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Abstract. The Integral Transform Method is employed in the solution of thermally developing flow of Phan-Thien-Tanner (PTT)
fluids in ducts. In the analysis of the problem, it is considered a thermal boundary condition of prescribed heat flux at the duct walls
and, in addition, viscous dissipation effects are also taken into account. Numerical results for Nusselt numbers are computed in the
thermal entry region as functions of the Brinkman number and parameters of PTT model. Critical comparisons with previous results
in the literature are performed, which show the consistency of the final results.
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1. Introduction

The behavior of polymeric fluids is generally described for constitutive equations that include simultaneous
characteristics of elastic solids and viscous fluids, these are the so-called viscoelastic models. Bird et al. (1987) have
pointed out innumerous models to describe the fluid flow of viscoelastic fluids, among them we can cite the Phan-
Thien-Tanner (PTT) model, which was derived from a network theory for polymeric fluids (Phan-Thien and Tanner,
1977; Phan-Thien, 1978).

Since then, this model has been broadly used in the simulation of flows of polymer solutions and melts (Baaijens,
1993; Quinzani et al., 1995; Azaiez et al., 1996; Baloch et al., 1996; Oliveira and Pinho, 1999). Once these fluids
present high viscosities, they are commonly processed under laminar flow conditions and, in addition, when subjected
to heat transfer in duct flows, the development of velocity profiles are faster than temperature ones, so that the study of
thermally developing flow involving such fluids is more relevant. Therefore, the good prediction of temperature
distributions in heat transfer forced convection is important for polymer processing equipment, such as in the extrusion
processes.

In this context, the present work aims at developing analytical solutions for thermally developing flow of PTT
fluids in ducts through the integral transform methodology (Mikhailov and Özisik, 1984; Cotta, 1993), following the
philosophy of previous works (Pinho and Oliveira, 2000; Coelho et al., 2002a; 2002b).

The analytical solution of thermal entry region inside ducts involves difficulties due to the posterior solution of the
auxiliary eigenvalue problem. Consequently, it is not feasible to calculate heat transfer results in regions which are very
close to the inlet because a large number of eigenvalues are needed for the computation of the series expansion based on
eigenfunctions. The present work to alleviate such difficulties employs the well-established Sign-Count Method
(Mikhailov and Vulchanov, 1983; Mikhailov and Özisik, 1984), in order to solve the related Sturm-Liouville type
eigenvalue problem, which permits to determine automatically and highly accurately as many eigenvalues and
eigenfunctions as are needed. Alternatively, we also use the approach of the Generalized Integral Transform Technique
(GITT), which has demonstrated to be efficient and safe as the sign-count method (Cotta, 1993; Mikhailov and Cotta,
1994).

Then, to overcome the difficulties related above and to be able to perform heat transfer calculations in regions very
close to the inlet with a high degree of accuracy, the ideas in the integral transform technique in conjunction with the
well-established sign-count method and GITT approach, to solve the related eigenvalue problem, are used in the present
work, so that benchmark results are established for this problem. In the mathematical modeling a boundary condition of
prescribed heat flux at the duct walls and, in addition, viscous dissipation effects are also taken into account. Numerical
results for Nusselt numbers and dimensionless wall temperatures are computed in the thermal entry region as functions
of the Brinkman number and parameters of PTT model. We emphasize the convergence behavior of the series solution
and critical comparisons with previous results in the literature are performed, which show the consistency of the final
results.
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2. Analysis

We analyze steady-state heat transfer problem of an incompressible fluid that obeys the Phan-Thien-Tanner (PTT)
model flowing in the thermal entry region of either a parallel plates channel or a circular tube. The flow is considered to
be hydrodynamically developed; the duct wall is subjected to a prescribed uniform heat, the fluid enters with a uniform
temperature, Ti, and viscous dissipation effects are also taken into account. Axial diffusion and wall-conjugation are
neglected, in addition the physical properties are assumed to be constant.

The mathematical formulation for this general forced convection heat transfer problem in dimensionless form is
written as:
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where Dh = 22-prw is the hydraulic diameter and Re, Pr, Br and We are the apparent Reynolds and Prandtl, Brinkman and
Weissenberg numbers, respectively.

The dimensionless fully developed velocity profile U(R) is that obtained by Oliveira and Pinho (1999) for a Phan-
Thien-Tanner fluid and Φ(R) is the dimensionless viscous dissipation function, which are given in the form:
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the way to calculate the parameter )u/u( N  is also described in the work of Oliveira and Pinho (1999). The exponent p
and coefficient K are related to the duct geometry, as follows:
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The problem defined by Eqs. (1) can be readily solved by the classical integral transform technique (Mikhailov and
Özisik, 1984; Cotta, 1993). However, in order to obtain a convergence acceleration of the final solution, the so-called
splitting-up procedure is applied to this problem (Mikhailov, 1977; Mikhailov and Özisik, 1984). Then, it is proposed as
a general separation into simpler problems in the form:

)Z,R()R()Z()Z,R( hpav θ+θ+θ=θ (5)
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and, for this case of a prescribed wall heat flux, when all boundary conditions are of the second kind, the average
temperature is given a priori in the form:
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In Eq. (5), )R(pθ  represents the separated solution due to the nonhomogeneous boundary condition, Eq. (1.d), and
)Z,R(hθ  is the homogeneous version of problem (1), and are obtained from the following formulations:

, 
dZ

)Z(d)R(W)R(Br
dR

)R(d
 R

dR
d avpp θ

=Φ+






 θ
     in    1R0 << (8.a)

with boundary conditions

0dR)R()R(W       ;1
dR

)1(d
       ; 0

dR
)0(d 1

0
p

pp =θ−=
θ

=
θ

∫ (8.b-d)

For this case of all boundary conditions of second kind, where )R(avθ is determined a priori, Eq. (8.d) represents an
additional boundary condition necessary to determine one of the constants that appear after the integration of the
problem for )R(pθ . Thus, this problem is readily integrated to furnish
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and, the general homogeneous problem is given by:

, 
R

)Z,R( R
RZ

)Z,R()R(W hph






∂
∂θ

∂
∂=

∂
∂θ      in   0Z   ,1R0 ><< (10.a)

)R()0,R( ph θ−=θ ,    lR0 ≤≤ (10.b)

0
R

)Z,0(h =
∂

∂θ ;   0
R

)Z,1(h =
∂

θ∂ ,   0Z > (10.c,d)

The homogeneous problem given by Eqs. (10) can also be solved by the classical integral transform technique
(Mikhailov and Özisik, 1984; Cotta, 1993). Then, following the procedures of this technique, the general appropriate
eigenvalue problem needed for its solution is taken as
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where ψi(R) and µi are, respectively, the eigenfunctions and eigenvalues. The problem defined by Eqs. (11) is solved by
the so-called Sign-Count Method (Mikhailov and Vulchanov, 1983) and Generalized Integral Transform Technique
(Cotta, 1993; Mikhailov and Cotta, 1994), which offer safe and automatic computations of as many eigenvalues and
eigenfunctions as it is desired, with controlled accuracy. The eigenvalue problem above allows for the development of
the following integral transform pair:
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Thus, Eq. (16) in conjunction with Eqs. (9) for )R(pθ , complete the solution for the potential )Z,R(θ  defined in
Eq. (5). This solution is written as:
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The local Nusselt number is defined as:
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The wall temperature )Z,1(θ  is obtained from Eq. (17) as:
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where, )1(pθ  is given by Eq. (9.b). The asymptotic Nusselt number, ∞Nu , is determined by making ∞→Z  in
Eq. (20), so that
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To complete the solution is necessary to evaluate the eigenvalues, µi, the eigenfunctions ψi and the normalization
integral Ni of the eigenvalue problem (11). Here, for instance, we have used both the sign-count method established in
references (Mikhailov and Vulchanov, 1983; Mikhailov and Özisik, 1984) and the generalized integral transform
technique (Cotta, 1993; Mikhailov and Cotta, 1994) to determine the eigenvalues and another related eigenquantities
necessary to compute the average temperature and the local Nusselt numbers from Eq. (20).

3. Results and discussion

Numerical results for Nusselt numbers were produced for different values of the product εWe2 (product of the
extensional parameter of PTT model-Weissenberg number to square) and Brinkman numbers (Br < 0 that corresponds
to a fluid heating) in the thermal entry region of both a parallel plates channel and a circular tube. The computational
code was developed in FORTRAN 90/95 programming language and implemented on a PENTIUM-IV 1.3 GHz
computer.

First, the eigenvalues and another related eigenquantities were obtained by the two approaches cited above, and are
in perfect agreement. Due to space limitations they are not listed here. Then, the average temperature, θav(Z), and the
local Nusselt numbers, Nu(Z), were calculated.

The numerical code was validated for the case of εWe2 = 0 and Br = 0 (Newtonian situation without viscous
dissipation) against those results presented by Quaresma and Macêdo (1998), which have also employed the integral
transform methodology to forced convection heat transfer problem in channels involving Herschel-Bulkley fluids. Table
(1) shows this comparison, emphasizing the convergence behavior of the Nusselt numbers with different truncation
orders N, and an excellent agreement is verified, which provides a direct validation of the numerical code here
developed.
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Table 1. Comparison and convergence behavior of the local Nusselt number in the thermal entry region for the case of
of εWe2 = 0 and Br = 0 (Newtonian situation without viscous dissipation).

Nu (Z)
parallel plates channel circular tubeZ

N = 100 N = 200 N = 400 Quaresma and
Macêdo (1998) N = 100 N = 200 N = 400 N = 600 Quaresma and

Macêdo (1998)
1x10-6 146.82 146.77 146.77 146.78 104.35 125.75 129.19 129.20 129.18
5x10-6 86.953 86.954 86.954 86.955 74.037 75.188 75.190 75.190 75.180
1x10-5 69.011 69.011 69.011 69.011 59.423 59.510 59.510 59.510 59.504
5x10-5 40.419 40.419 40.419 40.420 34.511 34.511 34.511 34.511 34.508
1x10-4 32.156 32.156 32.156 32.156 27.276 27.276 27.276 27.276 27.274
5x10-4 19.112 19.112 19.112 19.113 15.813 15.813 15.813 15.813 15.812
1x10-3 15.427 15.427 15.427 15.427 12.538 12.538 12.538 12.538 12.538
5x10-3 9.9878 9.9878 9.9878 9.9878 7.4937 7.4937 7.4937 7.4937 7.4936
1x10-2 8.8031 8.8031 8.8031 8.8031 6.1481 6.1481 6.1481 6.1481 6.1481
5x10-2 8.2355 8.2355 8.2355 8.2355 4.5139 4.5139 4.5139 4.5139 4.5138
1x10-1 8.2353 8.2353 8.2353 8.2353 4.3748 4.3748 4.3748 4.3748 4.3748
5x10-1 8.2353 8.2353 8.2353 8.2353 4.3636 4.3636 4.3636 4.3636 4.3636

1.0 8.2353 8.2353 8.2353 8.2353 4.3636 4.3636 4.3636 4.3636 4.3636

In Figs. (1) to (6) are presented comparisons of the present results for the local Nusselt numbers with those of
Coelho et al. (2002b) in the thermal entry region of both ducts analyzed by varying the governing parameters, i.e., the
product εWe2 and Brinkman numbers. The present results for Nu(Z) were plotted in the range 10-6 ≤ Z ≤ 1, while
comparisons with results of Coelho et al. (2002b) were done in the range 10-5 ≤ Z ≤ 0.4, where one can see an excellent
agreement among the results in all dimensionless positions analyzed, this way once again validating the numerical code
developed here.

From these sets of figures, it can be verified that the effect of Brinkman number in both duct geometric
configurations analyzed is more pronounced for values of Br < -1. For example, with Br = - 100, there is a high internal
generation of heat in the fluid, so that the heat flux supplied at the wall duct is of the same magnitude order as that
generated in the fluid and, consequently, the local Nusselt number along the thermal entry region assumes lower values
near zero.

The influence of parameter εWe2 is evident for values near unity. In a general way the effect of this parameter is to
increase the Nusselt number due to a more pronounced shear-thinning effect in the fluid as verified by Coelho et al.
(2002a). It is important to note that the situation of εWe2 = 0 represents the case with absence of both extensional and
elastic fluid properties, i.e., the Newtonian case is reproduced as was observed in Table (1).

Finally, it can be noticed that the results are systematically larger for a parallel plates channel than for a circular
tube due to higher exchange heat areas presented by this flat duct.
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Figure 1. Comparison of local Nusselt numbers for the product εWe2 = 0. (a) parallel plates channel; (b) circular tube.
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Figure 2. Comparison of local Nusselt numbers for the product εWe2 = 10-3. (a) parallel plates channel; (b) circular tube.
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Figure 3. Comparison of local Nusselt numbers for the product εWe2 = 10-2. (a) parallel plates channel; (b) circular tube.
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Figure 4. Comparison of local Nusselt numbers for the product εWe2 = 10-1. (a) parallel plates channel; (b) circular tube.
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Figure 5. Comparison of local Nusselt numbers for the product εWe2 = 1. (a) parallel plates channel; (b) circular tube.
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Figure 6. Comparison of local Nusselt numbers for the product εWe2 = 10. (a) parallel plates channel; (b) circular tube.

4. Conclusions

The problem of the laminar convection heat transfer to a PTT fluid in the thermal entry region of both a parallel-
plates channel and a circular tube, for the case of prescribed wall heat flux, has been analyzed, with excellent
computational performance, through the integral transform methodology in conjunction with the sign-count method and
GITT approach for the solution of the related eigenvalue problem. Benchmark results for the local Nusselt number were
tabulated and graphically established with different values of the product εWe2 and Brinkman numbers, which
demonstrated to have significant influence in the final results, for values near unity and –1, respectively.
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