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Abstract. Vortex shedding is responsible for harmful vibrations on immersed structures and for increasing their drag coefficients.
Thus vortex shedding suppression is highly interesting in order of decrease maintenance costs of standing structures and fuel costs
on moving ones. Vortex shedding suppression is here achieved with the use of splitter plates by means of numerical simulations at a
low Reynolds range, Re 100 and 160. For this purpose it has been used a high order finite difference method in association with a
virtual boundary method, responsible for the obstacle’s representation. The use of this novel numerical method showed a great
concordance with experimental results by means of low computational costs.
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1. Introduction

Vortex shedding from circular cylinders have always been a subject of interest, both for experimentalists and for
numerical researchers, thanks to its geometrical simplicity in addition to its practical importance in engineering.
Nevertheless the flow at low Reynolds numbers has recently achieved great attention due to the advances on the
understanding of three-dimensional developments on circular cylinder wakes, after studies carried out by Williamson
(1989) on the discontinuity on the Strouhal-Reynolds curve around Re = 70, and Williamson (1996) on the recognition
of vortex shedding Mode-A and Mode-B for wake transient régimes.

Since then, the spotlights have focus on the understanding of flow instability phenomena and on its control of
vortex shedding. A fine summary of vortex shedding control techniques is carried out by Schumm et al. (1994), the
authors present two families of vortex shedding control techniques: the open-loop control techniques, i.e. those who
introduce physical changes on the obstacle, such as the use of geometrical disturbances, splitter plates, wall rotation
among others; and the close-loop control techniques that consist of changing the flow characteristics just like base
bleed, base suction, wake heating, control wire, feed-back control, etc.

Among this techniques the use of splitter plates is surely one of the first approaches studied, Roshko (1954)
presents experiments using splitter plates where he shows that vortex shedding can be completely suppressed at
Re = 1.45·104 for a plate length ( l)  equal to 5D , where D is the cylinder’s diameter. Bearman (1965) showed that the
vortex shedding suppression for square cylinders with splitter plates at Reynolds numbers between 1.4·105 and 2.56·106

occurs, for all cases studied, for l/D = 3.
There are few numerical simulations concerning the transient wake régime, 100 < Re < 300, for example one can

quote Know and Choi (1996) who studied vortex shedding suppression with splitter plates for Reynolds numbers
between 80 < Re < 160, avoiding this way the three-dimensionality that occurs for Reynolds numbers higher than 160.
In this paper numerical simulations were performed at Re = 100 and Re = 160 finding a great agreement with the
previous authors results. There are presented as well some results at Re = 300 where one finds some puzzling features
on the interaction between the plate’s boundary layer and the wake structures.

2. Numerical Methods

Uncompressible flows were simulated using the governing equations
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On these equations one has ν as kinematic viscosity, (( ))t,xp
r  the pressure field, (( ))t,xu

rr
 the velocity field and (( ))t,xf

rr

the external forcing field, used to represent the virtual boundary.
This external forcing field, introduced by Goldstein et al. (1993), can be described as a harmonic oscillator like
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The time integration has been done using a low-storage third-order Runge-Kutta scheme introduced by Williamson
(1980), and spatial derivates were calculated using a sixth-order compact finite difference scheme presented by Lele
(1992) over a cartesian uniform grid. Boundary conditions were set to be semi-periodic on y and non-periodic on x, as
presented at Fig. (1). More details about the numerical code and the immersed boundary methods used can be found in
Silvestrini and Lamballais (2002) and Lamballais and Silvestrini (2002).

Figure 1. Flow configuration.

3. Computational Domain

It was performed several test simulations at Re = 300 to define the necessary computational domain. These
simulations aimed to analyze optimal Lx ,  Ly ,  C ex,  C ey,  α and β values in order to minimize computational costs.

First parameters to be analysed, the uniform mesh domain sizes Lx  and Ly  were defined taking into account a
minimum entrance distance, C ex and C ey,  equal to 6D. Different C ex values, 6D, 8D and 10D were tested, in all cases
for simulations the use of a numerical filtering (Silvestrini and Lamballais, 2002) showed to be essential in order to
minimize mean signal oscillations, as shown in Fig. (2a).

However, as suggested by Fig (2b), the effect of the minimum entrance distance’s on the flow pattern showed to be
negligible by the presented mean flow profiles and by their Strouhal Number values, who showed a maximum 1.5%
difference, S6D = 0.194, S8D = 0.192 and S10D = 0.191.

The domain extension Lx were defined by qualitative observation of the vortex street dissipation behind the
obstacle, and it has been this way defined a minimum Lx extension equal to 19D, where there were left 13D for the
vortex translation concerning the minimum 6D entrance distance.

In order to study Ly domain size’s confinement influence, there were performed simulations with different Ly

dimensions, just like 12D, 16D, 24D and 32D. Figure (3) shows mean longitudinal Ux velocity profiles for different Ly

at y/D = 0, i.e. at the cylinders center, one can see that as the domain size Ly increases the mean velocity Ux at the lateral
limits tends to the flow external velocity, U� ,  equal to 1, although it does not get to it.

Mean longitudinal Ux velocity at the Ly limits are Ux12D = 1.040, Ux16D = 1.017, Ux24D = 1.004 and Ux32D = 1.001,
and their respective Strouhal Numbers are S12D = 0.194, S16D = 0.194, S24D = 0.193 and S32D = 0.193. From this values
one can note that changing Ly from 12D to 32D, despite the mean Ux velocity decreasing 3.8%, the wake’s shedding
frequency changes nearly 0.6% suggesting that the Ly = 12D transversal domain size has a small influence on the wake
shedding pattern.
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Figure 2. Mean longitudinal Ux velocity profiles at y/D = 0: a) without filtering and b) with filtering.

One intriguing question concerning the virtual boundary method is whether its α and β coefficients affect or not the
wake’s shedding frequency. While β dampens the oscillation of the forcing field response, the coefficient α is related to
its response frequency, and, as cited by Saiki and Biringen (1996) it might produce this response with a natural
frequency higher than highest frequencies presented in the flow so the force field can respond correctly to the changing
flow field. In order to check these parameters influence on the wake’s patterns there were performed several simulations
with different α and β combinations: α = -40000, β = -60; α = -10000, β = -150; α = -4000, β = -60; α = -4000, β = -6.

Figure 3. Mean longitudinal Ux velocity profiles at x/D = 0.

As expected the obstacle’s representation gets better as the α and β parameters pair has increasing values, which
means that the forcing field is “informed” to the flow with a higher frequency thus resulting in lower velocities over the
obstacles boundary points, as suggested by the Fig. (4) where one can find L2 norm values defined by

L2 norm = (( )) 2
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Although one can notice that the L2 norm in the logarithmical representation of Fig. (4), it may be said that the
decreasing oscillation’s average does not affect the wake’s development at all, as it can be seen by their respective
Strouhal Number: Sα=-40000; β=-60 = 0.193; Sα=-10000; β=-60 = 0.195; Sα=-4000; β=-60 = 0.195; Sα=-4000; β=-6 = 0.194, where one
can notice a maximum difference of barely 0.6%.

The choice of the α and β coefficient pair is important once the time step of the simulation depends on it. In this
work, were chosen α  = -4000 and β = -6 because it results in no penalties for the time step.

The simulation’s parameter that most affects the wake is, no doubt, the mesh refinement. Defining the number of
grid points per diameter is a crucial input to the simulations performance. However once one works with uniform grid,
the refinement is very costly and the search of a cost-effective number of points is a key factor on this numerical
simulation method.
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Figure 4. L2 norm at the obstacle’s virtual boundary vs. computational time.

Simulations with different mesh refinement were carried out with D = 12∆, D = 18∆, D = 24∆ and D = 32∆, where
∆ is the size of the mesh grid. In the first instance, the D = 12∆ resolution showed itself incapable of representing the
flow field at some Reynolds number, being this way discarded. Table (1) provides a comparison between Strouhal
numbers for different Reynolds numbers and on different mesh resolutions.

Table 1. Strouhal number values for different Reynolds numbers and mesh resolutions.

Re Experimental
(Williamson, 1989)

D = 18∆ − 2D D = 24∆ − 2D D = 32∆ − 2D

100 0.164 0.162 0.166 0.169
200 0.184 0.185 0.191 -
300 0.203 0.194 0.202 0.205

Figure (5) shows a comparison between experimental results by Williamson (1989) and numerical results. One can
notice the small divergence between the experimental result at Re = 100 and the one observed with the best mesh
resolution D = 32∆, that would be expected to be nearly the same. Despite the disagreement between the expected best
numerical result and the experimental one, this 2.8% difference agrees perfectly with other experimental results like
those obtained by Roshko (1954), S = 0.167, and those by Berger and Wille (1972), S = 0.16-0.17. This allows to
conclude that the great achievement of mesh resolution D = 18∆ may be not due its best performance to simulate the
flow at this Reynolds number.

Figure 5. Strouhal number vs. Reynolds number; experimental and numerical results.
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This happens once again at Re = 200, where there is the transitional wake phenomena, because the experimental
value could never be reached by a bi-dimensional numerical simulation once it is due to a three-dimensional phenomena
on the flow known as Mode-A transition, as shown by Pérsillon and Braza (1998), who obtained S = 0.198 on a 2D
simulation and 0.181 on a 3D simulation. In this way, the higher Strouhal number value obtained on the D = 24∆
simulation confirms that this suspicious good agreement achieved by the D = 18∆ simulation is once more associated
with result corruption.

At Re = 300, where there is a completely turbulent wake, it can be clearly seen that the best results are obtained
with the finer mesh which have good agreement with experimental results. The mesh D = 18∆ results in a Strouhal
number 4.2% smaller in comparison with experimental results, once again one can notice the corrupting effect of this
mesh coarseness. However it is worth make it clear that although one obtains poor results in comparison with a finer
mesh, this resolution is frequently the preferred one once it implies in a much smaller computational cost, specially for
providing greater possibilities in three-dimensional calculations. In the following simulations it has been used D = 24∆.

Another interesting characteristic of the coarse mesh is the amplification of the flow oscillation in front of the
obstacle, as shown in Fig. (6). It is not understood yet whether this oscillations are harmful or not to the wake.

  

Figure 6. Zoom on the cylinder’s proximity for Re = 100: a) D = 18∆, b) D = 24∆ and c) D = 32∆.

4. Flow around cylinders with splitter plates

4.1. Two-dimensional flows

It is known that vortex shedding may be suppressed by the introduction of splitter plates on the wake of bluff-
bodies. Roshko (1993), per example, affirms that depending on cylinder cross-section shape, a plate length of 7 to 10
diameters is sufficiently long for the near wake to be independent of that length. Usually this phenomena is used as a
model to analyze the role of the separated shear layers and drag, like in the works of Arie and Rouse (1956), Roshko
(1954) and Roshko (1993).

Perhaps, one of the first attempt to understand the role of three-dimensionality on the shedding of bluff-bodies with
attached plates is introduced by Bearman (1965), who described régimes on the variation of Strouhal number on
different plate lengths for a square cylinders at Reynolds numbers between 1.4·105 and 2.56·106, in all cases he found
vortex shedding suppression for l/D = 3.

On a numerical attempt of finding this same phenomena, Know and Choi (1996) studied vortex shedding
suppression for the two-dimensional wake régime, 80 ≤ Re ≤ 160, and these authors found great agreement with
Bearman’s results.

The present simulations at Re = 100 showed great agreement with those obtained by Know and Choi (1996), vortex
shedding has been suppressed for a plate length equal to l/D = 3, and for l/D equal to 1 and 2 values differ 3.6% and
7.5% respectively, as can be seen at Fig. (7).

a) b) c)
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Figure 7. Strouhal number vs. plate length behind circular cylinder at Re = 100.
Those differences may be interpreted as influence of an extensively greater domain by the first authors,

–50D < x < 20D and –50D < y < 50D, and the use of a finer mesh near the cylinder. Nevertheless it is very important to
emphasize that these simulations that solve the Navier Stokes over a curvilinear mesh consumes enormous time and
computational resources compared by those performed in this work over a uniform cartesian mesh, which also achieve
great results, being possible better used based on a cost effectivity criteria.

In Fig. (8) one can see qualitatively the wake’s behavior due the plate’s presence. The clearly represented vortex
street of Fig. (8a) suffers a strong reduction on its shedding frequency when there is the plate’s introduction, Fig. (8b)
and Fig. (8c), until the flow reattaches to the plate and vortex shedding is simply suppressed.

<

<

Figure 8. Vorticity field for Re = 100 at time t·U∞/D = 347; a) no plate, b) l/D = 1, c) l/D = 2 and d) l/D = 3.

At Re = 160 it had as well been observed that the vortex shedding was indeed suppressed in comparison with Know
and Choi’s results. At Fig. (9a) one can see the vortex street pattern for a plate length l/D = 4 and the flow filed with
suppressed vortex shedding for a plate length l/D = 5. This results have great agreement with Know and Choi (1996)
because besides the Strouhal number for l/D = 4 which differs just 3.3%, the authors point the critical plate length
l/D = 4.6 for vortex shedding suppression.

Figure 9. Vorticity fields for Re = 160 at time t·U∞/D = 248; a) l/D = 4 and b) l/D = 5.

4.2. Two-dimensional simulation of three-dimensional flows

It is truth that for Reynolds numbers higher than 170 that the three-dimensionality has a major role, which could
suggest that two-dimensional simulations are not able to represent its features. But in terms of shedding frequency this
is not the truth at all once one gets to the Reynolds numbers higher than 250. In these cases the Strouhal numbers
resulting are slightly affected by the three-dimensionality, in such a way that two-dimensional simulations achieve
similar shedding frequencies, as one can see comparing the experimental data against the 2D simulations on Fig. (5).
This way it was found worth to analyze two-dimensionally this flow patterns, always concerning that one might be very
careful to jump into conclusions after these two-dimensional simulations results.

a) b)

c) d)

a) b)
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Simulations at Re = 300 for cylinders with attached splitter plates were performed for plate lengths, l/D, equal to 2
(S = 0.203), 4 (S = 0.123), 6 (S = 0.086) and 8 (S = 0.063). The results obtained by the present simulations are plotted
together with other results showing an interesting phenomena on Strouhal Number as one increases the plate length
(Fig. 10).

Figure 10. Strouhal number vs. plate length behind circular cylinder for different Re.

There is a notable increasing on the Strouhal number for the plate lengths 1 < l/D < 2. Bearman (1965) suggests that
this phenomena is associated to a critical length where the plate induces the vortices to break down from the shear
layers upstream to the end of the plate, developing not fully formed vortices. The present results for Re = 300 showed to
be unable to correctly represent this phenomena due to the small number of simulations performed until this moment,
but partial results show a increase of 1% on the Strouhal number for l/D = 2, and an extraordinary decrease for further
lengths.

In the Re = 160 simulations appears an interesting vortex at the edge of the plate. This structure had already been
recognized by Know and Choi (1996) but no further study about it’s formation and influence on the flow have been
found. In this work this eddy formation could be found also at higher Reynolds numbers, where it looks stronger and
better defined.

Due to the presence of the plate, the shear layer that starts on the surface of the cylinder generates vorticity of
opposite signal over the plate, as one can see following vortices B and B' in Fig. (11a).

 

 

Figure 11. Vorticity field for Re = 300 and l/D = 2. ∆t·U∞/D between each image equal to 1,49.

a) b)

c) d)
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Vortex B' moves together with vortex B along the plate, while at this same moment vortex C' is ahead of vortex B'
and gets trapped at the end of the plate by vortex C*. At Fig. (11b) vortex B' gets trapped on the plate’s edge while
vortex C' is paring with vortex B.

At Fig. (11c) vortex B* is the result of the paring between vortices C' and B, and it traps the growing vortex B' that
can be seen paring with vortex A at Fig. (11d), where there is again nearly the same vorticity field as in the first image.

In order to study how this vortex frequency influence the wake, the velocity signals and their respective frequency
spectrums have been analyzed at several positions over the domain, as shown in Fig. (12).

Figure 12. Location of probes near the obstacle.

The probe p1 has been placed to achieve the breaking shear layer’s signal, while probes p2 and p3 are placed to get
the velocity signals near the plate’s surface respectively before and at the plate’s edge, finally probe p4 has been placed
to get the frequency spectrum at the wake.

As one can see in Fig. (13) the power spectrum density on the wake for Re = 300 (x/D = 1, y/D = 0), on a situation
with no plate has well defined peaks which are stronger on the odd multiples of the main frequency.

Figure 13. Power Spectrum Density at Re = 300 for a circular cylinder with no splitter plate, x/D = 1, y/D = 0.

This spectrum behavior changes slightly with the plate’s presence at the p1 location as seen at Fig. (14a). Here the
signal is expected to be barely affected by the presence of the plate. In fact one can take note of the absence of higher
frequencies and that there is not much difference between odd and even multiples.

The same behavior is verified at p2 (but the signal has less energy), Fig. (14b), suggesting that at these locations
there is a direct interaction between the shear layer and the boundary-layer over the plate.

One can see at p3 frequency spectrum, Fig. (14c), the clear presence of higher frequencies, not strong on the
previous signals, suggesting that this new frequencies are associated with the growth of the eddy at the plate’s edge.

At p4 location one finds a frequency spectrum very similar to the one of the flow without plate, Fig. (14d). But in
comparison with p1, p2 and p3 spectra one can clearly notice less energy on the odd multiple of the main frequency.

5. Conclusions

The virtual boundary method used together with a uniform cartesian mesh, in comparison to the solution of the
Navier-Stokes equations over a body-fitted mesh with curvilinear coordinates, permits the use of a small computational
demand obtaining satisfactory results.

The use of splitter plates to control bluff-bodies’ vortex shedding shows to be of great efficiency. As it has been
shown, attached plates perform great changes on the shedding frequency depending on the length.

At first, the end plate vortex seemed to have a major role on the shedding frequency, but further studies showed that
it has no influence on the major frequency, and its shedding is governed by the Kármán vortex trail and by the
recirculation region behind the obstacle.
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Figure 14. Power Spectrum Density for Re = 300 and l/D = 2. a) p1, b) p2, c) p3 and d) p4.
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