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Abstract. A finite element analysis is carried out to investigate the behavior of gas lubricated herringbone groove journal bearings
operating at high speeds. A special finite element procedure, based on the Galerkin weighted residual method with a new class of
high-order shape functions, is implemented to solve the Reynolds equation for compressible fluids in journal bearings. A linearized
perturbation procedure is performed on the Reynolds equation to render the zeroth- and first-order lubrication equations for
grooved journal bearings. These zeroth- and first-order lubrication equations permit the prediction of some bearing static and
dynamic performance characteristics, such as load capacity and dynamic force coefficients. Curves of performance characteristics
show the influence of high speeds on the behavior of gas grooved journal bearings.
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1. Introduction

Nowadays, gas bearings are finding numerous industrial applications, such as computer storage devices, precision
equipment, guidance mechanisms, lightweight rotating machinery and electronics (Pan, 1990). Fixed and non-fixed
bearing geometries have been widely employed in journal bearings for industrial machinery and equipment that require
an oil-free environment and very low friction. Advances in gas bearing technology rely heavily on the development of
numerical tools capable of predicting the bearing performance under several operating conditions. Preliminary bearing
performance analysis is a very important stage in the design of gas bearings, providing useful data for selection of an
appropriate bearing configuration for a given industrial application.

One of the best combinations of cost and performance among self-acting gas journal bearing designs is the
herringbone groove journal bearing (HGJB) (Cunningham et all, 1969). Gas HGJBs have been successfully used in
lightweight rotating machinery and high-precision equipment due to their high stiffness, good dynamic stability against
self-excited whirl and low manufacturing costs. Some important applications of gas HGJBs are automotive
turbochargers and rotating parts of video and audio equipment. The technical literature lacks both numerical and
experimental data about the static and dynamic performance of gas HGJBs

Due to its capability of representing complex geometries and associated boundary conditions, the finite element
method (FEM) has been recently used to devise some models for gas HGJBs. Finite element procedures for gas HGJBs
are generally based on either the Galerkin (Kinouchi et all, 1996) or the Petrov-Galerkin (Bonneau and Absi, 1994)
weighted residual method. Schemes based on the Galerkin method usually require fine meshes to provide stable
numerical solutions for high speed gas bearings (Faria and San Andrés, 2000). Schemes based on the Petrov-Galerkin
method are able to provide efficient and stable FEM procedures for high speed gas bearings, but require special
numerical integration procedures to deal with the advection flow terms of the Reynolds equations and generally
introduce numerical artificial diffusion into the solution (Faria, 1999).

In order to analyze some static and dynamic performance characteristics of gas HGJBs operating at high speeds, an
efficient and accurate finite element procedure, founded on the Galerkin weighted residual method with a novel class of
high order shape functions, is employed (Faria, 2001). The high order shape functions are derived from the Reynolds
equation within an element domain (Faria and San Andrés, 2000). The high order finite element procedure eliminates
not only the need of fine meshes but also does not introduce artificial diffusion into the solution of the Reynolds
equation for compressible fluids. Furthermore, a linearized perturbation procedure is applied on the Reynolds equation
to render the zeroth- and first-order lubrication equations, which permit the computation of the bearing load capacity
and the dynamic force coefficients, respectively. Bearing load-capacity and frequency-dependent force coefficients are
predicted for gas HGJBS operating at high speeds. The analysis shows the effects of high speeds on the performance
characteristics of gas HGJBs.
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2. Parameters and governing equations for a Gas HGJB

Figures (1) e (2) depict the geometry and parameters describing a gas-lubricated herringbone groove journal
bearing (HGJB). The bearing geometry includes the groove angle β, the ridge bearing clearance c, the groove depth cg,
the ridge width wr and the groove width wg. The journal rotational speed is denoted by Ω. Journal eccentricities in the
vertical and horizontal directions are expressed as eX and eY, respectively. The eccentricity ratio is defined as ε = e/c,
where e2=eX

2+eY
2. The bearing attitude angle, φ, is defined as ( )XY FFtana −=φ , where FY and FX are the horizontal

and vertical components, respectively, of the bearing reaction force F. Two useful parameters for grooved bearings are
the groove width ratio, )ww(w rggg +=α , and the groove length ratio, L/Ll gg = , where Lg is the extent of the

grooved region in the axial direction and  L is the bearing length. lg=1 for the fully grooved bearing shown in Fig. (2)
and lg<1 for partially grooved journal bearings. The partially grooved bearing has a circumferential land centrally
located along the bearing length. (X,Y,Z) is an inertial reference frame, and (x,y,z) is a rotating coordinate system
attached to the journal, where x=Rθ  and R is the bearing radius. The circumferential coordinate Φ is fixed to the
bearing housing, while the coordinate θ  rotates with the journal ( tΩθΦ += ). The bearing motion is described in
relation to the coordinate system attached to the grooved member (Faria, 2001).

The Reynolds equation for an isothermal, isoviscous, ideal gas in the rotating coordinate system (x,y,z) is written in
the following form (Hamrock, 1994):
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− . U represents the journal surface speed, p is the pressure field and µ is

the fluid viscosity.  For  stationary  grooves  (smooth journal)  U = ΩR,  while  for rotating grooves (grooved journal)
U = -ΩR. The bearing sides are at ambient pressure pa and the pressure is periodic in the circumferential direction.
Expressions for the film thickness h at the ridge and groove of a HGJB are given as.

)t.sin()t(e)t.cos()t(ech YX ΩθΩθ ++++=                                    (2)

)t.sin()t(e)t.cos()t(ecch YXg ΩθΩθ +++++=                                                  (3)

ex

eY

Y

X

x

y

Φ

θ
Ω

Figure 1. Schematic view of a cross-section of a HGJB.

3. Linearized Perturbation Procedure

A perturbation analysis is performed to obtain the zeroth- and first-order lubrication equations for computation of
the bearing load-capacity and dynamic force coefficients, respectively. A journal equilibrium position described by
(eXo,eYo) is perturbed by small amplitude journal motions ( )YX e,e ∆∆  with an excitation frequency (ω). The film

thickness is then given as

( ) ti
o

ti
YYXXo ehehehehehh ω

σσ
ω ∆∆∆ +=++= ;     ( Y,X=σ ; 1i −= )                  (4)

bearing
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Figure 2. Details of a HGJB geometry.

where )t.cos(hX Ωθ += , )t.sin(hY Ωθ +=  and the zeroth-order film thickness is 
YoYXXo hehech

o
++=   or

YoYXXgo hehecch
o

+++= . It is assumed that the periodic perturbations on the film thickness cause the same type

of perturbation on the pressure field, which is written as

ti
o

ti
YYXXo epepe)pepe()t,z,(p)t,z,(p ω

σσ
ω ∆∆∆θθ +=++= ; Y,X=σ             (5)

where po and Y,X}p{ =σσ  represent the zeroth- and first-order pressure fields, respectively.

By substituting equations (4) and (5) into the governing equation (1), the zeroth- and first-order lubrication equations
are obtained in the following form:
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Smooth and grooved journals are usually employed in HGJB designs. For simplicity, this work deals with a finite
element procedure developed for bearings with a smooth rotating journal (Faria, 2001).

4. Finite element high-order scheme

The zeroth- and first order pressure fields are interpolated by using a new class of high-order shape functions

{ }
4321 ,,,j
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ψ , derived from an approximate solution to the non-linear Reynolds equation within an element (e). The

steady-state two-dimensional Reynolds equation for a four-node element (e), written in relation to an arbitrary two-
dimensional coordinate system (x,y),  is expressed as
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The nodal values of pressure within element (e) are given by e
ip , i=1,2,3,4. Over an element domain, 
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are computed for meaningful averaged values of pressure pe and film thickness he within (e) (Faria, 2001). Hence,
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where 
2
eehp

u6µ
ν = . The linear partial differential equation (9) can be solved by separation of variables, assuming that the

constant generated by the separation principle is zero (Faria, 2001). Hence, the solution has the form
).).(( DyCBAep x

e ++= ν , where A,B,C, e D are constants.

Figure (3) depicts the transformation from the local coordinate system (x,y) to the natural coordinate system (ξ,η)
for an element (e). The “exact” or high-order shape functions, for an element domain Ωe in its natural coordinate system
(ξ,η), are then expressed as
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2
ee

e
e

hp

uL6µ
λ =  is a local speed or Peclet number. Le is the averaged element length computed in the

circumferential direction. For the limit case, λe→0, the “exact” shape functions become the bilinear interpolation
functions (Bathe, 1982). The “exact” shape functions are of higher order than those of polynomials widely used in the
FEM. The upwinding effect is intrinsically contained in the high-order functions without resort to special schemes for
the advection terms. No artificial viscosity is therefore introduced into the solution.
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Figure 3. Transformation from local coordinates to natural coordinates for element (e).

5. Finite element lubrication equations

The Galerkin weighted residual method is used to derive the zeroth- and first-order lubrication equations for a
finite element domain (Bathe, 1982). Four-node isoparametric finite elements are employed in the discretization of the
thin gas flow domain and the zeroth- and first-orde pressure fields are interpolated using the high-order shape functions;
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allow the computation of the zeroth-order stationary pressure field within an element (e).
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e
jik  represent the coefficients of the elementary fluidity matrix; e

jq  represents the nodal flux through the element

boundary 
eΓ . The normal mass flow rate outward the element boundary is given by e

nm& . The method of successive

substitutions (Dahlquist and Björck, 1974) is employed to solve the global non-linear Reynolds equation. The initial
guess for pressure is the ambient pressure. The iterative process ends when 001.0FF oldnew ≤− , where Fnew is the

bearing load capacity computed at iteration (n) and Fold is the force at the previous iteration (n-1).
Similarly, the linear stationary first-order lubrication equations are obtained from Eq. (7).
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where 
ji

ekσ  represents the complex first-order fluidity matrix; e

j
fσ represents the right-hand side first-order flux vector

within element (e); e

j
qσ represents the first-order nodal flux through the element boundary; 

n
emσ&  represents the first-

order mass flow rate through the element boundary.

6. Bearing reaction force and dynamic force coefficients

The zeroth- and first-order pressure fields are integrated over the bearing domain to generate  the  fluid  film
reaction forces  

YXo
F ,}{ =σσ  and dynamic complex impedances 

YXo
Z ,,}{ =σβσβ

. The fluid film bearing reaction forces

acting on the journal for a stationary position (
oo YX e,e ) are given as
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where pref is the reference pressure (pa).
The bearing dynamic coefficients associated with the stiffness 
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calculated from the complex impedances in the following form
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7. Numerical results

Firstly, the accuracy of the high-order finite element procedure is evaluated by comparing the computed finite
element predictions for dynamic force coefficients with results available in the technical literature for gas lubricated
plain journal bearings. Secondly, some performance characteristics of a gas HGJB are evaluated at concentric and
eccentric journal positions.

7.1. Validation

The high-order finite element scheme is evaluated for an air-lubricated unloaded plain journal bearing given by
Dimofte and Keith (1998). The bearing parameters are shown in Tab. (1). Predictions obtained by the high-order FEM
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scheme are computed for a mesh with 110 elements (11 circumferential elements and 10 axial elements). Figure (4) and
Figure (5) depict the comparative results for direct and cross-coupled synchronous (ω = Ω) stiffness and damping

coefficients versus the bearing number ( )cp()R6( 2
a

2ΩµΛ = ). Solid lines indicate the high-order FEM predictions

while dashed lines indicate the results presented by Dimofte and Keith. Those figures show the good agreement
between the finite element predictions for force coefficients and the results presented in the literature. The normalized

coefficients are computed as 
)c/LDp(

K
K

a

ij
ij =  and 

)c/LDp(

C
C

a

ij
ij Ω
=  , i,j=x,y .

Table (1). Plain gas journal bearing parameters for validation of the high-order FEM scheme.

L = 0.05 m c = 5 µm pa = 0.101 MPa
D = 0.05 m µ = 1.9x10-6 Pa.s εy = 0.01

ρ = 1.32 kg/m3 εx = 0.01
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7.2. Analysis of a gas HGJB

Performance characteristics of a gas HGJB, whose parameters are shown in Tab. (2), are evaluated at concentric
and eccentric operating conditions. Rotating machines using gas HGJBs usually operate under light loads. However, the
development of lightweight rotating machines operating under stringent conditions has demanded the investigation of
gas journal bearings operating at off-centered positions.

Table (2). Baseline parameters of a gas HGJB.

smooth member rotates (journal)
D = 0.04 m β  = 30o pref = 0.10 MPa
L = 0.04 m αg = 0.5 ρ =1.32 kg/m3

c =10 µm Ng = 4 Ω = 32000 rpm (Λ =15.3)
cg = 14 µm µ = 1.9x10-5 Pa.s lg = 1

Mesh: 784 elements
(56 circumferential x 14 axial elements)

Figure (6) depicts the predictions of the synchronous (ω =Ω) direct (
YYXX KK , ) and cross-coupled (

YXXY KK , )

stiffness coefficients obtained for increasing values of bearing number (Λ). The dimensionless coefficients are
computed at concentric operating conditions. The normalization is performed by using LDpcKK aijij .= , i,j=X,Y.

Stiffness coefficients tend towards asymptotic values at large bearing numbers.
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Figure (7). Dimensionless bearing load capacity versus eccentricity ratio for a gas HGJB.
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Figure (8). Journal attitude angles versus eccentricity ratio for a gas HGJB.
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Figure (9). Dimensionless synchronous direct stiffness coefficients versus eccentricity ratio for a gas HGJB.
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Figure (10). Dimensionless synchronous cross-coupled stiffness coefficients versus eccentricity ratio for a gas HGJB.

8. Conclusions

An efficient and accurate finite element procedure is implemented to analyze the behavior of gas lubricated
herringbone groove journal bearings (HGJBs). This procedure is based on the Galerkin weighted residual method with a
new class of high-order shape functions, which are derived from the non-linear Reynolds equation for compressible
fluids within an element domain. The implemented finite element procedure is capable of rendering accurate predictions
of some static and dynamic performance characteristics of high speed gas HGJBs. Curves of some performance
characteristics, such as bearing load capacity and dynamic force coefficients, versus operating parameters show the
influence of high speeds on the behavior of gas HGJBs operating at concentric and eccentric journal positions. The
finite element analysis is carried out for bearings with rotating smooth journal at small, medium and large eccentricity
ratios. This work shows that the bearing load capacity and dynamic force coefficients tend to asymptotic values as the
journal rotating speed increases.
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