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Abstract. In the present work, some formal properties of singular perturbation equations are studied through the concept

of “equivalent in the limit” of Kaplun, so that a proposition for the principal equations is derived. The proposition shows

that if there is a principal equation at a point (η, 1) of the (Ξ × Σ) product space, Ξ space of all positive continuous

functions in (0, 1],Σ = (0, 1], then there is also a principal equation at a point (η, ε) of (Ξ,×Σ), ε= first critical order.

The converse is also true. The proposition is of great implication for it ensures that the asymptotic structure of a singular

perturbation problem can be determined by a first order analysis of the formal domains of validity. The turbulent boundary

layer asymptotic structure is then studied by application of Kaplun limits to the near region of the leading edge of a flat

plate. As it turns out, a different asymptotic structures is found from those previously deduced by other authors; in fact

the results show that a multi-layered structure exists near the leading edge which, however, is different from the classical

structure commonly found in literature.
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1. Introduction

In physics and mathematics many phenomena are modelled through intricate equations that present no
analytical solution. That has forced engineers, physicists and applied mathematicians to develop techniques that
yield approximated solutions to the problems they are faced with. These techniques often resort to sophisticated
procedures which only in a very few cases are restrained to fully analytical frameworks. In many situations,
analytical solutions have to be combined with numerical procedures to produce an approximate solution.
The Navier-Stokes equations are widely known for provinding formidable challenges to researchers seeking

any form of closed analytical solutions. This is, primarily, a consequence of their non-linearity. Thus, as
paradoxically as this may look, many methods have been developed in the past to extract as many qualitative
information as can be possible before any solution strategy is attempted. We will discuss here one of these
methods, the single limit process of Kaplun(1967).
The purpose of this work is, therefore, twofold: i) to consider more thoroughly some fundamental concepts

and ideas used in solving perturbation problems, and ii) to study the turbulent boundary layer asymptotic
structure near the leading edge of a flat plate by applying Kaplun limits to the Navier-Stokes equations.
Perturbation methods have evolved along the past forty years into a powerful tool for solving a large class

of complex problems. They have, therefore, become a basic working tool of many engineers and applied mathe-
maticians. In fact, a large number of papers can be found in literature which use perturbation methods as their
primary solution procedure.
While some precise definitions can be enunciated, and exact results obtained to find uniform approximations

and to perform the matching of functions, the determination of the domain of validity of an approximation is
always difficult. Two important results in perturbation theory are the intermediate matching lemma and the
extension theorem of Kaplun. These results are of fundamental importance for the construction of matched
asymptotic expansions, but say nothing about the domain of validity of the approximations. To circumvent
this difficulty, Kaplun(1967) applied the concept of limit-processes directly to the equations rather than to the
solutions and enunciated an Ansatz, the Ansatz about domains of validity, which relates the domain of validity
of solutions with the formal domain of validity of equations (a concept which is easily defined). Examples
are known where Kaplun’s ideas fail; however, for some difficult problems, e.g., the Stokes paradox of fluid
mechanics, only consideration of these ideas can clarify the conceptual structure of the problem. Here, we
study some formal properties of equations yielded by the definition of “equivalent in the limit” of Kaplun, and
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relate them to the actual problems of determining the overlap domain and of matching asymptotic expansions.
The concept of “richer than” of Kaplun and Lagerstrom(1957) is given a more elaborated interpretation which
leads to the derivation of a theorem for the principal equations. The theorem shows that if there is a principal
equation at a point (η, 1) of the (Ξ×Σ) product space, Ξ = space of all positive continuous functions on (0, 1],
Σ = (0, 1], then there is also a principal equation at a point (η, ε) of (Ξ × Σ), ε = first critical order. The
converse is also true. The consequence of this theorem is that, no matter to what order of magnitude we want
an approximation to be accurate, it is always possible to find high-order solutions at points (η, 1) of the (Ξ×Σ)
space (η = point of the Ξ space obtained through passage of Kaplun’s limit process, where a principal equation
is located) which satisfy the required degree of accuracy, overlap and cover the entire domain.
In an attempt to make clearer Kaplun’s ideas, Lagerstrom and Casten(1972) published a work where a

survey of some ideas on perturbation methods was presented. Again, a heuristic approach was used. The work,
however, presented some new definitions and results which were known to work for leading-order approximate
solutions. Some of these results have recently been revisited in publications by Lagerstrom(1988) and by Silva
Freire and Hirata(1990).
The formal properties of equations here studied are aimed at boundary layer problems. The theorem of the

principal equations formalises the notion of distinguished limit so often used in literature, allowing Kaplun’s
ideas to be used in a systematic manner. The matched asymptotic expansions method, for example, depends
on two crucial guesses for the determination of approximate solutions: the choice of the stretching function
and the choice of the asymptotic expansions. These choices are normally guided by physical arguments, but
are in the end always made by trial-and-error. In fact, the determination of the stretching function and of
the asymptotic expansions has always been seen as an art. With the theorem of the principal equations, the
stretching function can be immediately found, whereas the appropriate gauge functions for the asymptotic
expansions can be obtained from Kaplun’s concept of critical orders.
The asymptotic structure of the turbulent boundary layer has been extensively investigated by a number

of authors in the past twenty years. Unlikely the laminar flow case, whose solution has been known since the
sixties, the turbulent problem poses some questions which still have to be understood and answered. Of course,
all difficulties stem from the introduction of the time-averaged equations. To make these equations a determined
system, closure conditions must be introduced to relate the Reynolds stresses to the mean flow velocities. The
Reynolds stresses, the time averages of the fluctuating velocities, describe the effect of turbulent fluctuations
on the mean flow; if they could be determined, the mean flow equations could solved and the asymptotic
structure unveiled. Many closure conditions have been proposed in literature but, unfortunately, none of them
are generally valid.
Using only the hypothesis that the order of magnitude of the Reynolds stresses do not change throughout the

boundary layer, some authors (Yajnik(1970), Mellor(1972)) have found the turbulent boundary layer to have
a two-deck structure consisting of a wall region and a defect region. Other authors using closure conditions in
terms of eddy-viscosity (Bush and Fendell(1972)) or κ− ε (Deriat and Guiraut(1986)) models have reached the
same conclusion, making the two-deck asymptotic structure of the turbulent boundary layer the basis of most
subsequent work.
Recently, however, there has been a claim that the turbulent boundary has instead a three-layered structure

(Long and Chen(1981), Sychev and Sychev(1987), Melnik(1989)) and that this is the only structure that can
possibly handle flows subject to pressure gradients.
In this work, the asymptotic structure of the turbulent boundary layer is investigated by applying Kaplun

limits directly to the Navier-Stokes equation. As mentioned before, we will be specially concerned in studying
the asymptotic structure of the turbulent boundary layer near the leading edge of a flat plate.

2. The Fundamentals of the Theory

We shall consider perturbation methods to find approximate solutions to differential equations of the form

εE1(x, y, ..., y(n)) + E2(x, y, ..., y(n−1), ε) + ... = 0, (1)

that is, equations where the small parameter ε multiplies the highest derivative term. Ei is a given function of
the variables x, y, ..., y(n), ε. Here y(n) is used to denote dny/dxn.
The method to be studied here aims at developing a procedure to find approximate solutions to equations

with form of Eq.(1) which are valid in different parts of the domain. This can be achieved by the introduction
of a limit process that determines the terms of Eq.(1) which have a dominant effect in the various regions of
the domain.
To define this limit process some basic concepts need to be introduced. The following topology is introduced

on the collection of order classes (Meyer, 1967).
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For positive, continuous functions of a single variable ε defined on (0, 1], let ord η denote the class of
equivalence.

ord η = {θ(ε) / lim θ(ε)/η(ε), ε→ 0, exists and is �= 0}. (2)

A partial ordering is constructed on these functions by defining

ord η1 < ord η2 ⇔ lim
η1
η2
= 0, ε→ 0. (3)

A set D of order classes is said to be convex if ord δ1, ord δ2 ∈ D and ord δ1 < ord θ < ord δ2 together
imply ord θ ∈ D. A set D is said to be open if it is convex and if ord θ ∈ D implies the existence of functions
γ, δ such that ord θ > ord γ ∈ D and ord θ < ord δ ∈ D. A set D, on the other hand, is said to be closed if it is
convex and has particular elements ord δ1, ord δ2 such that ord δ1 ≤ ord θ ≤ ord δ2 for every ord θ ∈ D. Two
order sets, D and D′ are said adjacent if: i) D′ > D and ii) η < D′ and η′ > D → η′ > η. We may refer to D′

as being the upper adjacent region of D. Analogously, D is said to be the lower adjacent region of D′.

Definition (Lagerstrom, 1988). We say that f(x, ε) is an approximation to g(x, ε) uniformly valid to order
δ(ε) in a convex set D (f is a δ-approximation to g), if

lim
f(x, y)− g(x, y)

δ(ε)
= 0, ε→ 0, uniformly forx inD. (4)

The function δ(ε) is called a gauge function.
The essential idea of η-limit process is to study the limit as ε→ 0 not for fixed x near the singularity point

xd, but for x tending to xd in a definite relationship to ε specified by a stretching function η(ε). Taking without
any loss of generality xd = 0, we define

xη =
x

η(ε)
, G(xη; ε) = F (x; ε), (5)

with η(ε) a function defined in Ξ.

Definition (Meyer, 1967). If the functionG(xη; +0) = limG(xη; ε), ε→ 0, exists uniformly on {xη/|xη| > 0};
then we define limη F (x; ε) = G(xη; +0).

Thus, if η → 0 as ε→ 0, then, in the limit process, x→ 0 also with the same speed of η, so that x/η tends
to a non-zero limit value.
One of the central results of Kaplun’s work is the extension theorem, which is here presented in the following

version (Meyer, 1967).

Kaplun’s extension theorem. If f(x; ε) is a ξ(ε)-approximation to g(x; ε) uniformly in a closed interval
D0, then it is so also in an open set D ⊃ D0.

The above theorem was firstly published in Kaplun and Lagerstrom(1957) in connection with the Stokes
paradox for flow at low Reynolds number. It needs to be complemented by an Axiom and by an Ansatz to
relate the formal domain of validity of an equation with the actual domain of validity of its solution. The idea
of Kaplun was to shift the emphasis to applying limit-processes directly to the equations rather than to the
solutions, establishing some rules to determine the domain of validity of solutions from the formal domain of
validity of an equation.
The set of equations that will result from passage of the limit is referred to by Kaplun as the “splitting” of

the differential equations. The splitting must be seen as a formal property of the equation obtained through a
“formal passage of the η-limit process”. To every order of η a correspondence is induced, limη → associated
equation, on that subset of Ξ for which the associated equation exists.

Definition. The formal limit domain of an associated equation E is the set of orders η such that the η-limit
process applied to the original equation yields E.

Passage of the η-limit will give equations that are distinguished in two ways: i) they are determined by
specific choices of η, and ii) they are more complete, or in Kaplun’s words, “richer” than the others, in the sense
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that, application of the η-limit process to them will result in other associated equations, but neither of them
can be obtained from any of the other equations.
Limit-processes which yield “rich” equations are called principal limit-processes. The significance of principal

limit-processes is that the resulting equations are expected to be satisfied by the corresponding limits of the
exact solution. The notion of principal equation will be formalised below.
The above concepts and ideas can be given a more rigorous interpretation if we introduce Kaplun’s concept

of equivalent in the limit for a given set of equations for a given point (η, δ) of the (Ξ,Σ) product space.
Given any two associated equations E1 and E2, we define the remainder of E1 with relation to E2 as

R(xη; ε) = E1(xη; ε)− E2(xη; ε), (6)

where ε denotes a small parameter.
According to Kaplun(1967), R should be interpreted as an operator giving the “apparent force” that must

be added to E2 to yield E1.

Definition (of equivalence in the limit) (Kaplun, 1967). Two equations E1 and E2 are said to be
equivalent in the limit for a given limit-process, limη, and to a given order, δ, if

R(xη; ε)
δ

→ 0, as ε→ 0, xη fixed. (7)

The following propositions are important; they can be found in Kaplun(1967). The symbol ∼ is used to
indicate equivalent in the limit whereas �∼ indicates not equivalent in the limit.

Proposition 1: If E ∼ E′ for the point (η′, δ′) of the product space Ξ × Σ, then E ∼ E′ for all points (η, δ)
such that η = η′ and δ  δ′. Conversely, if E �∼ E′ for the point (η′, δ′), then E �∼ E′ for all points (η, δ) such
that η = η′ and ord δ � ord δ′.

Proposition 2: If E ∼ E′ for the point (η, δ) of the product space Ξ×Σ, and if associated equations for that
point exist for E, then they exist also for E′ and are identical for both.

Proposition 3: If associated equations exist for E and E′ respectively, corresponding to η = η′ and the
sequence δ = δ′0, δ

′
1, ..., δ

′
n, δ

′ where δ′n > δ′ > δ′n+1, and are identical for both, then E ∼ E′ for the point
(η′, δ′).

We can make the following definition.

Definition (of formal domain of validity). The formal domain of validity to order δ of an equation E of
formal limit domain D is the set De = D ∪ D′

is, where D
′
is are the formal limit domains of all equations E

′
i

such that E and E′
i are equivalent in D

′
i to order δ.

Definition (of principal equation). An equation E of formal limit domain D, is said to be principal to order
δ if:
i) one can find another equation E′, of formal limit domain D′, such that E and E′ are equivalent in D′ to
order δ;
ii) E is not equivalent to order δ to any other equation in D.

An equation which is not principal is said to be intermediate.

To relate the formal properties of equations to the actual problem of determining the uniform domain of
validity of solutions, Kaplun(1967) advanced two assertions, the Axiom of Existence and the Ansatz about
domains of validity. These assertions constitute primitive and unverifiable assumptions of perturbation theory.

Axiom (of existence) (Kaplun, 1967). If equations E and E′ are equivalent in the limit to the order δ for
a certain region, then given a solution S of E which lies in the region of equivalence of E and E′, there exists
a solution S′ of E′ such that as ε→ 0, |S − S′|/δ → 0, in the region of equivalence of E and E′.

In other words, the axiom states that there exists a solution S′ of E′ such that the “distance” between S
and S′ is of the same order of magnitude of that between E and E′.
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In using perturbation methods, the common approach is to consider the existence of certain limits of the
exact solution or expansions of a certain form. This is normally a sufficient condition to find the associated
equations and to assure that the axiom is satisfied (Kaplun(1967). Equivalence in the limit, however, is a
necessary condition as shown by propositions (1) to (3).
To the axiom of existence there corresponds an Ansatz; namely that there exists a solution S of E which

lies in the region of equivalence of E and E′. More explicitly, we write.

Ansatz (about domains of validity) (Kaplun, 1967). An equation with a given formal domain of validity
D has a solution whose actual domain of validity corresponds to D.

The word “corresponds to” in the Ansatz was assumed by Kaplun to actually mean “is equal to”; this
establishes the link we needed between the “formal” properties of the equation and the actual properties of the
solution.
The Ansatz can always be subjected to a canonical test which consists in exhibiting a solution S′ of E′ which

lies in the region of equivalence of E and E′ and is determined by the boundary conditions that correspond to
S.
Because the heuristic nature of the Axiom and of the Ansatz, comparison to experiments will always be

important for validation purposes. The theory, however, as implemented through the above procedure, is always
helpful in understanding the matching process and in constructing the appropriate asymptotic expansions.

3. The Proposition of the Principal Equations

The “splitting” of the equations obtained through the definition of equivalent in the limit may be extended to
higher orders by introducing a fictitious perturbation of an arbitrary order δ. Thus, according to Kaplun(1967),
for higher orders the splitting of the equations corresponding to arbitrary limit processes becomes more com-
plicated and less significant; the operation of splitting is then merely reduced to exhibit some of the typical
associated equations and some of the sufficient conditions under which they are associated. In fact, Kaplun lists
three reasons why the splitting for higher orders should not be considered in detail: i) the equations associated
with a given point (η, δ) depend on the choice of the δ′n for the corresponding limit process and may depend on
the amount of information used in connection with the preceding terms, ii) the δ′n depend to greater extent on
boundary conditions and hence are difficult to determine a priori, and iii) many trivial splitting of the associated
equations arise, corresponding to expansions of the preceding terms by different limit processes.
Here, we want to further extend the above notions. In what follows we will show that, for certain points

of the (Ξ,Σ) product space, the determination of the associated equations will depend on the choice of some
discrete values of δ′n. It results that the order of validity of an approximation is defined by open intervals
determined by the discrete δ′n’s. Furthermore, no trivial splitting will result in these certain points.
To extend the previous results to higher orders, we consider solutions of the form

f = f0 +∆(ε)f1, (8)

where ∆(ε) ∈ Ξ.
Some questions are now in order. Which function is ∆(ε) for a given differential equation? Is ∆(ε) the same

for all regions of the domain?
The first question is complex and involves speculating on the existence and uniqueness of solutions. Of

course, uniqueness of ∆(ε) can never be assured since given any ∆(ε), one can always present another ∆′(ε)
such that ∆′(ε) is exponentially close to ∆(ε) . Thus, according to Kaplun, there will always be a “question
of choice” for the determination of the appropriate asymptotic expansions which must be solved relying on
intuition and physical insight. An adequate ∆(ε) can however be determined in a very natural way. We require
∆(ε) to be such that the resulting equation for f1 does not provide a trivial solution. A ∆(ε) satisfying this
condition is said to be a critical ∆(ε). Analogously, its order, ord∆(ε), is called critical order. More precisely:

Definition (of critical order) (Kaplun(1967)). An order ord∆(ε) is said to be critical if:
i) the corrections to f0 to any order ζ in D,D = {ζ/ord∆(ε) < ord ζ < 1}, are trivial;
ii) the corrections to f0 to any order ζ in the complement of D are not trivial.

The above definition suggests that approximate solutions for different regions of the domain should not in
general have the same ∆(ε). Of course, equal ∆′s might happen as a mere coincidence; however, it is important
to give emphasis to that, normally this is not the case.
To find the several order approximate equations we substitute Eq.(8) into the original equations and perform

elementary operations such as addition, multiplication, subtraction, differentiation and so on. If these operations
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are justified, that is, if they do not lead to any non-uniformity, we then collect the terms of same order of
magnitude and construct a set of approximate equations. Thus, it is clear that in the process of collecting
terms, to each term E1 of order, say ν there will always correspond another term E2 of order ν∆(ε).

Consider now an equation E where E1 and E2 denote the first two critical order terms. We call the operator
Π1(E) = E1 the first order projection of E onto E1. Analogously, the operator Π2(E) = E2 is called the second
order projection of E onto E2.
We can then enunciate the following proposition.

Proposition (of the principal equations). If there is a principal equation, E1, at a point (η, 1) of the (Ξ,Σ)
product space, then there is also a principal equation, E, at a point (η, ε) of (Ξ,Σ) with E1 = Π1(E).

Proof: Suppose E1 is a principal equation at a point (η, 1) of the (Ξ,Σ) product space. Then one can find a
term R1l such that R1l is order unity in D (the domain of E1) but ord 1 < ordR1l < ord ε in Du, the upper
adjacent domain of D. Here ε denotes the first critical order. Define E′

1 = E1 - R1l.
Let now E2 and E′

2 denote the first order associated equations in D and Du respectively. Then, there is a
term R2l such that R2l is order ε in D but ordR2l < ord ε in Du. Define E′

2 = E2 - R2l.
It results that the structure of the lower adjacent region is

ord R1l < ord E
′
1 < ord R2l < ord E

′
2 (9)

This yields that no other equation is equivalent to order ε to equation E = E′
1 + R1l + E′

2 + R2l in D.
However, E and E′(= E′

1 + R1l + E′
2) are equivalent in Du to ord ε. We conclude E is a principal equation at

a point (η, ε) of the (Ξ,Σ) product space.

The converse of the above proposition is obviously true, that is: if E is a principal equation at a point (η, ε)
of the (Ξ,Σ) space, where η denotes the formal limit domain of E and ε the first critical order, then Π1(E) is
a principal equation at a point (η, 1) of the (Ξ,Σ) space.
What the above proposition clearly states is that the position in the (Ξ,Σ) product space where the principal

equations are located can be searched by looking only at the lowest order associated equations. Furthermore, it
says that these lowest order approximations are good up to the first critical order and that no trivial splitting
will arise. This fact is only valid for the particular point in (Ξ,Σ) space where the principal equation holds. In
the upper and lower adjacent domains trivial splitting will occur.
It results that higher order splitting should not, in fact, be considered. The principal equations of the prob-

lem, those that retain most of the information about the problem solution, can have their position determined
only through an analysis of the lowest order terms. Then the concept of critical order can be applied to the
solution to find the appropriate asymptotic expansions for the problem.

4. The Asymptotic Structure of the Turbulent Boundary Layer

Boundary layer problems played a central role in the development of singular perturbation methods. In fact,
the basic ideas of singular perturbation methods remount to Prandtl’s boundary layer theory of a laminar flow.
Prandtl’s matching principle for laminar boundary layers was systematically discussed and generalised in the
fifties yielding well established procedures and solutions which have rendered the laminar flow problem solved.
In regard to turbulent flows, two approaches were used: in the first, asymptotic techniques were applied to

the averaged equations without appealing to any closure model (Yajnik(1970), Mellor(1972)); in the second,
eddy-viscosity (Bush and Fendell(1972)) or κ − ε (Deriat and Guiraud(1986)) models were used to find high
order approximations. Most theories divide the turbulent boundary layer into two regions. Other authors, Long
and Chen(1981), Sychev and Sychev(1987), Melnik(1989), however, have recently claimed that the turbulent
boundary layer has instead a three-layered structure. This structure considers a new region in which a balance
of inertia forces, and pressure and turbulent friction forces occurs. The formulation of Melnik is based on a
two-parameter expansion of the boundary layer equations, the new additional small parameter resulting from
the particular turbulence closure model he uses.
The discussions that have led to the development of the three-layered asymptotic model for the turbulent

boundary layer result from the recognition that two-layered models cannot deal with large flow disturbances
in the stream-wise direction. When a turbulent boundary layer is subjected to a large longitudinal adverse
pressure gradient, the velocity deficit is large and the mean momentum equation is non-linear; this makes the
classical matching arguments which result in a log-law and in a two deck structure, not valid anymore. The
classical wall characteristic velocity, the friction velocity, may become an inappropriate scaling parameter so
that new formulations will have to be developed for the problem at hand.
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Here, we will investigate the turbulent boundary layer from the point of view of Kaplun’s single limits. The
purpose is to formally arrive at a three-layered structure which is compatible with the class of problem to be
studied: the turbulent boundary layer near the leading edge of a flat plate.
For an incompressible two-dimensional turbulent flow over a smooth surface in a prescribed pressure distri-

bution, the time-averaged motion equations; i.e., the continuity equation and the Navier-Stokes equation can
be written as

∂uj

∂xj
= 0, (10)

uj
∂ui

∂xj
= − ∂p

∂xj
− ε2 ∂

∂xj

(
u′ju

′
i

)
+
1
R

∂2ui

∂x2
j

, (11)

where the notation is classical. Thus (x1, x2) = (x, y) stand for the co-ordinates, (u1, u2) = (u, v) for the
velocities, p for pressure and R for the Reynolds number. The dashes are used to indicate a fluctuating
quantity. In the fluctuation terms, an overbar is used to indicate a time-average.
All mean variables are referred to some characteristic quantity of the external flow. The velocity fluctuations,

on the other hand, are referred to a characteristic velocity uτ .
The correct assessment of the characteristic velocity is fundamental for the determination of the boundary

layer asymptotic structure.Here we consider

ord (u′i) = ord (uτ ). (12)

This result is valid for incompressible flows as well as for compressible flows.
The small parameter ε is, therefore, defined by

ε =
uR

U∞
=
uτ

U∞
. (13)

The asymptotic expansions for the flow parameters are written as

u(x, y) = u1(x, y) + εu2(x, y), (14)

v(x, y) = η[v1(x, y) + εv2(x, y)], (15)

p(x, y) = p1(x, y) + εp2(x, y), (16)

u′i(x, y) = εu
′
i1(x, y) + ε

2u′i2(x, y). (17)

u′v′(x, y) = ε2 u′v′1(x, y) + ε
3 u′v′2(x, y). (18)

To find the asymptotic structure of the boundary layer we consider the following stretching transformation

ŷ = yη =
y

η(ε)
, ûi(x, yη) = ui(x, y). (19)

with η(ε) defined on Ξ.
Upon substitution of Eq.(19) into Eqs.(14) to 17) and upon passage of the η-limit process onto the resulting

equation we get:

x-momentum equation:
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ord(δ) = 1 ord(δ) = ord(ε)

η = 1 : D11 = P1, D12 +D21 = P2, (20)
ε < η < 1 : D11 = P1, D12 +D21 = P2, (21)

η = ε : D11 = P1, D12 +D21 = P2

− (u′v′1)ŷ, (22)

ε2 < η < ε : D11 = P1, (u′v′1)ŷ = 0, D12 +D21 = P2, (23)

η = ε2 : D11 = P1 D12 +D21 = P2

− (u′v′1)ŷ, − (u′v′2)ŷ, (24)

ε3 < η < ε2 : (u′v′1)ŷ = 0, D11 = P1, (u′v′2)ŷ = 0, (25)

η = ε3 : (u′v′1)ŷ = 0, D11 = P1

− (u′v′2)ŷ, (26)

1/ε2R < η < ε3 : (u′v′1)ŷ = 0, (u′v′2)ŷ = 0, (27)

η = 1/ε2R : (u′v′1)ŷ = 0, (u′v′2)ŷ = (u2)ŷŷ, (28)

1/εR < η < 1/ε2R : (u′v′1)ŷ = 0, (u2)ŷŷ = 0, (u′v′2)ŷ = 0, (29)

η = 1/εR : (u′v′1)ŷ = (û2)ŷŷ, (u′v′2)ŷ = (û3)ŷŷ. (30)

where the following operators were used

Dij = ûi
∂ûj

∂x
+ v̂i

∂ûj

∂yη
, Pi = −1

ρ

∂p̂i

∂x
. (31)

The above equations were arranged in three columns according to their respective order of approximation.
The first column corresponds to the first order of approximation; the third one to the second order of approxi-
mation. The middle column corresponds to orders between the first and the second critical order. The extreme
left of the lines indicates the point in the domain where the η-limit process was applied.
Passage of the η-limit process onto the y-momentum equation does not give any relevant information. In

fact, we will find that for ord η < ord ε the first and second order pressure terms will dominate all the other
terms. All information regarding the asymptotic structure of the boundary layer is, therefore, contained in the
x-momentum equation.
The term û1(x, yη) is missing from equations (29) and (30) since from the no-slip condition û1 = 0 near the

wall.
Equations (24) and (30) are distinguished in two ways: i) they are determined by specific choices of η, and

ii) they are “richer” than the others in the sense that, application of the limit process to them yields some
of the other equations, but neither of them can be obtained from passage of the limit process to any of the
other equations. Thus, according to the definitions introduced in the previous sections, these equations are the
principal equations. We have seen that principal equations are important since they are expected to be satisfied
by the corresponding limits of the exact solution.
A complete solution to the problem should then according to the Axiom of Existence and Kaplun’s Ansatz,

be obtained from the principal equations located at points ord η = ord ε2 and ord η = ord (1/εR). The formal
domains of validity of these equations cover the entire domain and overlap in a region determined according to
the definition of equivalent in limit.
To find the overlap region of equations (24) and (30), we must show these equations to have a common

domain where they are equivalent. A direct application of the definition of equivalence in the limit to equations
(24) and (30) yields

R =
D(û1)− P (p̂1) +D(û2)− P (p̂2)− (û2)ŷŷ − (û3)ŷŷ

εα
. (32)

Noting that the leading order term in region ord (1/εR) < ord η < ord ε2 is the turbulent term, of ord (ε2/η),
we normalise the above equation to order unity to find
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R̄ =
η

ε2
R. (33)

The overlap domain is the set of orders such that the η-limit process applied to R̄ tends to zero for a given
α. Then since ord (∂/∂y) = ε and ord (∂/∂x) = 1, the formal overlap domain is given by

Doverlap = {η/ ord (ε1+αR)−1 < ord η < ord (ε2+α)}. (34)

According to Kaplun’s Ansatz about domains of validity, the approximate equations, Eqs. (24) and (25),
only overlap if set (34) is a non-empty set, that is, if

0 ≤ α ≤ −1
2

(
lnR

ln ε
+ 3

)
. (35)

The implication is that the two-deck turbulent boundary layer structure given by the two principal equations,
equations (24) and (30), provides approximate solutions which are accurate to the order of εαmax , where αmax is
the least upper bound of the interval (35). This fundamental result can only be reached through the application
of Kaplun’s concepts and ideas to the problem.
In particular, the overlap domain of the first and second order of approximation are given respectively by

Do
1 ∩Di

1 = {ordη/ ord(1/εR) < ord(η) < ord(ε2)} (36)

and,

Do
2 ∩Di

2 = {ordη/ ord(1/ε2R) < ord(η) < ord(ε3)}. (37)

We conclude that the turbulent boundary layer has a two-deck structure very much like the one derived by
Sychev and Sychev. This structure, however, must change as the leading edge is approached. We shall see this
next.
Before we move forward, however, some comments about the intermediate equations will be made.
For the formal limit domains which are not adjacent to the principal equations two approximated equations

are always defined, separated by the first two critical orders. In this case the interpretation is simple and the
local approximated equations and solutions well defined. For the regions adjacent to the principal equations,
however, a correction with order between the first two critical orders is found. The interpretation of these
equations is more complex and must be made in an individual basis. For example, in the turbulent boundary
layer problem under consideration, the solution in the upper adjacent region must take into consideration, as
the first two order of approximation equations, the leading order equation and the intermediate order equation;
these equations will provide non-trivial solutions with physical information. For the lower adjacent region,
however, the intermediate order equation provides a trivial solution; thus, no extra information is obtained
from this equation except that the overlap domain for the first two order of approximation is not given by
equation (37) but by

Do
2 ∩Di

2 = {ordη/ ord(1/ε2R) < ord(η) < ord(ε2)}. (38)

5. The Flow Near the Leading Edge of a Flat Plate

The above asymptotic structure must undergo modifications if the flow near to the leading edge of a flat
plate is to be considered.
A major difficulty for a direct translation of the classical boundary layer model into a model that applies

for the leading edge is the fact that the assumption

∣∣∣∣∂
2u

∂x2

∣∣∣∣ �
∣∣∣∣∂

2u

∂y2

∣∣∣∣
does not apply any more.
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In addition, when the friction velocity, uτ , is used to develop the asymptotic structure of the boundary layer,
a non-uniformity will occur near the leading edge point where uτ = 0. The result is that any theory advanced
for the problem should explain in asymptotic terms how the far downstream two-deck structure reduces to an
alternative structure near the leading edge.
To find the asymptotic structure of the boundary layer near a leading edge point we apply the following

stretching transformation to the equations of the previous section

x∆ =
x

∆(ε)
, (39)

with ∆(ε) defined on Ξ.
The resulting flow structure is given by:

x-momentum equation:

ord ∆ = ord 1 : û1
∂û1

∂x∆
+ v̂1

∂û1

∂yη
+
∂p̂1
∂x∆

= 0, (40)

ord ε2 < ord ∆ < ord 1 : û1
∂û1

∂x∆
+ v̂1

∂û1

∂yη
+
∂p̂1
∂x∆

= 0, (41)

ord ε2 = ord ∆ : û1
∂û1

∂x∆
+ v̂1

∂û1

∂yη
+
∂p̂1
∂x∆

= −∂û
′2
1

∂x∆
− ∂û′1v̂′1

∂yη
, (42)

ord 1/εR < ord ∆ < ord ε2 : 0 = −∂û
′2
1

∂x∆
− ∂û′1v̂′1

∂yη
, (43)

ord 1/εR = ord ∆ : 0 =
∂2û1

∂x2
∆

+
∂2û1

∂y2η
− ∂û′

2

1

∂x∆
− ∂û′1v̂′1

∂yη
, (44)

ord ∆ < ord 1/εR : 0 =
∂2û1

∂x2
∆

+
∂2û1

∂y2η
. (45)

y-momentum equation:

ord ∆ = ord 1 : û1
∂v̂1
∂x∆

+ v̂1
∂v̂1
∂yη
+
∂p̂1
∂yη
= 0, (46)

ord ∆ < ord 1 :
∂p̂1
∂yη
= 0. (47)

Note that in region (∆, η) = (ε2, ε2) the boundary layer formulation has to be modified so as to include an
extra Reynolds stress term in the x-momentum equation. The y-momentum equation remains unchanged, with
the pressure term dominating the leading order solution. Further close to the leading edge the complete viscous
terms are recovered in the x-momentum equation; the pressure term still dominates the y-momentum equation.
The two principal equations in the x-direction are Eqs. 42 and 44. They cover the whole domain and overlap

in ord 1/εR < ord∆ < ord ε2. In the y-direction the motion is dominated by the single principal equation, Eq.
46. The result is that near the leading edge the motion governing equations are not the boundary layer equation.
Rather, alternative equations need to be considered which include extra Reynolds and viscous stress terms.
Thus, the region of approximate validity of these equations are as follows:

1. Potential solution equation: ord ε2 < ord ∆, ord η < ord 1.

2. Fully turbulent flow: ord 1/εR < ord ∆, ord η < ord ε2.
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3. Stokes equation: ord ∆, ord η < ord 1/εR.

In addition, the y-momentum equation has to be considered in the analysis in the form of Eq. 46.

Potential Flow

ord(δ)Defect Region

ord(ε2)Fully Turbulent Region

ord(1/εR)Viscous Region

ord(ε2)

ord(ε2)

ord(1/εR)

ord(1/εR)�
�

�
�

�
�

�
��

Figura 1. Asymptotic structure of the turbulent boundary layer near the leading edge of a flat plate.

Some experimental evidence (Sreenivasan(1989)) has shown that

δ ∝ x4/5, (48)

ε ∝ x−1/10, (49)

yp ∝ x1/2, (50)

where yp denotes the point of maximum turbulent stress.
The structure presented in Fig. 1 is consistent with these results.

6. Final Remarks

In the first part of the paper, some ideas of Kaplun concerning limit processes have been extended to higher
orders through the proposition of the principal equations. This result is central to our work, for it ensures
that the asymptotic structure of a singular perturbation problem can be uniquely determined by a first order
analysis of the formal domains of validity. The resulting principal equations are expected to be satisfied by the
corresponding limits of the exact solution, so providing approximate solutions that overlap and cover the entire
domain of validity.
In the second part of the paper, application of Kaplun limits to the equations of motion has shown the

zero-pressure turbulent boundary layer to have a two deck structure, the principal equations being located at
points (ε2, 1) and (1/εR, 1) of the product space (Ξ × Σ). The present results are very much in accordance
with the earlier works of Yajnik, of Mellor and of Bush and Fendell. They seem to corroborate the idea that a
one-parameter theory can correctly describe the flow structure and, furthermore, do not give any evidence to
suggest the contrary.
The present analysis has also shown how the two-deck turbulent boundary layer structure develops into

a one-deck structure near the leading edge of a flat plate. Despite the assertion by many authors that the
full Navier-Stokes must be recovered by the leading edge point, we have shown here that consideration of the
principal equations, Eqs. 42, 44 and 46, furnishes a complete set of approximate equations for the problem.
The proposed asymptotic structure is now being tested against some experimental data that the author have

collected in the Laboratory of Turbulence Mechanics of COPPE/UFRJ. These results will be published in due
time.
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