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Abstract. The effects of sudden changes are predicted in the cases of turbulent flow around surface-mounted two-dimensional ribs 
when subjected to a sudden change in surface roughness. A particular interest of this study is to investigate the sudden changes in 
the surface roughness for developing boundary layer flow. A two -equation k-ε turbulence model is employed to simulate the 
turbulent transport. Equations of boundary-layer type were used and a forward marching method was employed for sweeping the 
computational domain. Wall functions that take into account surface roughness are used to specify the boundary conditions at the 
surface. The effects of the sudden changes of roughness accounted for the wall functions in the k-ε turbulence model are compared 
with available experimental data. Four configurations are simulated here, namely one extensive uniformly smooth surface, and three 
cases where the surface roughness varies suddenly from a smooth to rough, each one being with a different roughness geometry. For 
the vicinities of the surface change algebraic expressions are empirically obtained to predict the growth of the displacement in 
origin. Those heuristic expressions are incorporated into the numerical code to predict the velocity profiles more accurately. Results 
are presented for velocity and skin friction coefficient, in addition to comparisons with experimental data. The use of the algebraic 
expressions in a parabolic solver showed good agreement with experimental values for the mean and local quantities.  
 
Keywords: Turbulent Flow, Numerical Study, Surface Roughness. 

 
1. Introduction 
 

The present work is concerned with flows that develop over flat surface with changing surface conditions. In 
particular, we will be looking at flows that present abrupt changes in wall roughness. The theory to be used here is, 
therefore, expected to account for these effects. Here, we will use the k-ε model to describe the properties of the 
boundary layer in the surface layer, and validated the results against the experimental data of Avelino (2000).  

The k-ε model will use a wall function to represent the velocity profile near the wall so that a local analytical 
solution for the inner region will be used as a boundary condition for the outer solution. This inner solution must take 
into account the local changes in the flow such as those caused by the changes on the surface roughness (Avelino et al, 
2001). The local changes are then accounted for by logarithmic profiles that take as a characteristic length the 
displacement in origin, which has been experimentally studied by Avelino et al. (1998).  

                                                                 
1Visiting Scholar from: Departamento de Engenharia Mecânica, Unversidade do Estado do Rio de Janeiro – UERJ, 20550-013 - Rio 
de Janeiro, RJ, Brazil 

In the present work algebraic expressions that predict the behaviour of the displacement in origin when the flow is 
subject to sudden changes of surface roughness are incorporated into the numerical code. In previous works, Avelino et 
al. (2001a, 2001b) a numerical study of the k-ε model for flows with step changes in surface roughness were carried out. 
Appropriate boundary conditions with dependence on the displacement in origin were made use of, and numerical 
simulation showed reasonable agreement with the experimental data. 
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The use of simple numerical tools for preliminary engineering design, instead of using memory-demanding, large 
Computational Fluid Dynamics (CFD) codes, can benefit the overall design process if repetitive calculations are 
mandatory. If no back flow is in order, marching-forward techniques, implemented along with isotropic turbulence 
models, provide an economical means for conceptual design using cheaper PC-based workstations.  

Acknowledging the advantages of “fast” parabolic solvers, the work of Matsumoto & de Lemos (1990), presented 
results for the developing time-averaged and turbulent fields in a coaxial jet along a circular duct of constant area. Later, 
de Lemos & Milan (1997), extended their calculations to flow in long ducts through varying cross sections. Similar 
results for ducts with plane walls have also been documented in Braga & de Lemos (1999). The numerical methodology 
developed in all of that work is here employed. There, use was made of the isotropic k-ε model and the wall log-law for 
velocity over smooth surfaces. Therefore, the present calculations used additional wall laws in order to account for 
rough walls. 

For flows over rough surfaces, the number of studies is limited. Studies on flows over rough surfaces with changes 
in the thermal boundary conditions were made by Coleman et al.(1976) and by Ligrani et al.(1979, 1983,1985). 
 
2. Mean Flow and Turbulence 

 
The geometry investigated is next detailed, followed by the governing equations, the numerical method used and the 

results obtained. Four geometrical configurations will be considered and analysed using boundary layer equations, one 
reference case, in which the surface is smooth, and three geometry configurations where abrupt change of surface 
roughness is imposed to the flow are presented. 
 
2.1. Geometry 
 

The flow here analyzed consists of a confined stream inside a rectangular channel of constant cross section. 
Situations concerning surface roughness variation along the longitudinal coordinate are also considered. A schematic of 
the configuration under study is shown in Fig. 1. A wind tunnel of 30x30 cm of cross section and 2 m long has the 
bottom surface made rough with the help of transverse aluminum ribs. Four configurations were placed in the wind 
tunnel by alternating the position of the rough elements in the test section. The smooth surface was simulated as a 

reference case over a glass surface. In the other three configurations, the rough surfaces adopted were composed of 
transversally grooved surfaces with rectangular slats in different geometries. For more details about the experimental 
work see Avelino(2000) and Guimaraes et al.(1999). 

. The rough surface is schematically shown in Fig. 2 together with the diagrammatic definition of the displacement 
in origin, ∈. The parameters in Fig. 2 are specified in Table 1 for the three rough surfaces studied here. 

In the vicinities of the abrupt change, the flow experiences a transition from one extensive region to another, being 
affected by the new geometry, until it reaches the fully rough regime. In previous works, Avelino et al.(2001a, 2001b) 
the theory used did not represent the transition region from one extensive surface condition to another. In the region 
where the flow had already reached the fully rough regime, the numerical prediction showed good agreement with the 
experimental results. Here, intending to improve the accuracy of the simulations on the vicinities of the sudden change 
in the wall roughness, algebraic expressions derived from experimental data are incorporated into the code. By using the 
expressions heuristically derived in the numerical simulation, the growth of ∈ is taken into account.  

 
Table 1 – Geometry of the roughness elements. 

 
 Rough Surface Type I Rough Surface Type II Rough Surface Type III 

K [mm] 4.77 4.77 6.35 
W [mm] 15.88 31.76 15.88 
S [mm] 15.88 15.88 4.76 

λλ  [mm] 31.76 47.64 20.64 
W/K 3.33 6.66 2.5 

Fig. 1 – Coordinate system for the smooth to rough surface. 
 

Fig. 2-Rough surface geometry and coordinate 
system displacement of origin. 
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Three different roughness configurations are simulated. The dimensions of the three geometry configurations are 
presented in Table 1. For the roughness elements, K denotes the height, S the length, W the gap, and λ the pitch. 
Authors (see, e.g., Perry and Joubert(1963), Antonia and Luxton(1971, 1972), Wood and Antonia(1975)) have 
classified the rough surfaces into two distinct types of surfaces: 1) ‘K’ type rough surfaces and 2) ‘D’ type rough 
surfaces. In the cases where the nature of the roughness can be expressed with the help of a single length scale, the 
height of the protrusions, ‘K’, the surface is termed of ‘K’ type. Flows, on the other hand, which are apparently 
insensitive to the characteristic scale ‘K’, but dependent on global parameters of the flow are termed ‘D’ type flows. 

 
2.2. Boundary Layer Equations 
 

For generality, the equations below are written embracing planar and axis-symmetric cases. The equations are also 

presented in a simplified form, already making use of the concept of isotropic turbulent viscosity, tµ .  
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In Equations (1) and (2) u, v are the velocity components in the axial and transverse direction, respectively, ρ the 

fluid density, p the static pressure, and effµ  is the effective (turbulent+laminar) coefficient of exchange given as,  
 

µµµ teff
 +  = , (3) 

where µ is the molecular viscosity. As mentioned before, Eqs.(1) and (2) are written in a compact notation embracing 
planar (η=0) and axi-symmetric (η=1, r=y’) cases. Further, in the k-ε model one has (Jones & Launder, 1972), 
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t , (4) 
 
where cµ is a constant. Transport equations for k and ε are written as (Launder & Spalding, 1974), 
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In Equation (5), kt
k

eff   +   = σµµΓ  and ε
ε σµµΓ teff +   = where the Γ 's are the effective coefficient of exchange 

and the σ’s are the turbulent Prandtl/Schmidt numbers for k and ε. The last terms in Eq.(5) are known as "source" terms 
and are given by  )-(P  = Sk ερ and )c Pc( = S 21k ερ ε

ε −  where c1=1.47, c2=1.92 and cµ = 0.09. The production term 
reads 
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2.3. Coordinate System 
 

The numerical solution of Eqs.(1), (2) and (5) in the coordinate system x-y presents some difficulties in regard to 
numerical precision. In this system, there is the disadvantage of having only a few nodal points where the boundary 
layer is “thin” and too many points where the thickness of the boundary layer has attained substantial growth. This work 
uses the coordinate system x-ω, proposed in Patankar (1988), by doing; 
 

ΨΨ

ΨΨω
IE

I  =  
−
−

, (7) 

 
where Ψ is the stream function and the subscripts I and E refer to the internal and external boundary layer limiting 
surfaces, respectively. 
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The equation set formed by Eqs. (1)-(2)-(5) can be written in the coordinate system x-ω as (Patankar, 1988), 
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In Eq. (8), φ can represent any of the dependent variables (φ =u,k,ε), 
φ
effΓ

 is an effective coefficient of diffusion for 

φ and φS a source term. The discretization of (8) is obtained through the control volume method (Patankar & Spalding, 
1972, Patankar, 1980) implying in (see Fig. 3a for notation), 
 

b+ a+ a+ a= a PPAPASSNNPP φφφφ , (10) 

 
where the coefficients involve convection, diffusion and source terms . For the solution of system (10) the Three 
Diagonal Matrix Algorithm is here adopted. 

 
2.4. Inlet Conditions 
 

Inlet flow is given a uniform distribution and the values of k and ε at entrance were assumed as, 
 

2
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where C = 1/2Tu 2, ( ) m
2

'
i Uu3Tu =  is the turbulence intensity at inlet, mU is the overall mean velocity, Κ is the von 

Kármán constant (Κ=0.41) and y the distance to the wall. Halfway to the top surface (y=H/2) the symmetry condition is 
implemented for all dependent variables φ=u,k,ε, as ) 0 = y 0=y∂∂φ . 

 
2.5. Wall Treatment for Smooth Surfaces 
 

The mathematical model seen above is not valid inside the layers very close to the wall where viscous effects are 
predominant. Velocity at the grid point closest to the wall is handled by the usual Wall Function approach described in 
Launder & Spalding (1972). The notation below refers to Fig. 3b where the location of the grid point closest to the wall, 
N, is identified. The wall function gives for the wall shear stress at node N, 
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where E is a constant. In the wall region, the use of the wall function, characterized by the expressions, 
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Fig. 3 – General notation for smooth wall model: a) Control volume, b) wall layer model. 
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where  
 

ρ
τ

µ
ρ w*N

*

N*
N

N U;
yU

y;
U
u

U === ++ , (14) 

 
and the employment of the assumption of "local equilibrium" for turbulence (P=ε), gives for point N, 
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2.6. Wall Treatment for Rough Surfaces 
 

The fundamental concepts and ideas on the problem of a fluid flowing over a rough surface were first established 
by Nikuradse(1933). For rough surfaces  Moore(1951) has shown that a universal expression can be written for the wall 
region by setting the origin for measuring the velocity profile some distance below the crest of the roughness elements. 
Thus, the equations above for the law of the wall are modified to take into account the effects for roughness. The basic 
facts about the laws of the wall for the velocity profiles have been discussed elsewhere (see Avelino et al. (1996)). For 
computing the flow over the rough surface at the bottom of the wind tunnel, Eq. (13) is modified for including the 
roughness function. Accordingly, an expression for the velocity profile valid for all types of roughness can be written if 
we make 
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In the above equations all symbols have their classical meaning; Ci , i= K, D is a constant characteristic of the type 

of roughness; the coordinate yT is the distance measured from the crest of the roughness elements (y = yT + ∈); ∈ is the 
displacement in origin, referred to in literature as the error in origin as well. Equations (16) and (17) will be used to 
specify the boundary conditions on a k-ε formulation of the problem. The values for A, Ci and ∈ used were 5.15, 4.3 and 
1.9mm, respectively. Finally, rewriting (12) in the form )( yUw ∂∂= µλτ  gives further, 
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The domain of validity of (16)-(17) is the fully turbulent region and that can be verified through application of the 

single limit concept of Kaplun (1967) (see Silva Freire & Hirata, 1990). 
 

2.7. The Displacement in Origin 
 

The determination of the displacement in origin ∈is significant for the evaluation of the properties of the flow over 
a rough surface, including all local and global parameters. All graphical methods for its determination, however, assume 
the existence of a logarithmic region, which may not occur near to a step change in roughness.  

It is known that for turbulent boundary layers developing over rough surfaces, the logarithmic regions of the flow 
suffer a slight deformation to the left side. In fact, as we shall see, a very popular method to find ∈ is based on a 
procedure to restore the lower portion of the velocity profile to a logarithmic profile. 
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The displacement in origin, ∈, was estimated by four different procedures. The procedures of Perry and 
Joubert(1963) and Perry et al.(1987) are the most rigorous that can be found in literature so that the data resulting from 
them must be seen as reliable. The procedures of Thompson(1978) and Bandyopadhyay(1987) are more simplified so 
that the values of ∈ obtained through them must be seen just as a first approximation. 

Therefore, to determine the displacement in origin, the velocity profiles were plotted in semi-log form, in 
dimensional coordinates. Next, the normal distance from the wall was incremented by 0.1mm and a straight line fit was 
applied to the resulting points. Searching for the maximum coefficient of determination, the best fit was determined. 
Other statistical parameters were also observed, as the residual sum of squares and the residual mean square. 

 

Table 2 – Estimated expressions for ∈ obtained from the experimental data. 
 

 Estimated expressions of ∈ Estimated values for exponent ‘m’ 

Surface Type I ∈ = 0.0012 xm  m=1.04 

Surface Type II ∈ = 0.0118 xm  m=0.81 

Surface Type III ∈ = 0.0150 xm  m=0.90 
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Figure 4 - Displacement in origin for velocity profiles over different rough surfaces of Fig. 2:  a) Type I, b) Type II, 

c) Type III. 
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Fig. 4 present the best fits from the experimental displacement in origin data for all the three roughness types 

summarized in Table 2. The estimated values of ∈ were obtained experimentally in Avelino(2000). In the numerical 
computations the expressions in Table 2 will be used to represent ∈. Those expressions are used to predict the abrupt 
change in the roughness properties in the immediate vicinities of the change in properties at the wall. 

Having found ∈, the gradient of the log-law is used to determine U*. Another method to determine U* is the 
momentum-integral equation. The results for ∈ in the rough surfaces types I, II and III, are presented in Figs. 4 to 6. 
Considering the high degree of difficulty involved in finding these results, and the reasonable agreement between the 
predictions based on the two alternative procedures, the results of ∈ and consequently for Cf are expected to be 
representative of the flow. 

Figure 4 clearly show that ∈ represents a relatively quick streamwise evolution for surfaces Types I and II, a fact 
that has been previously observed in ‘K’ type rough surfaces. The evolution of ∈ on surface type III is observed to be 
rather slower and representative of a ‘D’ type surface. In Fig. 4c, the value of ∈ calculated through procedure suggested 
in Thompson(1978) furnishes ∈=2.44. 
 
3. Results and Discussion 
 

Numerical results calculated with the model shown above were used to simulate the flow over the flat surface of 
Figs. 5 to 8. Four cases were investigated and classified according to the rough surface type. Computations used 
different wall boundary conditions, based on Eq. (18), which were applied over the corresponding surface length 
detailed in Table 1. Also, for better prediction of the effects provoked by the roughness, algebraic expressions are used 
according to Fig. 4 and Table 2. The results to follow were compared with measurements of Avelino et al. (1999). 

Figures 5 to 8 show comparisons of u/Um versus y/δ , where δ is the boundary layer thickness, for the four different 
cases studied. Profiles at ten longitudinal stations are compared with the numerical prediction showing good agreement. 
The lines represent the numerical predictions whereas experimental values are plotted with symbols. 

Profiles were calculated at stations in the vicinity of the surface conditions variation. In previous work, Avelino et 
al.(2001a, 2001b), u/Um did not quite match those of the experimental dada, most likely due to the transition region 
explained earlier, as the value of the displacement in origin was assumed constant. In those works, numerical 
simulations using the logarithmic expressions were made and it was noticed that although the predictions in the vicinity 
of the surface change did not match, as the flow approaches an equilibrium condition, the predictions presented 
reasonable agreement with experimental data. Here, algebraic expressions for prediction of the displacement  in origin 
behavior were incorporated to the numerical code, showing an improve in the prediction of the velocity profiles in the 
region close to the abrupt change in the surface condition. Even though the fully rough regime had not established. 

One interesting feature of Figs. 5 to 8 is that in spite of using a parabolic solver and a linear k-ε model, the present 
calculation seems to represent quite well the phenomena in the whole extension of the plate. 

The discrepancies  encountered in previous works, due to the gradual growth of the displacement in origin, until it 
had reached a constant value, are vanished by the implementation of the expressions for the growth of the displacement 
in origin in the vicinities of the sudden change in roughness. The velocity profiles are now accurately predicted in the 
transitional region as well. With the implementation of the expression representing the increase in ∈, accurate 
predictions of the development of the boundary layer immediately after the changes in the wall roughness can be 
observed. In other words, a function of a characteristic length scale of the rough elements can be used for the prediction 
of the velocity profiles in the transition region of the flow.  

Corresponding skin friction coefficient values are shown in Figs. 9a to 9d. In these figures, numerical prediction is 
compared with those calculated through an integral method and a graphical determination, based on the experimental 
results. For the case of a uniformly smooth surface, a theoretical correlation is also included.  

The values of ∈ were calculated according to the method of Perry & Joubert (1963). Systematically adding an 
arbitrary displacement in origin to the original profiles, the least square method could be applied to the near wall points 
to search for the best straight line fit. 

It is clear from Figs. 9a-d that the numerical prediction is in good agreement with the theoretical correlation for 
turbulent boundary layers over smooth surface, and with the experimental results, either calculated by using the integral 
balance of the momentum or through the chart method. It can be noticed from Fig. 9, where the step change in 
roughness is present, that the numerical prediction responds very fast to the new surface condition. Also the momentum 
balance and the graphical method are in good agreement.  

It is known that in the region where the flow leaves a rough surface, to come upon a smooth surface, a departure 
from experimental values can be observed immediately after the sudden change in the roughness. This fact is due to the 
transition region that the flow undergoes following the surface step change.  

When in contact with a smooth surface, the displacement in origin tends to decrease until it vanishes, and this can 
be noticed by either the integral method or by the chart method, conversely, in the parabolic solver, this effect cannot  be 
caught. In fact, in the numerical model above, no mechanism that could bring back information from downstream 
positions is considered. The flow, in this case, can be characterized as of partially parabolic nature requiring an elliptic 
solver for the pressure field.  
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For engineering purposes, however, the parabolic treatment has proven to be adequate for reproducing the major 
features of the flow.  
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Fig. 6 – Velocity profiles over Type I rough surface. 
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Fig. 7 – Velocity profiles over Type II rough surface. 
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Fig. 8 – Velocity profiles over Type III rough surface. 
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These results are coherent with the idea of limiting the present model to the regions of the flow where the 
displacement in origin has already reached a constant value, in the fully rough region of the flow. 

 

 
The determination of the displacement in origin, ∈, is crucial for the evaluation of the properties of the flow over a 

rough surface, including all local and global parameters such as, e.g., the skin-friction coefficient and the momentum 
thickness. All graphical methods for its determination, however, assume the existence of a logarithmic region, which 
may not occur near to a step change in roughness. 

For the numerical solution of the discretized momentum equation at axial station xP, the integration step size (xP-xA) 
determines the rate at which the longitudinal coordinate x is swept along the duct. In the vicinity of the boundary layer 
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Figure 9 - Skin friction coefficient for flows over surfaces of Fig. 2: a) Smooth, b) Type I, c) Type II, d) Type III. 
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leading edge (x≈0), the dependent variable φ  (φ=u,k,ε,) varies more rapidly with x, if one considers the initial growth 
rate of the boundary layer. Therefore, the use of a small but constant value for (xP-xA) could be appropriat e for the rapid 
changes of φ in the developing region but would imply in an excessive number of integration steps at the subsequent 
developed region. Likewise, a large value for (xP-xA) in the beginning of the sweep could, at the inlet region, cause 
numerical instability due to the large variation of all dependent variables within initial boundary layer development. 

In this work, the integration step size was adopted as proportional to the distance from the point in question to the 
beginning of the calculation as: 

 









x-x
x-x = 

H
x-x

IL

IAP
β

 (19) 

 
where indexes "I" and "L" correspond to the initial and final x positions, respectively, H is one half of channel height 
and β is a constant. 

Further, in Eq. (19) the parameter β gives great flexibility for changing the integration step size. For β=1, a linear 
variation along the longitudinal coordinate is obtained. For β>1, the integration step varies more slowly in the inlet 
region. The effect of β on the numerical solutions is shown in Figure 9. Once can see that by reducing the value of β in 
equation (19) larger step sizes are computed in the beginning of the boundary layer development, leading to substantial 
variation on the value of Cf further downstream.  

 

Regarding the transversal distribution of nodal points, at the boundary layer close to the wall, the discretization of 
the production term for k, equation (6), is rather sensitive to the transverse grid layout. A flexible grid point distribution 
is obtained by the use of a coordinate transformation of the type φ=(y')α, giving for discrete positions along the 
transversal coordinate, 

 

( ) ( ) 









+ α

α α

'y
N

2/H  =  'y 1-i

1/

i  (20) 
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Figure 10 – Predictions of skin friction coefficient for different values of β in (19). 
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Figure 11 –. Velocity profiles for different values of α in Eqn. (20), station x=1.2m. 



Proceedings of the ENCIT 2002, Caxambu - MG, Brazil - Paper CIT02-0304 

11 

where "i" in (20) is the index of the nodal point, α a parameter for grid control and y'=H/2-y is the distance from the 
symmetry line, located halfway to the top surface (H/2), to the point in question. Therefore, nodal point "i" is located at 
distant y'i  from the domain centerline. 

Thus, Figure 11 indicates that by changing the location of the grid points along the transverse wall coordinate, by 
means of varying α in equation (20), considerably different velocity profiles are obtained at the same x-station. Figures 
10 and 11 ultimately indicate that care must be exercised when using a numerical procedure for calculating fluid flow. 
Final predictions must always be grid independent and optimal number and location of grid points should be sought as a 
way of reducing numerical uncertainties. 
 
4. Concluding Remarks 
 

This work presented computations with the standard equation k-ε model for simulation of turbulent boundary layer 
flows that present abrupt changes in the surface roughness. 

Comparisons with experimental data indicated a reasonable agreement. More specifically, for surfaces subjected to 
sudden changes in roughness, demonstrated that the methodology here employed gave better or comparable results than 
those calculated with more sophisticated numerical tools and employing more elaborated turbulence modes. Accuracy 
of the calculated skin friction coefficient is also limited in the region where the displacement in origin is still adjusting 
itself to the new surface.  

Essentially, the work herein suggests that, for accurate prediction of simple flows, proper implementation of the 
numerical model and the robustness and stability of the algorithm employed are important factors to be considered. 
Accordingly, for boundary layer flows, isotropic turbulence theories and simple parabolic codes can provide an 
economical and reliable tool during preliminary steps in the overall design process of engineering equipment, moreover, 
when using marching-forward techniques for flow simulations over surfaces with abrupt changes in roughness, it is 
noticed that the algebraic expressions that describe the growth of the displacement in origin lead to more accurate 
predictions. 
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7. Nomenclature 
Acalc  calculated duct area 
Aduct physical duct area 
cφ φ=1,2,µ; model constants 
E Wall Law constant 

k Turbulent kinetic energy per unit mass, 2/ii uu  
N Number of grid points in transverse direction 
P Production rate of k, Eq. (6) 
p Static pressure 
H Height of computational domain 
Re Reynolds number 

φS  Source term for φ, φ=u,k,ε 
u Axial velocity 

∗U  Friction velocity 

mU  Mean velocity 
v Transverse velocity 
x Axial coordinate 
y Wall distance,  

 
Greek Letters 
ε Dissipation rate of k 

tµ  Turbulent momentum transport coefficient, Eq.(4) 
ρ Fluid density 

effµ  Effective transport coefficient for u, Eq.(3) 

µ Fluid dynamic viscosity 
φ
effΓ  Effective transport coefficient for φ, φ=u,k,ε 

σk Turbulent Prandtl/Schmidt number for k 
σε Turbulent Prandtl/Schmidt number for ε 
Ψ Stream function 
ΨI Value of Ψ at internal surface of boundary layer 
ΨE Value of Ψ at external surface of boundary layer 
Κ Von Kármán constant 
φ General dependent variable, φ=u,k,ε 
ΨEI ΨE - ΨI 

wτ  Wall shear stress 

 


