplished by other authors, namely Chen and
Andresen (1999). According to these authors the case of different thermal resistances could be treated introducing the
concept of equivalent temperature, defined by Yan and Chen (1992). With the present approach there is a straight-
forward extension to this more complex case. As before, the scaling variable is the sum of the thermal resistances R, the
individual resistances being expressed as RH=φR and RL=(1–φ)R (cf. Bejan, 1996b). The heat flows to and from the
Carnot engine are

ö1

TLT
QL',

ö

TTH
QH'

−
−=−= (17)
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and when QH'=QL'=TH–TL, both equations lead to T=TM=TH–φ(TH–TL). In the corresponding diagram, Fig. (6a),
lines representing the heat flows have slopes –φ, line ‘THl-TMr’, and (1–φ), line ‘TLl-TMr’. From the choice of THA the
construction of the diagram follows the same rules presented in section 4.2. THa, the high-end temperature of an engine
delivering the same power, is also represented in the diagram and, according to the result of section 3, THa relates with
THA through

llll
aA TH,TML,TH = (18)

Considering the slope of lines ‘THl-TMr’ and ‘TLl-TMr’ Eq. (18) takes the following form

TL)(THTHTHTL)(TL
1

B,TLC,THL,TH aAAAA −φ+−=−
φ−

φ=×φ=×φ= llll (19)

on the other hand, from the Thales theorem applied to triangle [0,A,THA
l]
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Figure 6. Diagram representing the Curzon-Ahlborn engine (model III): (a) geometrical construction used to derive the
performance at maximum output; (b) optimized engine for the same conditions used in (a).

Combining these two equations at maximum output conditions (THa=THA=THCA) results in

THTLTH)1(THCA ×φ+φ−= (21)

The corresponding thermal efficiency is again given by the Curzon-Ahlborn formula

TH

TL
1

TH)1(TH

TL
1

TH

TL
1

CACA

CA
CA −=

φ−−
φ−=−=η (22)

and the power output is
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( ) RTLTHW
2

−= (23)

This result is a consequence of the choice of R as a scaling variable, as an attempt to simplify the graphical
representation. Usually the heat flows are calculated using the concept of thermal conductance, defined as the product
of an overall heat transfer coefficient and a contact area (UA). For each of the heat transfer processes the thermal
resistance is the inverse of the thermal conductance. If a fixed total conductance UA and individual conductances
defined as UAH=xUA and UAL=(1–x)UA were considered (Bejan, 1988, 1996b) the analysis would be somewhat
different; nevertheless the following relations between R, UA, φ and x can be easily established

φ−=−=− 1xx)UA;x(1R 1 (24)

and Eq. (23), written in terms of UA, takes the usual form

( )2
TLTHx)UAx(1W −−= (25)

Figure (6b) represents an engine working at maximum output conditions, for the same value of φ used in Fig. (6a).
The temperature THCA corresponds to the intersection of the line defining the high-end heat transfer law with a parallel
to the low-end one passing through point ‘y’. The construction of the diagram follows the rules presented before.

5. Conclusions

Based on the use of a slightly modified Bejan-Bucher diagram, a procedure was presented that allows the
performance at maximum output of an endoreversible Carnot engine to be derived through the use of simple
geometrical principles. The Novikov and Curzon-Ahlborn models were treated. With the present approach the case of a
Curzon-Ahlborn engine with different thermal resistances between the engine and the high and low temperature
reservoirs was treated in a straightforward manner. In the modified diagram the second-law efficiency, availability loss
and entropy generation could also be represented, as mentioned in section 2, as a direct extension of the results of Bejan
(1982), Wallingford (1989) and Chen and Andresen (1999).
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